660MW超临界机组控制方案说明要点

合集下载

660MW超超临界机组教材重点

660MW超超临界机组教材重点

日本采用引进、仿制、创新的技术发展路线。 日本的超临界机组占常规火电机组装机容量 的60%以上,其450MW以上机组全部采用超 临界参数,最初投运的两套超超临界机组由 三菱公司设计,容量700MW、蒸汽参数 34.5Mpa/620℃/650℃。
我国于上世纪80年代后期开始从国外引进超 临界机组,第一台超临界机组于1992年6月 投产于上海石洞口二厂(2×600MW, 25.4MPa,541/569℃)。目前我国已经投产 的超临界机组共计10余台。2006年,我国首 批国产超超临界百万千瓦机组(华能玉环电
厂一期工程)相继投运,标志着我国电力工
业技术装备水平和制造能力进入新的发展阶 段。
部分超临界机组可靠性举例
电厂\项目 部分超临界机组可马靠歇性尔举电例厂
机组容量MW 可用率%
2×630
88.7(1985年)
美国
勃鲁斯电厂 蒙太尔电厂
2×1120 2×1300
AEP电力公司 7×1130
韩国保宁电厂
超临界机组和亚临界机组特点比较
超临界机组是指主蒸汽压力高于临界压力(22.13MPa)的锅炉 和汽轮发电机组,它具有如下特点: (1) 热效率高、热耗低。超临界机组比亚临界机组可降低热 耗~2.5%,故可节约燃料,降低能源消耗和大气污染物的排放 量。 (2)超临界压力时水和蒸汽比容相同,状态相似,单相的流 动特性稳定,没有汽水分层和在中间集箱处分配不均的困难,并 不需要象亚临界压力锅炉那样用复杂的分配系统来保证良好的汽 水混合,回路比较简单。 (3) 超临界锅炉水冷壁管道内单相流体阻力比亚临界汽包炉双 相流体阻力低。 (4) 超临界压力下工质的导热系数和比热较亚临界压力的高。 (5) 超临界压力工质的比容和流量较亚临界的小,故锅炉水 冷壁管内径较细,汽机的叶片可以缩短,汽缸可以变小,降低了 重量与成本。

660MW超临界机组APS自启停控制

660MW超临界机组APS自启停控制

660MW超临界机组APS自启停控制一、引言随着能源需求的不断增长,电力行业正迅速发展,并推动着全球经济的持续增长。

电力是现代社会中不可或缺的基础设施,而发电机组作为电力系统的核心装备,其自启停控制系统的可靠性和稳定性对电网的安全运行和电力供应的可靠性至关重要。

本文将重点介绍660MW超临界机组APS自启停控制系统的原理和特点。

二、660MW超临界机组概述660MW超临界机组是目前电力系统中常见的大型发电机组之一,其主要由汽轮机、汽机调速系统、锅炉、电气控制系统等部件组成。

这类机组的最大特点是采用超临界锅炉技术,使得机组效率更高、发电成本更低。

而APS自启停控制系统就是为了确保这类机组安全、稳定地实现自动启动和停机而设计的。

三、APS自启停控制系统原理1. 控制策略APS自启停控制系统采用的是模糊逻辑控制策略,将自启停控制的决策过程转化为一系列的模糊化规则,通过对输入变量(如汽机转速、锅炉压力、汽轮机转速等)进行模糊化处理,从而得到相应的输出控制指令,实现对整个自启停过程的精确控制。

这种控制策略既能够适应不同运行条件下的自启停控制需求,又能够保证系统的稳定性和可靠性。

2. 控制原理APS自启停控制系统的控制原理主要包括两方面:自启动控制和自停机控制。

在自启动控制方面,系统会根据系统当前运行状态和设定的启动参数,分析汽轮机和锅炉的运行情况,确定启动的时机和相应的控制方式,确保汽轮机的安全、稳定地启动。

而在自停机控制方面,系统会根据系统当前运行状态和设定的停机参数,分析汽轮机和锅炉的运行情况,确定停机的时机和相应的控制方式,确保汽轮机的安全、稳定地停机。

四、660MW超临界机组APS自启停控制系统特点APS自启停控制系统具有以下特点:1. 高可靠性APS自启停控制系统采用了先进的控制策略和多重安全保护措施,确保在任何运行条件下都能够有效地保护机组的安全和稳定运行。

系统还具有自动故障诊断和排除功能,能够快速、准确地对系统故障进行判断和处理,最大限度地减少运行故障对机组运行的影响。

660MW超临界机组APS自启停控制

660MW超临界机组APS自启停控制

660MW超临界机组APS自启停控制660MW超临界机组APS自启停控制系统是指利用先进的自动化控制技术和高效的燃煤锅炉系统,实现对超临界机组的启停控制。

本文将从系统结构、工作原理、控制方法等方面对这一技术进行详细介绍。

一、系统结构660MW超临界机组APS自启停控制系统主要由自动控制系统、燃煤锅炉系统和执行机构三部分组成。

自动控制系统包括集散控制系统、信号采集系统和数据处理系统,用于监测和控制整个机组的运行状态;燃煤锅炉系统包括煤粉输送系统、燃烧系统、水循环系统等,用于提供燃料和热能支持;执行机构包括阀门、泵等,用于执行控制系统下达的指令。

二、工作原理660MW超临界机组APS自启停控制系统在工作时,首先通过信号采集系统获取各种参数的变化情况,包括燃煤锅炉系统的压力、温度、流量等参数,以及发电机的转速、电压、功率等参数。

然后将这些参数通过数据处理系统进行处理,形成机组的运行状态数据,再通过集散控制系统进行分析和决策,最终下达相应的控制指令给执行机构,以实现对机组的启停控制。

三、控制方法660MW超临界机组APS自启停控制系统采用了先进的控制方法,包括模糊控制、PID控制、模型预测控制等。

模糊控制能够处理系统参数模糊、不确定性等问题,提高了控制系统的鲁棒性;PID控制能够根据机组运行状态的实时变化进行调整,使得控制系统具有较好的动态性能;模型预测控制则能够通过对机组运行状态的预测,提前对控制量进行调整,以实现对机组的精准控制。

四、应用场景660MW超临界机组APS自启停控制系统在现代发电厂得到了广泛的应用,特别是在大型发电厂中更加常见。

利用这一自动化控制技术,可以有效降低机组的人工干预,减少操作人员的劳动强度,提高机组的运行稳定性和可靠性,从而节约人力成本,提升发电效率。

660MW超临界机组APS自启停控制

660MW超临界机组APS自启停控制

660MW超临界机组APS自启停控制660MW超临界机组是我国目前主流的火电机组,其自启停控制对于保障电网稳定运行至关重要。

本文将介绍一种基于自适应预测控制算法的660MW超临界机组APS自启停控制方案。

1.控制目标660MW超临界机组的自启停控制主要目的是在电网需求变化的情况下实现机组的快速启动和停机,以保障电网的稳定运行。

具体来说,控制目标包括:(1)对机组的启动和停机进行自动控制,并在控制过程中实时监测机组状态。

(2)在机组启停过程中,根据电网负荷的变化和机组状态的反馈信息,自适应调整控制参数,使机组启停更加稳定和可靠。

2.自适应预测控制算法自适应预测控制算法是一种基于模型预测控制和自适应控制的技术,可以在不确定环境下实现机组的启停控制。

该算法主要包括以下步骤:(1)建立机组动态模型,用于预测机组启停后的状态。

(2)利用预测结果和反馈信息,计算控制器响应。

(3)根据实时的控制效果和机组状态,自适应调整控制参数,以提高控制稳定性和可靠性。

具体来说,在660MW超临界机组的APS自启停控制系统中,我们采用基于自适应预测控制算法的模型预测控制器。

控制器的输入包括电网负荷、机组运行模式、机组启停信号和机组状态反馈等信息,输出则为机组的各个控制量。

3.控制架构660MW超临界机组的APS自启停控制系统采用分布式架构,其中包括主控制系统、本地控制系统和监控系统三部分。

主控制系统:由上位机和下位机组成,负责整个系统的启停控制。

上位机接收电网负荷变化等信息,下发控制命令给本地控制系统,并监控机组状态。

监控系统:由相应软件组成,负责机组参数和状态的监测和记录,对机组启停过程中出现的问题进行实时诊断和处理。

4. 控制流程机组启动:在接收到主控制系统下达的机组启动指令后,本地控制系统将根据预设的启动程序执行相应的控制操作。

此过程中,自适应预测控制器将通过机组动态模型预测机组不同阶段的状态,并根据实时反馈信息自适应调整控制参数。

660MW超临界机组控制方案说明

660MW超临界机组控制方案说明

龙泉金亨2×660MW超临界机组MCS系统逻辑设计说明设计:校对:审核:批准:新华控制工程有限公司2012年3月18日660MW超超临界机组控制方案说明1.超超临界机组模拟量控制系统的控制要求超临界机组相对于亚临界汽包炉机组,有两点最重要的差别:一是参数提高,由亚临界提高至超临界;二是由汽包炉变为直流炉。

正是由于这种差别,使得超临界机组对其控制系统在功能上带来许多特殊要求。

也正是由于超临界机组与亚临界汽包炉机组这两个控制对象在本质上的差异,导致各自相对应的控制系统在控制策略上的考虑也存在差别。

这种差别在模拟量控制系统中表现较为突出。

此处谨将其重点部分做一概述。

1.1 超临界锅炉的控制特点(1)超临界锅炉的给水控制、燃烧控制和汽温控制不象汽包锅炉那样相对独立,而是密切关联。

(2)当负荷要求改变时,应使给水量和燃烧率(包括燃料、送风、引风)同时协调变化,以适应负荷的需要,而又应使汽温基本上维持不变;当负荷要求不变时,应保持给水量和燃烧率相对稳定,以稳定负荷和汽温。

(3)湿态工况下的给水控制——分离器水位控制,疏水。

(4)干态工况下的给水控制-用中间点焓对燃水比进行修正,同时对过热汽温进行粗调。

(5)汽温控制采用类似汽包锅炉结构,但应为燃水比+喷水的控制原理,给水对汽温的影响大;给水流量和燃烧率保持不变,汽温就基本上保持不变。

1.2 超临界锅炉的控制重点超临界机组由于水变成过热蒸汽是一次完成的,锅炉的蒸发量不仅决定于燃料量,同时也决定于给水流量。

因此,超临界机组的负荷控制是与给水控制和燃料量控制密切相关的;而维持燃水比又是保证过热汽温的基本手段;因此保持燃/水比是超临界机组的控制重点。

本公司采用以下措施来保持燃/水比:(1)微过热蒸汽焓值修正对于超临界直流炉,给水控制的主要目的是保证燃/水比,同时实现过热汽温的粗调,用分离器出口微过热蒸汽焓对燃/水比进行修正,控制给水流量可以有效对过热汽温进行粗调。

660MW超超临界燃煤发电机组深度调峰运行管理措施

660MW超超临界燃煤发电机组深度调峰运行管理措施

660MW超超临界燃煤发电机组深度调峰运行管理措施发布时间:2022-10-08T08:16:04.810Z 来源:《新型城镇化》2022年19期作者:高波[导读] 在“碳达峰、碳中和”的战略目标加持下,近年来,我国新能源的装机容量及发电电量不断攀升。

而新能源发电由于其随机性、间歇性及不稳定性等特点,大规模的并网导致新能源的消纳问题越来越凸显、部分地区甚至已经出现弃风弃光现象。

火电机组作为传统电力系统的电力、电量主力电源,在以新能源为主体的新型电力系统背景下,势必向着高峰时段承担兜底保供、低谷时段调节余缺的角色转变,这就对现有火电机组安全稳定运行能力提出更高的要求。

本文通过探索调节660MW超超临界燃煤发电机组锅炉、汽轮机及其辅机的运行方式,对影响机组低负荷运行期间安全稳定运行因素进行分析,找到机组低负荷稳定运行管理的关键点,并提出相关措施保障机组深度调峰期间安全,对大比例可再生能源发电持续发展作出贡献。

高波内蒙古大唐国际托克托发电有限责任公司内蒙古呼和浩特 010206摘要:在“碳达峰、碳中和”的战略目标加持下,近年来,我国新能源的装机容量及发电电量不断攀升。

而新能源发电由于其随机性、间歇性及不稳定性等特点,大规模的并网导致新能源的消纳问题越来越凸显、部分地区甚至已经出现弃风弃光现象。

火电机组作为传统电力系统的电力、电量主力电源,在以新能源为主体的新型电力系统背景下,势必向着高峰时段承担兜底保供、低谷时段调节余缺的角色转变,这就对现有火电机组安全稳定运行能力提出更高的要求。

本文通过探索调节660MW超超临界燃煤发电机组锅炉、汽轮机及其辅机的运行方式,对影响机组低负荷运行期间安全稳定运行因素进行分析,找到机组低负荷稳定运行管理的关键点,并提出相关措施保障机组深度调峰期间安全,对大比例可再生能源发电持续发展作出贡献。

关键词:超超临界机组;深度调峰;运行管理;措施一、深度调峰期间660MW超超临界机组运行管理中存在的问题随着新能源的快速发展、新型用能设备广泛接入,可再生能源在电网中所占的比例快速增长,燃煤发电机组利用小时逐步降低,逐渐由传统提供电力、电量的主体性电源向提供可靠电力、调峰调频能力的基础性电源和系统调节性电源并重转变,深度调峰频次、幅度逐步加大,深度调峰期间机组安全运行就显得格外重要,主要体现在以下几方面:(1)低负荷时,高、低压加热器疏水压差小,容易发生疏水不畅,严重时可能导致高、低压加热器切除运行;(2)随着负荷的降低,四抽压力以及给水流量也在不断的降低,调整不当可能导致给水流量大幅波动,严重时导致机组跳闸;(3)随着燃料量的减少,汽温也随之会出现降低,尤其是在锅炉“干态”往“湿态”转变的过程中,容易出现蒸汽温度过热度不足,调整不及时可能导致汽轮机进水;(4)炉膛温度降低、火焰充满度下降、燃烧稳定性下降,而且随着煤种、风量、磨煤机出力等方面的突然扰动,燃烧可能偏离正常状况,严重时造成锅炉灭火、汽轮机跳闸。

660MW超超临界机组协调控制系统优化分析

660MW超超临界机组协调控制系统优化分析

学术论坛660MW超超临界机组协调控制系统优化分析张 鑫(京能(锡林郭勒)发电有限公司,内蒙古 锡林浩特 026000)摘要:本文主要对国内某发电公司的两台660MW超超临界机组协调控制系统进行分析,首先分析了机组的协调控制相关的策略特点与难点,然后对机组的运行期间出现的协调控制系统问题加以优化,最终为机组的运行安全和经济运行打下一定的基础。

关键词:660MW超超临界机组;控制策略;优化;大延迟;协调控制系统1 概述本次分析的机组为660MW超超临界褐煤间接空冷机组。

锅炉为高参数超超临界褐煤直流锅炉,并使用中速辊式正压直吹式的制粉系统,汽轮机为高背压九级回热高效汽轮机,发电机为双水内冷汽轮发电机,机组辅机配置为:空气预热器两台、磨煤机七台、送风机两台、引风机两台、一次风机两台、汽动给水泵一台,公用电泵一台。

热工控制系统(DCS)使用OVATION分散控制系统,模拟量控制系统(MCS)能够对系统进行分散控制,并针对锅炉和汽轮机以及设备加以连续的闭环控制,确保机组稳定安全,符合安全启、安全停、定压、滑压的运行标准。

2 协调控制的策略分析超超临界机组使用的协调控制系统由汽轮机和锅炉的主控回路、负荷指令和主蒸汽压力的相关设定、协调方式的切换、辅机故障快速减负荷、频率和热值的校正等功能回路。

汽轮机和锅炉的主控回路一般情况下有四种不同的运行控制:汽轮机跟随控制方式(锅炉和汽轮机的主控系统分别是手动和自动),机炉协调控制方式(锅炉和汽轮机的主控系统均为自动),锅炉跟随控制方式(锅炉和汽轮机的主控系统分别为自动和手动),基本控制方式(锅炉和汽轮机的主控系统均为手动)。

协调控制系统通常使用锅炉跟随的方式。

炉跟机协调控制方式下,由锅炉主控系统来承担维持机前压力,而汽轮机主控则使用在对机组的负荷控制。

此种控制方式特点为机组负荷响应快,负荷控制精度要高,但机前压力波动大。

依据相关部门对机组的要求,使用此协调的方式可以更加符合要求,下图1显示为2.1 机组的负荷指令和蒸汽压力定值处理回路机组的负荷指令回路是负责机组接收外部负荷指令,然后再进行处理,最后再当作负荷的给定值发送至锅炉与汽轮机的主控系统,总共三个子回路:最大限制和最小限制回路,负荷控制站,变化率限制回路。

660MW超超临界锅炉调试要点分析

660MW超超临界锅炉调试要点分析

660MW超超临界锅炉调试要点分析本文主要是针对660MW的超超临界锅炉调试要点进行阐述,分析的内容主要包括锅炉冷态通风、锅炉冷热态冲洗、锅炉吹管、锅炉干湿态转换过程、给水和蒸汽温度的控制、超超临界锅炉增加的主保护等方面的内容,对确保660MW 超临界锅炉调试工作的有效开展提供了参考依据。

标签:660MW;超超临界;锅炉调试;要点0 前言本文主要是针对某火电厂的2台660MW超超临界空冷发电机组进行分析,锅炉内部配置了大气扩容式启动系统、冷一次风正压直吹式制粉系统及中速碗式磨煤机系统,内部配置了12只燃尽风喷口,4只侧燃尽风喷口,在尾部位置设置了分烟道,要想对出口处的蒸汽温度进行测量,需要利用烟气分流档板来进行,为了节省燃油的使用,需要选择具有稳燃功能的燃烧器,并且运用微油进行点火启动。

1 锅炉冷态通风为了确保在锅炉使用过程中尾部烟道和炉膛内产生大量的热偏差,需要对侧煤仓及锅炉布置的特点进行了解,对燃烧器叶片进行定期的检查和清理工作,对各风量的标准进行合理的制定,将风速调平后使用。

首先,需要对燃烧器的初始位置进行调节和设定,需要结合实际的使用需求,对燃烧器的位置进行合理设置,为了避免在实际的使用过程中出现较多的偏差,实验人员需要对炉膛内部的燃烧器进行定期的检查,并做好记录工作。

其次,需要对一次风速进行调平处理,防止炉膛内温度出现不均匀情况。

锅炉在投产后常会出现较大的偏差,需要在锅炉调试期间对风速进行调平,确保预热器出口两侧排烟温度保持相同。

最后,对磨煤机入口处的风量合理标定,做好调试期间的标定校准工作,正确显示风量,确保磨煤机使用的稳定性[1]。

2 锅炉冷热态冲洗由于超超临界锅炉内部受热面管的最小内径为13mm,由于水质不好,管内常会造成大量结垢现象,给管道的正常运行造成了较大的阻力,严重时可能会导致爆管现象的发生。

为了确保热面管的运行安全稳定性,需要及时清理管内存在的杂质。

可以采用冷态及热态清理方式,其中冷态清理分为循环冲洗及开式冲洗两个阶段,同时还需要对锅炉疏水泵进行试转,防止出现严重超出电机额定电流等现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

龙泉金亨2X 660MV超临界机组MCS系统逻辑设计说明设计:校对:审核:批准:新华空制工程有限公司2012 年3 月18 日660MW超超临界机组控制方案说明1.超超临界机组模拟量空制系统的空制要求超临界机组相对于亚临界汽包炉机组,有两点最重要的差别:一是参数提高,由亚临界提高至超临界;二是由汽包炉变为直流炉。

正是由于这种差别,使得超临界机组对其控制系统在功能上带来许多特殊要求。

也正是由于超临界机组与亚临界汽包炉机组这两个控制对象在本质上的差异,导致各自相对应的控制系统在控制策略上的考虑也存在差别。

这种差别在模拟量控制系统中表现较为突出。

此处谨将其重点部分做一概述。

1.1超临界锅炉的控制特点(1) 超临界锅炉的给水控制、燃烧控制和汽温控制不象汽包锅炉那样相对独立,而是密切关联。

(2) 当负荷要求改变时,应使给水量和燃烧率(包括燃料、送风、引风)同时协调变化,以适应负荷的需要,而又应使汽温基本上维持不变;当负荷要求不变时,应保持给水量和燃烧率相对稳定,以稳定负荷和汽温。

3)湿态工况下的给水控制——分离器水位控制,疏水。

4)干态工况下的给水控制- 用中间点焓对燃水比进行修正,同时对过热汽温进行粗调。

5)汽温控制采用类似汽包锅炉结构,但应为燃水比+喷水的控制原理,给水对汽温的影响大;给水流量和燃烧率保持不变,汽温就基本上保持不变。

1.2超临界锅炉的控制重点超临界机组由于水变成过热蒸汽是一次完成的,锅炉的蒸发量不仅决定于燃料量,同时也决定于给水流量。

因此,超临界机组的负荷控制是与给水控制和燃料量控制密切相关的;而维持燃水比又是保证过热汽温的基本手段;因此保持燃/ 水比是超临界机组的控制重点。

本公司采用以下措施来保持燃/ 水比:1)微过热蒸汽焓值修正对于超临界直流炉,给水控制的主要目的是保证燃/ 水比,同时实现过热汽温的粗调,用分离器出口微过热蒸汽焓对燃/ 水比进行修正,空制给水流量可以有效对过热汽温进行粗调。

(2)中间点温度本工程采用中间点温度(即分离器出口温度)对微过热蒸汽焓定值进行修正。

当中间点温度过高,微过热蒸汽焓定值立即切到最低焓,快速修改燃/ 水比、增加给水量。

当中间点温度低与过热度,表明分离器处于湿态运行,此时焓值修整切为手动。

(3)喷/ 水比(过热器喷水与总给水流量比)在超临界机组如果喷/ 水比过大(或过小),即流过水冷壁的给水量过小或过大),用喷/ 水比修正微过热蒸汽焓定值(即修正燃/水比),改变给水流量,使过热减温喷水处于良好的空制范围内。

(4)燃水指令的交叉限制回路本工程给水最小流量限制、燃/ 水交叉限制,主要目的是在各种工况下防止燃料与给水比的失调。

燃料指令由锅炉指令加变负荷超调量前馈,经给水指令增、减闭锁限制(中间点温度正常范围内);给水指令经燃料指令增、减闭锁限制(中间点温度正常范围内)。

5)高加解列超调前馈高加解列,给水温度偏低,通过超调前馈快速减少给水量(超调量与负荷成比例关系),以确保燃/ 水比调整使过热汽温在正常范围内。

注:高加解列超调量只受最小流量限制,不受其他条件影响。

1.3超临界锅炉的给水空制超临界锅炉给水空制要完成了多重空制任务:空制燃/ 水比、实现过热汽温的粗调、满足负荷的响应。

1)给水指令组成给水指令由燃料指令经f(x)对应的总给水量减去过热器喷水量、通过燃/ 水比修正,加变负荷超调量前馈,经燃料指令增、减闭锁限制(中间点温度正常范围内),加高加解列前馈。

具体分析如下:1) 给水指令的前馈给水指令的前馈包括:静态前馈和动态前馈二部分组成。

①静态前馈这是给水指令的主导部分,由燃料指令折算出锅炉需要的给水总量,扣除减温水量后,作为直流炉的给水指令,通过这部分的静态前馈,基本保证了燃/ 水之比。

由于燃料、给水对过热汽温反应存在时差,因此给水指令要经惯性环节延迟。

②变负荷超调量动态前馈变负荷超过1.5%(9MW时对燃料、给水指令超调前馈,主要是为了提高机组的负荷响应速度。

③高加解列超调前馈高加解列,给水温度偏低,通过超调前馈快速减少给水量(超调量与负荷成比例关系),以确保燃/ 水比调整使过热汽温在正常范围内。

2)给水指令的反馈修正静态前馈部分基本上确定了燃料与给水流量之间的关系,在实际运行中,这一关系还应根据实际情况作必要的修正,使分离器出口焓维持在定值附近。

反馈修正的思路为:当过分离器出口焓大于设定值时,适当逐步加大给水指令;反之,则减少给水指令。

焓定值的确定可分为二种情况,一种是正常情况下焓定值的确定;另一种是当分离器出口超温时的焓定值计算。

①正常情况下分离器出口焓定值的计算在正常情况下,分离器出口焓定值由二部分组成:一是基准的焓设定值;是由实际运行情况确定的定值修改量。

a.基准的焓设定值基准的焓设定值是分离器出口压力的函数,f(x) 代表了不同负荷对分离器出口蒸汽保证一定的过热度的空制要求。

b. 焓设定值的修正焓控设定值修正是指根据分离器出口温度或喷/ 水比在一定范围内修正焓控设定值。

当分离器出口温度大于定值3C(初设),经过焓设定积分器将焓设定值适当减少,相应增加给水流量指令;反之相反。

用喷/水比(过热器喷水量/ 总给水量比值)对焓控定值进行修正,其因是直流锅炉的给水流量空制与减温水总量的空制之间存在着必然的联系,比如当过热喷水量大,就说明前面的水冷壁的给水流量偏小,即可以通过减小焓空定值,增加给水流量而使过热喷水恢复到原来的值。

注:焓定值修正范围:中间点温度过热度在超过热、欠过热范围内,即焓控设定值必须保证在Hmax和Hmin之间。

②分离器出口超温时的焓定值计算给水空制系统还必须实现防止水冷壁管出口温度的越限,当分离器出口温度偏差大于3C时,按上节方法减小焓设定值;当分离器出口温度大于限值(超过热)时,控制回路将焓设定值迅速切至最低限Hmi n,从而快速增加给水流量,防止水冷壁出口温度进一步上升;当水冷壁出口温度超过其对应负荷下的温度保护定值,则发生MFT这是直流锅炉为防止水冷壁管超温而设置的一个重要保护。

2)湿态运行方式1)当分离器出口温度低于欠热度(分离器出口压力函数),即为湿态方式。

2)湿态方式燃/水比切手动,用上述给水指令与给水流量的偏差的PI 调节控制给水调门或电动给水泵。

3)锅炉处于非直流运行方式,焓控制器处于跟踪状态,给水控制保持32%BMCR 流量指令,由于分离器处于湿态运行, 通过液控阀10HAG41AA101 、10HAG42AA101)进锅炉排污扩容器,在暖管阶段通过调阀10HAG70AA101 进入一级减温,给水系统处于循环工作方式。

在机组负荷大于32%BMCR 后,锅炉逐步进入直流运行状态,焓控制器开始工作。

3)干态运行方式用给水指令与给水流量的偏差的PI 调节空制用电泵或汽泵转速,即空制给水量。

干态方式用分离器出口焓对燃/水比进行修正。

4)RB给水指令RB 时经燃料指令折算的给水指令缩短延迟时间,60 秒后用过热器入口焓对燃/水比进行修正(在RB过程,喷/水比不参与),确保过热汽温在可控范围内。

5)给水控制方式给水空制系统采用二台50%汽泵、一台30%电泵、主给水旁路调门0给水空制系统通过对泵速和阀门的配合空制来给水量0为适应机组的各种运行方式,设计多回路变结构空制系统0机组在启动和低负荷(小于30%额定负荷)时,由一台电泵向锅炉供水0这时给水调节系统按单电泵工作方式0当锅炉给水量较小时,用出口旁路阀调节给水量0当旁路开度达90%时,应改为电泵或汽泵转速空制0当负荷大于30%,当主给水电动门打开,旁阀超驰以一定速率关闭0正常工况二台汽泵运行,主给水电动门打开,空制汽泵转速来调节负荷。

给水空制系统属单回路空制,转速空制一拖三,不采用平衡算法,原因是给水回路是快速跟随系统0空制系统变参数由空制内部变结构完成,分单电泵、单汽泵、双汽泵、混泵空制方式0正常工况电泵处于后备自并”状态。

1.4改善超临界机组协调空制调节品质为了提高机组负荷响应的能力,主要方法为:① 采用机组指令并行前馈到机、炉主空,即要充分利用机组的蓄热,也要提速燃烧指令;② 加快锅炉侧的快速响应尤其是燃水的快速响应,对给水和给煤应有合理的、经智能化处理的超调量,加快整个机组的动态响应速度01.4.1变负荷时,燃水指令的超调①当增负荷幅度9MW同时机组实际负荷指令变化率大于0.2MW/min (这是二次确认,即非AGC工况按下《GO 0 ),启动增负荷超调指令。

② 超调持续时间的判断逻辑当增负荷幅度差值V3MW、机组实际负荷指令与实发功率偏差V2MW/上述任一条件成立,增负荷超调结束0③超调量超调量与变负荷速率、实际负荷指令有关。

变负荷速率越快,超调的量也越大;负荷指令越高,超调的量也越大。

④ 当遇到加负荷后随即又减负荷的工况,则加负荷超调立刻结束,同时触发减负荷超调。

反之亦然。

注:减负荷超调类同。

1.4.2增加一次风量的前馈一次风压设定值是机组指令的正比函数,通过改变一次风压来提高锅炉变负荷 速率;利用锅炉主控指令的前馈信号同时改变一次风量,充分利用磨煤机内的蓄粉 来快速响应负荷需要。

2.本公司超临界机组协调控制策略协调控制系统设计原则是将汽机、锅炉作为整体考虑。

在综合控制策略基础 上,通过预测提前量来提高机组负荷响应能力、抑制动态偏差;与各种非线性、方 向闭锁等控制机理的有机结合,协调处理燃料与给水匹配,使过热蒸汽温基本稳 定,协调控制机组功率与机前压力,协调处理负荷要求与实际能力的平衡。

在保证机组具备快速负荷响应能力的同时,维持机组主要运行参数的稳定。

g2.1机组指令处理回路机组指令处理回路是机组控制的前置部分,它接受操作员指令、AGC 旨令、新华控制工程肓限公司HINE-U^L C^NTHOL ENC I HEEP-HC CO ..LTD仁丘$£0MW 超临界机组负荷控制中心2011-0-12轨切压力 吓力设定r;;:!ACC 控制24.0& IPd 0.00 IFii Q. 30 ■班 24. 05 IP1I 目标负简I300^09 IT 25S.2S ITnsni a 调频功宰 茬制方式 一欧0. fl TP ・crT>负荷拒爭鮫大fS 最巾SW2?iC52 If255.03 IT3SC.OC ITfl-00 IT e.oD If锅炉主控m I 手_主汽isaffla.zvhDEM目标值 变H 荷車给定值汽机主控lb 2L I■CCS反to 06. 6 % 90. 0 %f&jKiSta 炉It 靈S 魚凤H B15.0 th W.DPa IWWkoiJm-汽舷 主;宅弧ACCfS 专撫料担专料均值41. 2 %HP450 60 40 itJ客蛊卿板控■W I»||0C5iag I0 4? 4i 1H l(UD.O0mm0 mm次调频指令和机组运行状态信号。

相关文档
最新文档