人眼的立体视觉特性

合集下载

人眼特征及视觉感知解析

人眼特征及视觉感知解析

• · 当有光线时,人眼睛能辨别物象本体的明暗。物象有了 明暗的对比,眼睛便能产生视觉的空间深度,看到对象的 立体程度。同时眼睛能识别形状,有助我们辨认物体的形 态。此外,人眼能看到色彩,称为色彩视或色觉。此四种 视觉的能力,是混为一体使用的,作为我们探察与辨别外 界数据,建立视觉感知的源头。
• 眼睛除了要辨认物象的特征,还要知道对象的位置,及其活动上的变 化,才可驱使身体其它部位作出相应的动作。 • · 在理解自身与外界之间的距离或深度,人类的知觉,可从视野所得 的资料中,抽出有关空间的提示,从而知识到自己与各种对象的距离。 视网膜是视觉的核心,它是一片平面的薄膜,获得的物象是平板而缺 乏立体感的。所以知觉需要组织起其它信息,才能做出对深度的感知。 人类的眼球天赋便有辨别立体深度和距离的本能,因为人类是用双目 平排而视。同时通过外物在视野范围中所形成的物象大小,以及排列 或表现的状态,认知该物与我们的距离。甚至可通过形状及色彩获得 有关距离的资料。 • · 眼睛能看到物体的移动,有助辨别物体的方向和运动的速度。
• 影像感知 • · 眼睛后段是感光的部分。后段有视网膜,它是由两种感 光细胞所组成,这两种细胞因其形状而名为杆状细胞(rod cells)和锥状细胞(cone cells),作用是将水晶体聚焦而成 的光线变成电信号,并由神经细胞送往脑部。视网膜上的 神经会聚并连结到大脑的一点,由于没有光线的受体,所 以大脑无法感知聚焦该处的影像,故名盲点。
• 视觉区域 • · 感觉光暗的杆状细胞和感觉色彩的锥状细胞在视网膜表 面并不是平均分布的,在感知中起重要作用的锥细胞大部 分集中在视网膜中的一小片称为黄点的地方。因此我们在 观看景物和阅读时,注意力只是集中在视野ห้องสมุดไป่ตู้围一半不到 的区域。

视觉与色度学

 视觉与色度学
总光通量 Φ= ΦR +ΦG +ΦB
§1.3.2 三基色原理
人对该彩色光的亮度感觉决定于总光通量 Φ,人对该 彩色光的色度感觉决定于ΦR、ΦG、ΦB之间的比例。
彩色重现并不要求恢复景物的原始光谱成分,只需获 得与原景物相同的彩色感觉。
具有不同光谱功率分布的光,只要ΦR、ΦG、ΦB相同, 则它们的色彩视觉完全等效。
连续分布:
R378800r()e()d
G378800g()e()d
780
B380b()e()d
RGB色度图
色度(色调、饱和度)只与三刺激值的比例有关。 令: R+G+B=m
➢ 亮度表征了发光面的明亮程度; ➢ 同样的发光强度面积越小亮度越大。
照度 E:物体表面受到光照射时,单位面积上入射 的光通量,单位是lx,读作勒克斯
➢ 1勒克司等于每平方米上有1流明的光通量; 1lx= 1 lm/m2
➢ 同样的光通量面积越小光照度越大。
§1.2.2 人的色度视觉特性
彩色视觉
§1.3.2 三基色原理 相加混色(屏幕) 相减混色(绘画)
两种原色混合=次色
C
M
Y
两种原色的补色
R
G
B
次色+补色=白色
§1.3.2 色光按一定的顺序轮流投射到同一 个表面上。是顺序制彩色电视的基础。
➢ 空间混色法:将三种基色光分别投射到同一个表面上邻近 的三个点上。是同时制彩色电视的基础。
•人眼对不同波长的光有不同的色调感觉。 •人眼能分辨出色调差别的最小波长变化称为色调分 辨阈,色调分辨力与色调分辨阈成反比。 •色调分辨力随波长变化而改变,480~640 nm 区间色光的色调分辨力较高。 •饱和度变小时,人眼的色调分辨力下降。 •亮度太大或太小时,人眼的色调分辨力下降。

立体成像原理

立体成像原理

立体成像原理图1.单眼水平视角图如图所示:人单眼的水平视角最大可达156度,双眼的水平视角最大可达188度。

人两眼重合视域为124度,单眼舒适视域为60度。

什么意思呢?1.人眼其实观看到的并不仅仅是一个具有重合视角的平面,而是一个超过180度鱼眼镜头的188度环形平面,类似于近期比较流行的环形电影屏幕。

2.人两眼重合视域有124度。

也就是说在人眼观看到的范围内,只有这124 度视角内的物体才有立体感。

换句话说只有这124度两眼重合视域内观看到的物体截面,超过了180度,以至于形成了立体感。

3.单眼舒适视域为60度。

是讲只有这单眼的60度范围内的物体,人们才能够看清楚,人眼才能够聚焦。

单眼剩余这96度(156-60=96)的视域,我们一般俗称为“余光”,其实是人眼并不敏感的范围,也就是无法看清楚的。

当然我们所需要研究的是双眼所呈现的立体视觉,以上这部分仅作陈述基础。

图2.双眼水平视角图这里我以6厘米的瞳距为例,画了这张双眼水平视角图。

用photoshop做了一下修改,不同视角的不同区域均用不同颜色填充,因为都设定了30%的透明度,所以重合的区域可以很直观地看到。

1.我用大写英文字母标明了不同的区域:D和E分别为左右眼的156度视角;B和C为左右眼60度舒适视域;A区为左右眼60度舒适视域重合部分。

2.用小写英文字母在视线的各个末端进行了标拄,这样在说明某个特定视角时会比较方便。

例如:∠ dxg为D区、∠cyg为D和E的重合部分。

很直观的图表,我们可以看到:1.∠xyz实际上就是被鼻子挡住的位置,图2全部白色的范围实际上就是人眼的盲区,除了可以看到自己的鼻子和眼眶。

2.实际上只有∠cyg这个范围内观看到的事物才有立体感。

3.人单眼的舒适视域只有60度,也就是说观看到的物体和拍摄的照片以60度为最佳;立体摄影最大范围为单眼124度【(156-90-4)×2】,即为双镜头视线水平,双倍的视线到两眼内侧的角度,也就是∠ixg和∠czj。

立体电影(3D电影)

立体电影(3D电影)

立体电影(3D电影)一、立体显示的原理要了解立体电影的原理,首先要了解人眼观察事物的过程。

人眼在观察外界物体时,不仅能看到物体的外形,还能够辨认物体的距离、物体之间的前后位置和取向等,这与人眼的三维视觉特性有关。

这些立体视觉信息大致可分为单眼信息和双眼信息。

他们由许多不同的感知线索组成,其中单眼信息的感知线索就包含有眼球的调节、视网膜上成像的相对大小、透视感、照明状况、单眼运动视差、视野等。

在这些线索中,除了眼球的调节是生理活动外,其他线索一般认为是心理感知。

心理感知多是通过人的习惯产生的,比如通过物体的近大远小、近明远暗、前后遮挡以及光线阴影等关系来感知立体影像。

很多图片和绘画作品就是利用这一特点让观众在平面作品上产生强烈的立体感。

由于亮眼具有约65mm的瞳距,因而人们用双眼观察物体时,物体在左右两眼视网膜上的成像是略有差异的,即双眼视差,它是立体视觉的重要线索。

另外,当物体成像不在左右两眼视网膜的对应点上时,所看到的便是两重像(复像),需要通过眼球的旋转运动(称为辐辏)并经眼外肌的张力调节而使两重像重合(称为融合),这个过程也为立体视觉提供重要信息。

一般来说,人们在观看立体图像时,如果辐辏与调节超出平衡范围,就会引起视觉疲劳。

单眼信息有时会出现偏差,而双眼信息的感知是比较真实的。

立体电影就是利用人的双眼视差来产生立体感的。

人在观察外界事物时,左右眼各看见三维景物的左侧和右侧的细节,在视网膜上形成有水平视差的两个相似的二维图像,这两个二维像经过复现,就形成了三维立体图像。

立体电影就是模拟人眼三维图像的形成过程,先把左右眼的单眼图像分别记录下来,通过放映机和相应的立体放映设备,让观众的左右眼分别看到相应的单眼图像,再经过大脑复现成三维立体图像。

在技术上,就是要实现左右双画面放映并分别映入观众的左右眼。

上述原理早在19世纪中期就被人们认识到了,所以在胶片电影发明后不久,有人就在尝试以各种方式和形式拍摄和放映立体电影,早期是利用红蓝(绿)眼镜来看立体电影,后来又发展到用偏振技术放映、观看立体电影。

第4章 双像立体测图基础与立体测图

第4章  双像立体测图基础与立体测图

1)立体镜观察法
桥式立体镜:简单但观察的范围小
在一个桥架上安置两个相同的简单透镜 透镜光轴平行,间距约为眼基距,高度等于透镜主距
反光立体镜
扩大眼基线,可对大像幅进行立体观察
①立体镜
竖直夸大
fc / f
fc: 像片距人眼的距离 f: 航摄像片的主距
竖直夸大有利于对高程差的判识,而对量测无影响。
2.立体量测
测标:一对光点 移动测标 固定测标
立体量测原理 量测的内容:
双测标量测法
像点坐标量测、左右视差量测、左右视差较量测、上下 视差量测。借助于有测量标志的量测工具或仪器进行。
测标的作用
测标的种类
4.2
立体像对与双像立体测图
1、立体像对的定义(Stereo Pair) 由不同摄站获取的,具有一定影像 重叠的两张像片。
所有同名光线对对相交,即同名点的上下视差为 零时,则相对定向完成。
2.投影器的微小运动对承影面上投影点位的影响
投影器距承影面的高度为H。 假设像片近似水平,选取像片上的九个像点来考 察投影点位的变化规律。 点位分布如下:
像主点
(1)微动 bu 的影响
Hale Waihona Puke dbu SS’ Y
X
总位移
X方向位移
Y方向位移
一、立体像对的相对定向与相对定向元素 确定一个立体像对两张像片相对位置和 姿态的元素称为相对定向元素。
相对定向只能确定两张像片的相对位置
立体像对中,确定两像空系之间方位关系 所需的元素。
完成相对定向的唯一标准是两像片上同 名光线对对相交。
2、两种相对方位元素系统 • 以左像空系为基础的相对方位元素系统 • 以基线坐标系为基础的相对方位元素系统

双像立体测图原理与立体测图

双像立体测图原理与立体测图
第 四 理章 与双 立像 体立 测体 图测 图 原
内 容 安 排
点击此处添加小标题
点击此处添加正文,请言简意赅的阐述观点。

点击此处添加小标题

点击此处添加正文,请言简意赅的阐述观点。
立同双
体一像
规 定 比 例 尺 的 地 形 图 或 建 立 数 字 地 面 模 型 等 。
几 何 模 型 , 并 对 该 几 何 模 型 进 行 量 测 , 直 接 给 出
§4-3立体像对的相对定向元素与模型的绝对定向元素
我们知道,一个像对的两张像片有十二个外方位元素,相对 定向求得五个元素后,要恢复像对的绝对位置,还要解求七个 绝对定向元素,包括模型的旋转、平移和缩放。它需要地面控 制点来解求,这种坐标变换,在数学上为一个不同原点的三维 空间相似变换,其公式为:
Xtp
03
交会作用
05
空间影像的形成
07
视差理论
02
双眼观察特点
交会作用与调节作用
04
的一致性
06
能够估计景深
08
人眼的天然立体视觉
§4-1双像立体测图原理与立体测图
一、人眼的天然立体视觉
视差理论 生理视差:
视差角
生理视差是产生立体感 觉的生理基础。
4-1双像立体测图原理与立体测图
一.人造立体视觉
在摄影测量中规定摄影时保持 像片的重叠度在60%以上,是 为了获得同一地面景物在相邻 两张像片上都有影像。
核面(主核面) 核线(主核线) 核点
P1 a1o1
n1
J
1
B S1
o2 a2 n2
S2
P2 J2
WA A
§4-2立体像对与立体测图原理

人类视觉生理特点

人类视觉生理特点

人类的视觉生理特点主要包括以下几个方面:1.分辨率高:人类视觉系统能够分辨非常小的物体和细节,这是因为眼睛中的视网膜上有大量的感光细胞,能够识别非常微小的光线变化。

2.宽动态范围:人类视觉系统能够适应不同亮度的环境,从非常明亮的阳光下到非常暗淡的夜晚都能够看清物体。

3.颜色感知:人类视觉系统能够感知物体的颜色,这是因为眼睛中的视锥细胞能够感知不同波长的光线,从而产生不同的颜色感知。

4.快速适应:人类视觉系统能够非常快速地适应不同环境下的光线和颜色,例如从室内到室外,从白天到夜晚。

5.空间感知:人类视觉系统能够感知物体的三维空间位置和形状,这是因为眼睛中的两个视网膜能够产生不同的图像,从而产生立体感知。

6.运动感知:人类视觉系统能够感知物体的运动和速度,这是因为眼睛中的视网膜能够感知光线的变化,从而产生运动感知。

7.光谱灵敏度:人眼可识别的电磁波长大约为400-800nm,同时含有400-800nm各色电磁波的光,称为白光。

人眼对不同的颜色的可见光灵敏程度不同,对黄绿色最灵敏,对白光较灵敏。

8.亮度和对比度感知:人眼能感受的亮度范围非常宽泛,可以感知从黑暗到明亮的亮度变化。

对比度感知则是指人眼对不同亮度之间的差异的感知能力。

9.立体视觉:人类的两只眼睛可以协同工作,提供深度感和立体感。

通过两只眼睛接收到的略微不同的视角信息,大脑可以分析出物体的距离和深度。

10.适应性:人眼具有一定的适应性,可以在长时间的相同光照条件下逐渐适应,例如从暗处到亮处或从亮处到暗处。

11.瞳孔调节:瞳孔可以根据光线强度的变化自动调节孔径大小,从而控制进入眼睛的光线量。

12.视觉疲劳:长时间注视同一物体或保持同一姿势会导致视觉疲劳。

适当休息和改变视线可以缓解视觉疲劳。

13.双眼视觉:人类的两只眼睛可以协同工作,提高视觉的分辨率和深度感。

14.眼睛运动:人类的眼睛可以进行快速而精细的运动,如扫视、追踪和聚焦等,以跟踪和理解动态的视觉场景。

人眼视觉特性

人眼视觉特性

人眼视觉特性 Prepared on 22 November 2020人眼视觉特性1.各种视觉范围光谱范围:我们知道,光线可以分为两类,也就是我们常说的可见光与不可见光。

“可见”与“不可见”是以人眼能否直接观察到为衡量标准的。

那么,人眼可以观察到的光谱范围,到底是多少呢研究发现,人眼可以识别的光线波长范围为400nm—800nm,而光波在390—455nm 内呈紫色,在455—492呈蓝靛色,在492—577nm呈绿色,577—597nm呈黄色,597—622nm呈橙色,770~622nm呈红色。

而人眼能分辨色彩的原因为,在人眼的视网膜上有两种视觉细胞,即锥状细胞和杆状细胞。

锥状细胞分为三种,分别对红、绿、蓝三种色光最敏感,称为红感细胞、绿感细胞、蓝感细胞。

当一束光射入人眼时,三种锥状细胞就会产生不同的反应,不同颜色的光对三种锥状细胞的刺激量是不同的,产生的颜色视觉各异,使人能够分辨出各种颜色。

锥状细胞不但可以接受色彩的刺激,还可以感受亮度的刺激。

所以,在白光下,人眼可以同时识别彩色与非彩色的物体,但到了夜间或暗处,锥状细胞即失去感光作用,视觉功能由杆状细胞取代。

此时,人眼便无法感觉彩色,仅能辨别白色和灰色。

既然人眼可看到的光线具有不同的颜色,那么自然人眼对不同的颜色有不同的灵敏度。

在较亮的环境中人眼对黄光最为敏感,而在较暗的环境中对绿光最为敏感。

无论在何种明暗条件中,对白光都较敏感,对红光和蓝紫光都不敏感。

如果用一个尺度来衡量,那就相当于,人眼对黄绿色敏感度为10,对蓝红色敏感度为1。

亮度范围:人眼能感受的亮度范围约为10−3—106cd/m2(坎德拉每平方米,1坎德拉表示在单位立体角内辐射出1流明的光通量),当平均亮度适中时(亮度范围约为10—104cd/m2),能分辨的最大和最小亮度比为1000:1(当亮度为1000 cd/m2时,识别能力最高,有资料称:最小可识别黑度差ΔDmin≈; 当平均亮度很低时,能分辨的最大和最小亮度比不到10:1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人眼的立体视觉特性
立体显示技术是以人眼的立体视觉原理为依据的。

因而,研究人眼的立体视觉机理,掌握立体视觉规律,对研究和设计新的立体显示系统是十分必要的。

人之所以能够产生立体视觉是因为人有两只眼睛,当左右两只眼睛从不同的角度去看某一个物体时,在左右眼视网膜上所成的图像是有差异的,人的大脑可以根据这种图像差异来判断物体的空间位置关系,从而使人产生立体视觉。

这一原理称为双目视差原理。

一、双眼立体信息
用双眼观看空间景物时,形成立体视觉的因素称为双眼立体信息。

双眼立体信息是人眼立体视觉的主要因素。

人的两眼相距约58~72mm。

因此,用双眼同时观看同一物体时,左、右两眼视线方位不同,物体在左、右两眼视网膜上所成的像亦稍有差异。

称这种差异为双眼视差。

如图所示:
当用双眼观看一个立方体时,如果左眼只看到立方体的前平面和上平面,而右眼除了能看到这两个平面外,还能看到立方体的右侧平面。

此外,即使是左、右两眼都能看到的前平面和上平面,在左、右眼视网膜上所成的像也稍有差异。

双眼视差的大小与空间物体的位置有决定性的关系。

因而,检测双眼视差的大小即可辨别物体的深度。

如上图可以定义双眼视差:
图中L、R分别为左、右眼,P为两眼瞳孔间的距离,D为视距,△D为深度距离,F1和F2为两个物体或同一物体上的两个点。

由上式可知,视差与深度距离△D成正比,而与视距的平方成反比。

二、分时显示与立体视觉
以上讨论的双眼视差是在左、右两眼同时接受图像刺激的情况即同时立体视觉,如果进入左、右眼的视差图像信息在时间上不是同时显示而存在某种程度的滞后的话,这时立体视觉的规律将不同于同时视觉。

视差图像滞后显示也称为分时显示。

分时显示所形成的立体视觉既与滞后时间有关,也与先行显示的视差图像的显示时间有关.下图给出一分时显示滞后时间对立体视觉的影响的实验曲
线。

图中曲线是在先行显示图像的显示时间为18ms条件下,立体规觉与分时显示滞后时间的关系。

曲线表明,滞后时间小于20ms时,分时显示的双眼视差图像所产生的立体视觉与同时视觉产生的立体视觉基本相同;分时显示滞后时间大于20ms时,分时显示的立体视觉减弱;当滞后时间超过100ms时,立体视觉将不能形成。

实验还表明,分时显示的立体视觉与滞后时间的关系还和先行显示图像的显示时间有关。

当先行图像显示时间超过375ms时,分时显示已不能产生立
体视觉。

这种情况下,必须同时显示才能形成立体视觉。

由上述分析可知要形成立体视觉必须将两幅具有视差的图像同时或分时送入左眼和右眼并保证左眼只看到左视差图像右眼只看到右视差图像,若采用分时方式显示两幅视差图像时,其时间间隔必须小于20ms。

相关文档
最新文档