SPSS混合线性模型

合集下载

SPSS多元线性回归分析实例操作步骤

SPSS多元线性回归分析实例操作步骤

SPSS多元线性回归分析实例操作步骤在数据分析领域,多元线性回归分析是一种强大且常用的工具,它能够帮助我们理解多个自变量与一个因变量之间的线性关系。

接下来,我将为您详细介绍使用 SPSS 进行多元线性回归分析的具体操作步骤。

首先,准备好您的数据。

数据应该以特定的格式整理,通常包括自变量和因变量的列。

确保数据的准确性和完整性,因为这将直接影响分析结果的可靠性。

打开 SPSS 软件,在菜单栏中选择“文件”,然后点击“打开”,找到您存放数据的文件并导入。

在导入数据后,点击“分析”菜单,选择“回归”,再点击“线性”。

这将打开多元线性回归的对话框。

在“线性回归”对话框中,将您的因变量拖放到“因变量”框中,将自变量拖放到“自变量”框中。

接下来,点击“统计”按钮。

在“统计”对话框中,您可以选择一些常用的统计量。

例如,勾选“估计”可以得到回归系数的估计值;勾选“置信区间”可以得到回归系数的置信区间;勾选“模型拟合度”可以评估模型的拟合效果等。

根据您的具体需求选择合适的统计量,然后点击“继续”。

再点击“图”按钮。

在这里,您可以选择生成一些有助于直观理解回归结果的图形。

比如,勾选“正态概率图”可以检查残差的正态性;勾选“残差图”可以观察残差的分布情况等。

选择完毕后点击“继续”。

然后点击“保存”按钮。

您可以选择保存预测值、残差等变量,以便后续进一步分析。

完成上述设置后,点击“确定”按钮,SPSS 将开始进行多元线性回归分析,并输出结果。

结果通常包括多个部分。

首先是模型摘要,它提供了一些关于模型拟合度的指标,如 R 方、调整 R 方等。

R 方表示自变量能够解释因变量变异的比例,越接近 1 说明模型拟合效果越好。

其次是方差分析表,用于检验整个回归模型是否显著。

如果对应的p 值小于给定的显著性水平(通常为 005),则说明模型是显著的。

最重要的是系数表,它给出了每个自变量的回归系数、标准误差、t 值和 p 值。

回归系数表示自变量对因变量的影响程度,p 值用于判断该系数是否显著不为 0。

运用SPSS建立多元线性回归模型并进行检验---副本[1]

运用SPSS建立多元线性回归模型并进行检验---副本[1]

计量经济学实验报告一.实验目的:1、学习和掌握用SPSS做变量间的相关系数矩阵;2、掌握运用SPSS做多元线性回归的估计;3、用残差分析检验是否存在异常值和强影响值4、看懂SPSS估计的多元线性回归方程结果;5、掌握逐步回归操作;6、掌握如何估计标准化回归方程7、根据输出结果书写方程、进行模型检验、解释系数意义和预测;二.实验步骤:1、根据所研究的问题提出因变量和自变量,搜集数据。

2、绘制散点图和样本相关阵,观察自变量和因变量间的大致关系。

3、如果为线性关系,则建立多元线性回归方程并估计方程。

4、运用残差分析检验是否存在异常值点和强影响值点。

5、通过t检验进行逐步回归。

6、根据spss输出结果写出方程,对方程进行检验(拟合优度检验、F检验和t检验)。

7、输出标准化回归结果,写出标准化回归方程。

8、如果通过检验,解释方程并应用(预测)。

三.实验要求:研究货运总量y与工业总产值x1,农业总产值x2,居民非商品支出x3,之间的关系。

详细数据见表:(1)计算出y,x1,x2,x3的相关系数矩阵。

(2)求y关于x1,x2,x3的三元线性回归方程(3)做残差分析看是否存在异常值。

(4)对所求方程拟合优度检验。

(5)对回归方程进行显著性检验。

(6)对每一个回归系数做显著性检验。

(7)如果有的回归系数没有通过显著性检验,将其剔除,重新建立回归方程,在做方程的显著性检验和回归系数的显著性检验。

(8)求标准化回归方程。

(9)求当x1=75,x2=42,x3=3.1时y。

并给出置性水平为99%的近似预测区间。

(10)结合回归方程对问题进行一些基本分析。

四.绘制散点图或样本相关阵相关性五.建立并估计多元线性回归模型:0112233Y X X X ββββ=+++六.残差分析找异常值由上表分析得,残差分析找异常值后其Cook距离不能大于1,Student化已删除的残差的绝对值不能大于3,综上所述删除第六组观测值继续进行如上操作,再未发现异常值。

SPSS数据分析—混合线性模型

SPSS数据分析—混合线性模型

SPSS数据分析—混合线性模型之前介绍过的基于线性模型的方差分析,虽然扩展了方差分析的领域,但是并没有突破方差分析三个原有的假设条件,即正态性、方差齐性和独立性,这其中独立性要求较严格,我们知道方差分析的基本思想其实就是细分,将所有对因变量产生影响的因素逐一摘出,但是如果各观测值之间相互影响,这样在细分影响因素的时候,是很难分出到底是自变量的影响还是观测值之间自己的影响。

虽然随机抽样会最大程度的使数据满足独立性,但是有时候这种方法并不奏效,比如随机抽取受访者分析其消费特征,这里就假定所有受访者的之间是相互独立的,然而仔细想想,这其中存在问题,如果某些受访者来自同一个城市或地区,从个体角度讲,他们确实是独立的人,之间没有任何联系,但是如果从分析目的角度讲,由于区域因素他们之间的消费特征是趋于相似的,而产生这种相似性,正是由于相互作用导致,这些人是存在相互影响关系的,也就类以于相关样本,与此同时,这种相互作用也使得不同城市间的消费特征产生差异,我们称这种数据为具有层次聚集性的数据。

数据的聚集性除了表现在聚集因素间指标的均值水平不同外,还表现在不同城市间的指标离散度上。

从层次堆积性数据也可以看出,随机抽样只能保证数据被抽到的几率相同,但是对于抽到的是什么样的数据,却无法控制了。

对于这种具有层次结构的数据,如果阐发目的仅限于这几种层次,比如就阐发这几个城市,那么可以把它当做一种固定因子,只阐发固定效应而不用考虑这种堆积性,但是如果想把结果推广到所有城市,那就不能忽略这种特征,否则会降低结果的准确性,因而还要加入随机效应。

混合线性模型就是同时包含固定效应和随机效应的线性模型,是解决此类层次聚集性数据的方法之一,对于具有层次结构的数据,我们需要将使观测值之间产生相互影响的层次因素也摘出来,比如上述中的城市因素,传统的方差分析模型中,将所有无法解释的因素都归在随机误差中,而随着我们对传统方差模型的不断拓展,对随机误差的分解也越来越精细,结果也越来越准确。

运用SPSS建立多元线性回归模型并进行检验副本

运用SPSS建立多元线性回归模型并进行检验副本

运用S P S S建立多元线性回归模型并进行检验副本集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#计量经济学实验报告一.实验目的:1、学习和掌握用SPSS做变量间的相关系数矩阵;2、掌握运用SPSS做多元线性回归的估计;3、用残差分析检验是否存在异常值和强影响值4、看懂SPSS估计的多元线性回归方程结果;5、掌握逐步回归操作;6、掌握如何估计标准化回归方程7、根据输出结果书写方程、进行模型检验、解释系数意义和预测;二.实验步骤:1、根据所研究的问题提出因变量和自变量,搜集数据。

2、绘制散点图和样本相关阵,观察自变量和因变量间的大致关系。

3、如果为线性关系,则建立多元线性回归方程并估计方程。

4、运用残差分析检验是否存在异常值点和强影响值点。

5、通过t检验进行逐步回归。

6、根据spss输出结果写出方程,对方程进行检验(拟合优度检验、F检验和t检验)。

7、输出标准化回归结果,写出标准化回归方程。

8、如果通过检验,解释方程并应用(预测)。

三.实验要求:研究货运总量y与工业总产值x1,农业总产值x2,居民非商品支出x3,之间的关系。

详细数据见表:(1)计算出y,x1,x2,x3的相关系数矩阵。

(2)求y关于x1,x2,x3的三元线性回归方程(3)做残差分析看是否存在异常值。

(4)对所求方程拟合优度检验。

(5)对回归方程进行显着性检验。

(6)对每一个回归系数做显着性检验。

(7)如果有的回归系数没有通过显着性检验,将其剔除,重新建立回归方程,在做方程的显着性检验和回归系数的显着性检验。

(8)求标准化回归方程。

(9)求当x1=75,x2=42,x3=时y。

并给出置性水平为99%的近似预测区间。

(10)结合回归方程对问题进行一些基本分析。

四.绘制散点图或样本相关阵相关性货运总量工业总产值农业总产值居民非商品支出货运总量Pearson 相关性 1 .556 .731*.724*显着性(双侧).095 .016 .018 N 10 10 10 10工业总产值Pearson 相关性.556 1 .155 .444 显着性(双侧).095 .650 .171 N 10 11 11 11农业总产值Pearson 相关性.731*.155 1 .562 显着性(双侧).016 .650 .072 N 10 11 11 11居民非商品支出Pearson 相关性.724*.444 .562 1 显着性(双侧).018 .171 .072N 10 11 11 11*. 在水平(双侧)上显着相关。

SPSS Modeler 建立线性回归模型

SPSS Modeler 建立线性回归模型

Modeler 建立线性回归模型示例线性回归模型是一种常用的统计学模型。

IBM SPSS Modeler 是一个强大的数据挖掘分析工具,本文将介绍如何用它进行线性回归预测模型的建立和使用。

在本文中,将通过建立一个理赔欺诈检测模型的实例来展示如何利用IBM SPSS Modeler 建立线性回归预测模型以及如何解释及应用该模型。

回归分析(Regression Analysis)是一种统计学上对数据进行分析的方法,主要是希望探讨数据之间是否有一种特定关系。

线性回归分析是最常见的一种回归分析,它用线性函数来对因变量及自变量进行建模(自变量和因变量都必须是连续型变量),这种方式产生的模型称为线性模型。

线性回归模型由于其运算速度快、直观性强以及参数易于确定等特点,在实践中应用最为广泛,也是建立预测模型的重要手段之一。

IBM SPSS Modeler 是一组数据挖掘工具,通过这些工具可以采用商业技术快速建立预测性模型,并将其应用于商业活动,从而改进决策过程。

在后面的文章中,将通过一个理赔欺诈检测的实际商业应用来介绍如何用IBM SPSS Modeler 建立、分析及应用线性回归分析模型。

用线性回归建立理赔欺诈检测模型在本例中,用于建立模型的数据存放在InsClaim.dat 中,该文件是一个CSV 格式的数据文件,存储了某医院以往医疗保险理赔的历史记录。

该文件共有293 条记录,每条记录有 4 个字段,分别是ASG(疾病严重程度)、AGE(年龄)、LOS(住院天数)和CLAIM(索赔数额)。

图1 显示了该数据的部分内容。

图 1. 历史理赔数据文件任务与计划基于已有的数据,我们的任务主要有如下内容:∙建立理赔金额预测模型,该模型将基于病人的疾病严重程度、住院天数及年龄预测其索赔金额。

∙假设模型匹配良好,分析那些与预测误差较大的病人资料。

∙通过模型来进行索赔欺诈预测。

根据经验及对数据进行的初步分析(这个数据初步分析可以通过IBM SPSS Modeler 的功能实现,此处不是重点,故不做深入介绍),可以猜测理赔金额与疾病严重程度、住院天数以及年龄存在线性相关关系,因此我们将首先选用线性回归模型进行建模,因此可以得到下面这样一个初步计划:∙应用线性回归分析来建立模型。

运用SPSS建立多元线性回归模型并进行检验 副本

运用SPSS建立多元线性回归模型并进行检验 副本

计量经济学实验报告一.实验目的:1、学习和掌握用SPSS做变量间的相关系数矩阵;2、掌握运用SPSS做多元线性回归的估计;3、用残差分析检验是否存在异常值和强影响值4、看懂SPSS估计的多元线性回归方程结果;5、掌握逐步回归操作;6、掌握如何估计标准化回归方程7、根据输出结果书写方程、进行模型检验、解释系数意义和预测;二.实验步骤:1、根据所研究的问题提出因变量和自变量,搜集数据。

2、绘制散点图和样本相关阵,观察自变量和因变量间的大致关系。

3、如果为线性关系,则建立多元线性回归方程并估计方程。

4、运用残差分析检验是否存在异常值点和强影响值点。

5、通过t检验进行逐步回归。

6、根据spss输出结果写出方程,对方程进行检验(拟合优度检验、F检验和t检验)。

7、输出标准化回归结果,写出标准化回归方程。

8、如果通过检验,解释方程并应用(预测)。

三.实验要求:研究货运总量y与工业总产值x1,农业总产值x2,居民非商品支出x3,之间的关系。

详细数据见表:(1)计算出y,x1,x2,x3的相关系数矩阵。

(2)求y关于x1,x2,x3的三元线性回归方程(3)做残差分析看是否存在异常值。

(4)对所求方程拟合优度检验。

(5)对回归方程进行显着性检验。

(6)对每一个回归系数做显着性检验。

(7)如果有的回归系数没有通过显着性检验,将其剔除,重新建立回归方程,在做方程的显着性检验和回归系数的显着性检验。

(8)求标准化回归方程。

(9)求当x1=75,x2=42,x3=时y。

并给出置性水平为99%的近似预测区间。

(10)结合回归方程对问题进行一些基本分析。

四.绘制散点图或样本相关阵显着性(双侧).095 .016 .018 N 10 10 10 10工业总产值Pearson 相关性.556 1 .155 .444 显着性(双侧).095 .650 .171 N 10 11 11 11农业总产值Pearson 相关性.731*.155 1 .562 显着性(双侧).016 .650 .072 N 10 11 11 11居民非商品支出Pearson 相关性.724*.444 .562 1 显着性(双侧).018 .171 .072N 10 11 11 11*. 在水平(双侧)上显着相关。

SPSS数据分析—混合线性模型

SPSS数据分析—混合线性模型

之前介绍过的基于线性模型的方差分析,虽然扩展了方差分析的领域,但是并没有突破方差分析三个原有的假设条件,即正态性、方差齐性和独立性,这其中独立性要求较严格,我们知道方差分析的基本思想其实就是细分,将所有对因变量产生影响的因素逐一摘出,但是如果各观测值之间相互影响,这样在细分影响因素的时候,是很难分出到底是自变量的影响还是观测值之间自己的影响。

虽然随机抽样会最大程度的使数据满足独立性,但是有时候这种方法并不奏效,比如随机抽取受访者分析其消费特征,这里就假定所有受访者的之间是相互独立的,然而仔细想想,这其中存在问题,如果某些受访者来自同一个城市或地区,从个体角度讲,他们确实是独立的人,之间没有任何联系,但是如果从分析目的角度讲,由于区域因素他们之间的消费特征是趋于相似的,而产生这种相似性,正是由于相互作用导致,这些人是存在相互影响关系的,也就类以于相关样本,与此同时,这种相互作用也使得不同城市间的消费特征产生差异,我们称这种数据为具有层次聚集性的数据。

数据的聚集性除了表现在聚集因素间指标的均值水平不同外,还表现在不同城市间的指标离散度上。

从层次聚集性数据也可以看出,随机抽样只能保证数据被抽到的概率相同,但是对于抽到的是什么样的数据,却无法控制了。

对于这种具有层次结构的数据,如果分析目的仅限于这几种层次,比如就分析这几个城市,那么可以把它当做一种固定因子,只分析固定效应而不用考虑这种聚集性,但是如果想把结果推广到所有城市,那就不能忽略这种特征,否则会降低结果的准确性,因此还要加入随机效应。

混合线性模型就是同时包含固定效应和随机效应的线性模型,是解决此类层次聚集性数据的方法之一,对于具有层次结构的数据,我们需要将使观测值之间产生相互影响的层次因素也摘出来,比如上述中的城市因素,传统的方差分析模型中,将所有无法解释的因素都归在随机误差中,而随着我们对传统方差模型的不断拓展,对随机误差的分解也越来越精细,结果也越来越准确。

SPSS混合线性模型讲课讲稿

SPSS混合线性模型讲课讲稿
1. Subject: the sample is a random sample of the target population
4
Classification of effects
1. There are main effects: Linear Explanatory Factors
2. There are interaction effects: Joint effects over and above the component main effects.
5
Interactions are Crossed Effects
All of the cells are filled Each level of X is crossed with each level of Y
Level 1
Variable Y
Level 2
Level 3
Level 4
Level 1
Pat 7
Pat 8
8
Between and WithinSubject effects
• Such effects may sometimes be fixed or random. Their classification depends on the experimental design Between-subjects effects are those who are in one group or another but not in both. Experimental group is a fixed effect because the manager is considering only those groups in his experiment. One group is the experimental group and the other is the control group. Therefore, this grouping
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13
The General Linear Model
1. The main effects general linear model can be parameterized as
Yij i b j ij where
Yij observation for ith
yijk ai b j ck abij acik bc jk abcijk eijk
16
The General Linear Model
• In matrix terminology, the general linear model may be expressed as
2
Outline-Cont’d
• Repeated Measures ANOVA • Advantages of Mixed Models over GLM.
3
Definition of Mixed Models by their component effects
1. Mixed Models contain both fixed and random effects 2. Fixed Effects: factors for which the only levels under consideration are contained in the coding of those effects 3. Random Effects: Factors for which the levels contained in the coding of those factors are a random sample of the total number of levels in the population for that factor.
1
Outline
1. Classification of Effects 2. Random Effects
1. Two-Way Random Layout 2. Solutions and estimates
3. General linear model
1. Fixed Effects Models
14
A factorial model
If an interaction term were included, the formula would be
yij i i ij eij
The interaction or crossed effect is the joint effect, over and above the individual main effects. Therefore, the main effects must be in the model for the interaction to be properly specified.
grand mean (an unknown fixed parm) i effect of ith value of (ai )
b j effect of jth value of b (b j )
ij exp erimental error ~ N (0, 2 )
Experimental Group Follow-up
Group
Control Group Pre-test Control Group Post-test Control Group Follow-up
Group is a between subjects effect, whereas Trial is a within subjects effect.
1. Subject: the sample is a random sample of the target population
5
Classification of effects
1. There are main effects: Linear Explanatory Factors 2. There are interaction effects: Joint effects over and above the component main effects.
Level 1
X11
X12
X13
X14
Variable X Level 2 X21 X22 X23 X24
Level 3
X31
X32
X33
X34
7
Classification of Effectscont’d
Hierarchical designs have nested effects. Nested effects are those with subjects within groups. An example would be patients nested within doctors and doctors nested within hospitals This could be expressed by patients(doctors) doctors(hospitals)
11
Within-Subjects Effects
• These are repeated effects. • Observation 1, 2, and 3 might be the pre, post, and follow-up observations on each person. • Each person experiences all of these levels or categories. • These are found in repeated measures analysis of variance.
Pat 7
Pat 8
9
Between and WithinSubject effects
• Such effects may sometimes be fixed or random. Their classification depends on the experimental design Between-subjects effects are those who are in one group or another but roup is a fixed effect because the manager is considering only those groups in his experiment. One group is the experimental group and the other is the control group. Therefore, this grouping factor is a between- subject effect.
Mixed Analysis of Variance Models with SPSS
Robert A.Yaffee, Ph.D. Statistics, Social Science, and Mapping Group Information Technology Services/Academic Computing Services Office location: 75 Third Avenue, Level C-3 Phone: 212-998-3402
i j ( yij ) ( )
yij
15
Higher-Order Interactions
If 3-way interactions are in the model, then the main effects and all lower order interactions must be in the model for the 3way interaction to be properly specified. For example, a 3-way interaction model would be:
4
Examples of Fixed and Random Effects
1. Fixed effect: 2. Sex where both male and female genders are included in the factor, sex. 3. Agegroup: Minor and Adult are both included in the factor of agegroup 4. Random effect:
6
Interactions are Crossed Effects
All of the cells are filled Each level of X is crossed with each level of Y Variable Y Level 1 Level 2 Level 3 Level 4
10
Between Subject effects
• Gender: One is either male or female, but not both. • Group: One is either in the control, experimental, or the comparison group but not more than one.
Within-subject effects are experienced by subjects repeatedly over time. Trial is a random effect when there are several trials in the repeated measures design; all subjects experience all of the trials. Trial is therefore a within-subject effect. Operator may be a fixed or random effect, depending upon whether one is generalizing beyond the sample If operator is a random effect, then the machine*operator interaction is a random effect. There are contrasts: These contrast the values of one level with those of other levels of the same effect.
相关文档
最新文档