高三数学模拟试卷(三)(附答案)

合集下载

河北省正定中学高三三轮模拟练习(三)数学(文)试题含答案

河北省正定中学高三三轮模拟练习(三)数学(文)试题含答案

河北正定中学三轮模拟练习文科数学试卷(三)说明:一、本试卷分为第Ⅰ卷和第Ⅱ卷.第Ⅰ卷为选择题;第Ⅱ卷为非选择题,分为必考和选考两部分.二、答题前请仔细阅读答题卡上的“注意事项”,按照“注意事项"的规定答题.三、做选择题时,每小题选出答案后,用铅笔把答题卡上对应题目的标号涂黑.如需改动,用橡皮将原选涂答案擦干净后,再选涂其他答案.四、考试结束后,将本试卷与原答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的(1)已知集合{1,0,1}=+∈∈中元素的个数是A=-,则集合{|,}B x y x A y A(A)1 (B)3 (C) 5 (D)9(2)若复数z满足24=+,则在复平面内,z的共轭复数z对应的点的坐标是iz i(A)(2,4)(B)(2,4)-(C)(4,2)-(D)(4,2)(3)下列说法错误的是(A )命题“若2560x x -+=,则2x =”的逆否命题是“若2x ≠,则2560x x -+≠”(B )若,x y R ∈,则“x y ="是“2()2x y xy +≥”的充要条件(C )已知命题p 和q ,若p q ∨为假命题,则命题p 与q 中必一真一假 (D )若命题0:p x R ∃∈,20010x x ++<,则:p x R ⌝∀∈,210x x ++≥(4)公差不为零的等差数列{}na 的前n 项和为nS ,若3a 是2a 与6a 的等比中项,48S=,则6S =(A )18 (B )24 (C )60 (D )90 (5)执行如右图所示的程序框图,则输出的T 值为(A )55(B )30 (C )91 (D )100(6)已知向量(1,0)a =,(0,1)b =-,2(0)c k a kb k =+≠,d a b =+,如果//c d ,那么(A )1k =且c 与d 同向 (B )1k =且c 与d 反向 (C )1k =-且c 与d 同向 (D )1k =-且c 与d 反向(7)若y kx =与圆22(2)1x y -+=的两个交点关于20x y b ++=对称,则,k b 的值分别为(A)1,42k b =-=- (B )1,42k b ==- (C )1,42k b =-= (D )1,42k b ==(8)某几何体的三视图如图1所示,且该几何体的体积是32,则正视图中的x 的值是(A) 2(B ) 92(C) 32(D ) 3(9)若当4x π=时,函数()sin()(0)f x A x A ϕ=+>取得最小值,则函数()4y f x π=-是(A)奇函数且图像关于点(,0)2π对称 (B)偶函数且图像关于直线2x π=对称(C)奇函数且图像关于直线2x π=对称 (D)偶函数且图像关于点(,0)2π对称(10)函数()(2)()f x x ax b =-+为偶函数,且在(0,)+∞单调递增,则(2)0f x ->的解集为 (A ){|22}x x x ><-或 (B ){|22}x x -<< (C){|04}x x x <>或 (D ){|04}x x <<(11)已知双曲线221x y m-=的中心在原点O ,双曲线两条渐近线与抛物线2ymx =交于A ,B 两点,且OAB S ∆=(A(B)2 (C(D(12)函数()f x 的定义域为实数集R ,,01,()1()1,102x x x f x x ≤≤⎧⎪=⎨--≤<⎪⎩,对于任意的x R ∈都有(1)(1)f x f x +=-,若在区间[1,3]-上函数()()g x f x mx m =--恰有四个不同的零点,则实数m 的取值范围是(A )10,2⎡⎤⎢⎥⎣⎦(B )10,4⎡⎫⎪⎢⎣⎭(C )10,2⎛⎤ ⎥⎝⎦(D )10,4⎛⎤ ⎥⎝⎦第Ⅱ卷二、填空题:本大题共4小题,每题5分.(13)ABC ∆中,60,A A ∠=︒∠的平分线AD 交边BC 于D ,已知3AB =,且1()3AD AC AB R λλ=+∈,则AD 的长为________。

2023届广东省华南师范大学附属中学高三第三次模拟考试数学试题及参考答案

2023届广东省华南师范大学附属中学高三第三次模拟考试数学试题及参考答案

2023届高三综合测试数 学2023年5月注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、 选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知集合{}1,0,1M =−,2{|1,}N y y x x M ==−∈,则M N 等于A .{}1,0−B .{}0,1C .{}1,1−D .{}1,0,1−2. 已知复数z 满足(1)|2|z i i +=−,则复数z 对应的点在第( )象限 A .一B .二C .三D . 四3. 已知向量()()3,4,4,m ==a b ,且a b a b +=−,则b = A .3B .4C .5D .64. 在流行病学中,基本传染数是指每名感染者平均可传染的人数. 当基本传染数高于1时,每个感染者平均会感染1个以上的人,从而导致感染这种疾病的人数呈指数级增长. 当基本传染数持续低于1时,疫情才可能逐渐消散. 接种疫苗是预防病毒感染的有效手段.已知某病毒的基本传染数05R =,若1个感染者在每个传染期会接触到N 个新人,这N 人中有V 个人接种过疫苗(VN称为接种率),那么1个感染者新的传染人数为()0R N V N−,为了有效控制病毒传染(使1个感染者传染人数不超过1),我国疫苗的接种率至少为 A .75%B .80%C .85%D .90% 5. 设n S 为正项等差数列{}n a 的前n 项和.若20232023S =,则4202014a a +的最小值为 A .52B .5C .9D .926. 已知π31cos1,2),a b c −+===,则 A .a <b <cB .c <a <bC .c <b <aD .a <c <b7. 已知克列尔公式:对任意四面体,其体积V 和外接球半径R 满足6RV =1111(),2p aa bb cc =++ 111,,,,,a a b b c c分别为四面体的三组对棱的长.在四面体ABCD 中,若AB CD AC BD ====21AD BC ==,则该四面体的外接球的表面积为A .52π B .3π C .73π D .5π8. 在平面直角坐标系xOy 中,若抛物线2:2C y px =的准线与圆22:(1)1M x y ++=相切于点A ,直线AB 与抛物线C 切于点B ,点N 在圆M 上,则AB AN ⋅的取值范围为A . [0,8]B . [2−+C . [4−+D . 4]二、 选择题:本题共4小题,每小题5分,共20分。

2024年枣庄市高三数学第三次调研模拟考试卷附答案解析

2024年枣庄市高三数学第三次调研模拟考试卷附答案解析

2024年枣庄市高三数学第三次调研模拟考试卷试卷满分150分,考试用时120分钟2024.05一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}20A x x =+>∣,{}220B x x x =--<∣,则A B = ()A .{21}xx -<<∣B .{22}x x -<<∣C .{11}x x -<<∣D .{12}xx -<<∣2.已知双曲线22:14y x C m-=的一条渐近线方程为2y x =,则m =()A .1B .2C .8D .163.已知角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边经过点ππcos ,sin 33P ⎛⎫ ⎪⎝⎭,则πcos 6α⎛⎫-=⎪⎝⎭()A .0B .12C D .24.对数螺线广泛应用于科技领域.某种对数螺线可以用πe ϕρα=表达,其中α为正实数,ϕ是极角,ρ是极径.若ϕ每增加π2个单位,则ρ变为原来的()A .13e 倍B .12e 倍C .π2e 倍D .πe 倍5.己知平面向量(1,1),(2,0)a b =-=,则a 在b 上的投影向量为()A .(1,0)-B .(1,0)C .(D .6.已知圆柱的底面半径为1,母线长为2,它的两个底面的圆周在同一个球的球面上,则该球的表面积为()A .4πB .6πC .8πD .10π7.已知复数1212,,z z z z ≠,若12,z z 同时满足||1z =和|1||i |z z -=-,则12z z -为()A .1BC .2D .8.在ABC 中,1202ACB BC AC ∠=︒=,,D 为ABC 内一点,AD CD ⊥,120BDC ∠=︒,则tan ACD ∠=()A .B C D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知两个变量y 与x 对应关系如下表:x 12345y5m8910.5若y 与x 满足一元线性回归模型,且经验回归方程为ˆ125 4.25yx =+.,则()A .y 与x 正相关B .7m =C .样本数据y 的第60百分位数为8D .各组数据的残差和为010.若函数()()()2ln 1ln 1f x x x x=+--+,则()A .()f x 的图象关于()0,0对称B .()f x 在22⎛ ⎝⎭上单调递增C .()f x 的极小值点为22D .()f x 有两个零点11.已知正方体1111ABCD A B C D -的棱长为2,点M ,N 分别为棱1,DD DC 的中点,点P 为四边形1111D C B A (含边界)内一动点,且2MP =,则()A .1AB ∥平面AMNB .点P 的轨迹长度为π2C .存在点P ,使得MP ⊥平面AMND .点P 到平面AMN 三、填空题:本题共3个小题,每小题5分,共15分.12.写出函数()sin cos 1f x x x =+图象的一条对称轴方程.13.某人上楼梯,每步上1阶的概率为34,每步上2阶的概率为14,设该人从第1阶台阶出发,到达第3阶台阶的概率为.14.设()()1122,,,A x y B x y 为平面上两点,定义1212(,)d A B x x y y =-+-、已知点P 为抛物线2:2(0)C x py p =>上一动点,点(3,0),(,)Q d P Q 的最小值为2,则p =;若斜率为32的直线l 过点Q ,点M 是直线l 上一动点,则(,)d P M 的最小值为.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.如图,四棱台1111ABCD A B C D -的底面为菱形,14,3,60AB DD BAD ==∠=︒,点E 为BC 中点,11,D E BC D E ⊥=(1)证明:1DD ⊥平面ABCD ;(2)若112AD =,求平面11A C E 与平面ABCD 夹角的余弦值.16.已知椭圆2222:1(0)x y E a b a b+=>>的左,右焦点分别为12,F F ,椭圆E 的离心率为12,椭圆E 上的点到右焦点的最小距离为1.(1)求椭圆E 的方程;(2)若过右焦点2F 的直线l 与椭圆E 交于B ,C 两点,E 的右顶点记为A ,1//AB CF ,求直线l 的方程.17.在一个袋子中有若干红球和白球(除颜色外均相同),袋中红球数占总球数的比例为p .(1)若有放回摸球,摸到红球时停止.在第2次没有摸到红球的条件下,求第3次也没有摸到红球的概率;(2)某同学不知道比例p ,为估计p 的值,设计了如下两种方案:方案一:从袋中进行有放回摸球,摸出红球或摸球5次停止.方案二:从袋中进行有放回摸球5次.分别求两个方案红球出现频率的数学期望,并以数学期望为依据,分析哪个方案估计p 的值更合理.18.已知函数2()e x f x ax x =--,()f x '为()f x 的导数(1)讨论()f x '的单调性;(2)若0x =是()f x 的极大值点,求a 的取值范围;(3)若π0,2θ⎛⎫∈ ⎪⎝⎭,证明:sin 1cos 1e e ln(sin cos )1θθθθ--++<.19.若数列{}n a 的各项均为正数,对任意*N n ∈,有212n n n a a a ++≥,则称数列{}n a 为“对数凹性”数列.(1)已知数列1,3,2,4和数列1,2,4,3,2,判断它们是否为“对数凹性”数列,并说明理由;(2)若函数231234()f x b b x b x b x =+++有三个零点,其中0(1,2,3,4)i b i >=.证明:数列1234,,,b b b b 为“对数凹性”数列;(3)若数列{}n c 的各项均为正数,21c c >,记{}n c 的前n 项和为n S ,1n n W S n=,对任意三个不相等正整数p ,q ,r ,存在常数t ,使得()()()r p q p q W q r W r p W t -+-+-=.证明:数列{}n S 为“对数凹性”数列.1.D【分析】首先解一元二次不等式求出集合B ,再根据交集的定义计算可得.【详解】由220x x --<,即()()120x x +-<,解得12x -<<,所以{}{}21220|B xx x x x <-=-=<-<∣,又{}{}202A xx x x =+>=>-∣∣,所以{}12A B x x =-<< ∣.故选:D 2.A【分析】利用双曲线方程先含参表示渐近线方程,待定系数计算即可.【详解】依题意,得0m >,令2204y x y x m -=⇒=,即C 的渐近线方程为y x =,21m=⇒=.故选:A 3.D【分析】根据三角函数的定义求出sin α,cos α,再由两角差的余弦公式计算可得.【详解】因为ππcos ,sin 33P ⎛⎫ ⎪⎝⎭,即122P ⎛⎫ ⎪ ⎪⎝⎭,即角α的终边经过点1322P ⎛⎫ ⎪ ⎪⎝⎭,所以sin α=,1cos 2α=,所以πππ11cos cos cos sin sin 66622ααα⎛⎫-=+== ⎪⎝⎭.故选:D 4.B【分析】设0ϕ所对应的极径为0ρ,10π2ϕϕ=+所对应的极径为1ρ,根据所给表达式及指数幂的运算法则计算可得.【详解】设0ϕ所对应的极径为0ρ,则0π0e ϕρα=,则10π2ϕϕ=+所对应的极径为0π2π1eϕρα+=,所以0000ππ222π1πππ1e e e e ϕϕϕϕραρα++-===,故ϕ每增加π2个单位,则ρ变为原来的12e 倍.故选:B 5.A【分析】根据已知条件分别求出a b ⋅ 和b ,然后按照平面向量的投影向量公式计算即可得解.【详解】(1,1),(2,0)a b =-=,2a b ⋅=-,2b =,a 在b 上的投影向量为()()22,01,04a b b bb⋅-⋅==-.故选:A.6.C【分析】利用圆柱及球的特征计算即可.【详解】由题意可知该球为圆柱的外切球,所以球心为圆柱的中心,设球半径为r ,则r =,故该球的表面积为24π8πr =.故选:C 7.C【分析】设()i ,R z x y x y =+∈,根据||1z =和|1||i |z z -=-求出交点坐标,即可求出12,z z ,再计算其模即可.【详解】设()i ,R z x y x y =+∈,则()11i z x y -=-+,()i 1i z x y -=+-,由||1z =和|1||i |z z -=-,所以221x y +=且()()222211x y y x -+=-+,即221x y +=且x y =,解得22x y ⎧=⎪⎪⎨⎪=⎪⎩或22x y ⎧=-⎪⎪⎨⎪=-⎪⎩,所以122z =+、2i 22z =-(或122i 22z =--、222i 22z =+),则21i i 2222z z ⎛⎫-=--- ⎪ ⎪⎝⎭(或21z z -=),所以122z z -=.故选:C 8.B【分析】在Rt ADC 中,设ACD θ∠=,AC x =,即可表示出CB,CD ,再在BCD △中利用正弦定理得cos sin(60)x θθ-︒,再由两角差的正弦公式及同角三角函数的基本关系将弦化切,即可得解.【详解】在Rt ADC 中,设ACD θ∠=π02θ⎛⎫<<⎪⎝⎭,令AC x =()0x >,则2CB x =,cos CD x θ=,在BCD △中,可得120BCD θ∠=︒-,60CBD θ∠=-︒,由正弦定理sin sin BC CDCDB CBD=∠∠,cos sin(60)x θθ==-︒=,可得tan θ=tan ACD ∠=故选:B .【点睛】关键点点睛:本题解答关键是找到角之间的关系,从而通过设元、转化到BCD △中利用正弦定理得到关系式.9.AD【分析】利用相关性的定义及线性回归直线可判定A ,根据样本中心点在回归方程上可判定B ,利用百分位数的计算可判定C ,利用回归方程计算预测值可得残差即可判定D.【详解】由回归直线方程知:1.250>,所以y 与x 正相关,即A 正确;由表格数据及回归方程易知32.53, 1.253 4.257.55mx y m +==⨯+=⇒=,即B 错误;易知560%3⨯=,所以样本数据y 的第60百分位数为898.52+=,即C 错误;由回归直线方程知1,2,3,4,5x =时对应的预测值分别为 5.5,6.75,8,9.25,.5ˆ10y=,对应残差分别为0.5,0.75,0,0.25,0--,显然残差之和为0,即D 正确.故选:AD 10.AC【分析】首先求出函数的定义域,即可判断奇偶性,从而判断A ,利用导数说明函数的单调性,即可判断B 、C ,求出极小值即可判断D.【详解】对于函数()()()2ln 1ln 1f x x x x =+--+,令10100x x x +>⎧⎪->⎨⎪≠⎩,解得10x -<<或01x <<,所以函数的定义域为()()1,00,1-U ,又()()()()()()22ln 1ln 1ln 1ln 1f x x x x x f x x x ⎡⎤-=--+-=-+--+=-⎢⎥⎣⎦,所以()f x 为奇函数,函数图象关于()0,0对称,故A 正确;又()22221121122211111f x x x x x x x x x---'=--=+-=-+-+--222222222(1)24(1)(1)x x x x x x x ----==--,当x ⎛∈ ⎝⎭时,()0f x '<,即()f x在⎛ ⎝⎭上单调递减,故B 错误;当2x ⎛⎫∈ ⎪ ⎪⎝⎭时,()0f x ¢>,即()f x在,12⎛⎫ ⎪ ⎪⎝⎭上单调递增,根据奇函数的对称性可知()f x 在21,2⎛⎫- ⎪ ⎪⎝⎭上单调递增,在22⎛⎫- ⎪ ⎪⎝⎭上单调递减,所以()f x 的极小值点为22,极大值点为22-,故C 正确;又(()ln 320f x f ==++⎝⎭极小值,且当x 趋近于1时,()f x 趋近于无穷大,当x 趋近于0时,()f x 趋近于无穷大,所以()f x 在()0,1上无零点,根据对称性可知()f x 在()1,0-上无零点,故()f x 无零点,故D 错误.故选:AC .11.ABD【分析】利用线线平行的性质可判定A ,利用空间轨迹结合弧长公式可判定B ,建立空间直角坐标系,利用空间向量研究线面关系及点面距离可判定C 、D.【详解】对于A ,在正方体中易知1111//,////MN CD CD A B NM A B ⇒,又1⊄A B 平面AMN ,MN ⊂平面AMN ,所以1A B ∥平面AMN ,即A 正确;对于B ,因为点P 为四边形1111D C B A (含边界)内一动点,且2MP =,11MD =,则1DP =P 点轨迹为以1D所以点P的轨迹长度为132ππ42⨯,故B 正确;对于C ,建立如图所示空间直角坐标系,则()()())π2,0,0,0,0,1,0,1,0,,,20,2A M N Pθθθ⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭,所以()())2,0,1,2,1,0,,1AM AN MP θθ=-=-=,若存在点P ,使得MP ⊥面AMN,则100AM MP AN MP θθθ⎧⋅=-=⎪⎨⋅=-=⎪⎩,解之得sin ,cos θθ=即不存在点P ,使得MP ⊥面AMN ,故C 错误;对于D ,设平面AMN 的一个法向量为(),,n x y z = ,则2020AM n x z AN n x y ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,取12x y z =⇒==,即()1,2,2n =,则点P 到平面AMN的距离()221πtan ,0,3322n MP d n θϕθθϕϕ⋅++⎛⎫++⎛⎫====∈ ⎪⎪⎝⎭⎝⎭ ,显然π2θϕ+=时取得最大值max d =D 正确.故选:ABD【点睛】思路点睛:对于B ,利用定点定距离结合空间轨迹即可解决,对于C 、D 因为动点不方便利用几何法处理,可以利用空间直角坐标系,由空间向量研究空间位置关系及点面距离计算即可.12.π4x =(答案不唯一)【分析】利用二倍角公式及三角函数的图象与性质计算即可.【详解】易知1()sin 212f x x =+,所以()()πππ2πZ Z 242k x k k x k =+∈⇒=+∈,不妨取0k =,则π4x =.故答案为:π4x =(答案不唯一)13.1316【分析】先分①②两种方法,再由独立事件的乘法公式计算即可.【详解】到达第3台阶的方法有两种:第一种:每步上一个台阶,上两步,则概率为3394416⨯=;第二种:只上一步且上两个台阶,则概率为14,所以到达第3阶台阶的概率为911316416+=,故答案为:1316.14.232【分析】利用定义结合二次函数求最值计算即可得第一空,过P 作//PN x 并构造直角三角形,根据(,)d P M 的定义化折为直,结合直线与抛物线的位置关系计算即可.【详解】设2,2m P m p ⎛⎫ ⎪⎝⎭,则()()2221,30332222m m p d P Q m m m p p p p =-+-≥-+=-+-,322p⇒-=,即2p =,p m =时取得最小值;易知39:22l y x =-,2:4C x y =,联立有26180x x -+=,显然无解,即直线与抛物线无交点,如下图所示,过P 作//PN x 交l 于N ,过M 作ME PN ⊥,则(,)d P M PE EM PE EN PN =+≥+=(,M N 重合时取得等号),设2,4n P n ⎛⎫ ⎪⎝⎭,则223,64n n N ⎛⎫+ ⎪⎝⎭,所以()22133336622n PN n n =-+=-+≥,故答案为:2,32【点睛】思路点睛:对于曼哈顿距离的新定义问题可以利用化折为直的思想,数形结合再根据二次函数的性质计算最值即可.15.(1)证明见解析【分析】(1)连接DE 、DB ,即可证明BC ⊥平面1D DE ,从而得到1BC DD ⊥,再由勾股定理逆定理得到1DD DE ⊥,即可证明1DD ⊥平面ABCD ;(2)建立空间直角坐标系,利用空间向量法计算可得.【详解】(1)连接DE 、DB ,因为四边形ABCD 为菱形,60BAD ∠= 所以BDC 是边长为4的正三角形,因为E 为BC 中点,所以DE BC ⊥,DE =又因为11,D E BC D E DE E ⊥⋂=,1,D E DE ⊂平面1D DE ,所以BC ⊥平面1D DE ,又1DD ⊂平面1D DE ,所以1BC DD ⊥,又1D E =13DD =,DE =所以22211DD DE D E +=,所以1DD DE ⊥,又因为,,DE BC E DE BC =⊂ 平面ABCD ,所以1DD ⊥平面ABCD.(2)因为直线1,,DA DE DD 两两垂直,以D 为原点,1,,DA DE DD 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则()()()()()10,0,0,4,0,0,0,,2,2,2,0,3D A E C A -,所以()()1111,2,2A C AC EA ==-=- 设平面11A C E 的一个法向量为(),,n x y z = ,则11130230n A C x n EA x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,即43y x z ⎧=⎪⎨=⎪⎩,令3x =,得4y z ==,所以()4n = ,由题意知,()0,0,1m = 是平面ABCD 的一个法向量,设平面11A C E 与平面ABCD 的夹角为θ,则cos 13m n m n θ⋅===⋅ ,所以平面11A C E与平面ABCD 16.(1)22143x y +=(2)10x y +-=或10x y -=【分析】(1)利用椭圆焦半径公式及性质计算即可;(2)设直线l 方程,B 、C 坐标,根据平行关系得出两点纵坐标关系,联立椭圆方程结合韦达定理解方程即可.【详解】(1)设焦距为2c ,由椭圆对称性不妨设椭圆上一点()()000,0P x y a x ≥≥,易知()2,0F c ,则2PF =00c c x a a x a a =-=-,显然0x a =时2min PF a c =-,由题意得222121ca a c abc ⎧=⎪⎪⎨-=⎪⎪=+⎩解得2,1,a c b ===所以椭圆C 的方程为22143x y +=;(2)设()()1122,,,C x y B x y ,因为AB //1CF ,所以1122::2:1CF AB F F F A ==所以122y y =-①设直线l 的方程为1x my =+,联立得221431x y x my ⎧+=⎪⎨⎪=+⎩,整理得()2234690m y my ++-=,由韦达定理得()122122634934my y m y y m ⎧+=-⎪+⎪⎨=-⎪+⎪⎩,把①式代入上式得222226349234my m y m ⎧-=-⎪⎪+⎨⎪-=-⎪-+⎩,得()()22222236923434m y m m ==++,解得255m =±,所以直线l 的方程为:10x y -=或10x y -=.17.(1)1p-(2)答案见解析【分析】(1)设事件A =“第2次没有摸到红球”,事件B =“第3次也没有摸到红球”,根据条件概率公式计算可得;(2)记“方案一”中红球出现的频率用随机变量X 表示,X 的可能取值为11110,,,,,15432,求出所对应的概率,即可得到分布列与数学期望,“方案二”中红球出现的频率用随机变量Y 表示,则()55,Y B p ~,由二项分布的概率公式得到分布列,即可求出期望,再判断即可.【详解】(1)设事件A =“第2次没有摸到红球”,事件B =“第3次也没有摸到红球”,则()()21P A p =-,()()31P B p =-,所以()()()()()32(1)|1(1)P AB P B p P B A p P A P A p -====--;(2)“方案一”中红球出现的频率用随机变量X 表示,则X 的可能取值为:11110,,,,,15432,且()()501P X p ==-,()4115P X p p ⎛⎫==- ⎪⎝⎭,()3114P X p p ⎛⎫==- ⎪⎝⎭,()2113P X p p ⎛⎫==- ⎪⎝⎭,()112P X p p ⎛⎫==- ⎪⎝⎭,()1P X p ==,所以X 的分布列为:X 0151413121P 5(1)p -4(1)p p -3(1)p p -2(1)p p -()1p p-p 则()()()354211110(1)(1)1(1)115432E X p p p p p p p p p p =⨯-+⨯-+⨯-+⨯-+⨯-+⨯()4321(1)(1)(1)5432p p p p p p p p p ----=++++,“方案二”中红球出现的频率用随机变量Y 表示,因为()55,Y B p ~,所以5Y 的分布列为:()555C (1),0,1,2,3,4,5k k k P Y k p p k -==-=,即Y 的分布列为:Y 0152535451P 5(1)p -45(1)p p -3210(1)p p -3210(1)p p -()451p p -5p 所以()55E Y p =,则()E Y p =,因为()E X p >,()E Y p =,所以“方案二”估计p 的值更合理.18.(1)答案见解析(2)12a >(3)证明见解析【分析】(1)令()()g x f x '=,求出导函数,再分0a ≤和0a >两种情况讨论,分别求出函数的单调区间;(2)结合(1)分0a ≤、102a <<、12a =、12a >四种情况讨论,判断()f x 的单调性,即可确定极值点,从而得解;(3)利用分析法可得只需证sin 12e ln sin sin θθθ-+<,cos 12e ln cos cos θθθ-+<,只需证对任意10x -<<,有()2e ln 1(1)x x x ++<+,结合(2)只需证明()ln 1(10)x x x +<-<<,构造函数,利用导数证明即可.【详解】(1)由题知()e 21x f x ax =--',令()()21x g x f x ax =-'=-e ,则()e 2x g x a '=-,当0a ≤时,()()0,g x f x ''>在区间(),-∞+∞单调递增,当0a >时,令()0g x '=,解得ln2=x a ,当(),ln2x a ∞∈-时,()0g x '<,当()ln2,x a ∈+∞时,()0g x '>,所以()f x '在区间(),ln2a -∞上单调递减,在区间()ln2,a +∞上单调递增,综上所述,当0a ≤时,()f x '在区间(),-∞+∞上单调递增;当0a >时,()f x '在区间(),ln2a -∞上单调递减,在区间()ln2,a +∞上单调递增.(2)当0a ≤时,()00f '=,由(1)知,当(),0x ∈-∞时,()()0,f x f x '<在(),0∞-上单调递减;当()0,x ∈+∞时,()()0,f x f x '>在()0,∞+上单调递增;所以0x =是函数()f x 的极小值点,不符合题意;当102a <<时,ln20a <,且()00f '=,由(1)知,当()ln2,0x a ∈时,()()0,f x f x '<在()ln2,0a 上单调递减;当()0,x ∈+∞时,()()0,f x f x '>在()0,∞+上单调递增;所以0x =是函数()f x 的极小值点,不符合题意;当12a =时,ln20a =,则当(),x ∈-∞+∞时,()()0,f x f x '≥在(),-∞+∞上单调递增,所以()f x 无极值点,不合题意;当12a >时,ln20a >,且()00f '=;当(),0x ∈-∞时,()()0,f x f x '>在(),0∞-上单调递增;当()0,ln2∈x a 时,()()0,f x f x '<在()0,ln2a 上单调递减;所以0x =是函数()f x 的极大值点,符合题意;综上所述,a 的取值范围是12a >.(3)要证()sin 1cos 1e e ln sin cos 1θθθθ--++<,只要证()()sin 1cos 122e e ln sin ln cos sin cos θθθθθθ--+++<+,只要证sin 12e ln sin sin θθθ-+<,cos 12e ln cos cos θθθ-+<,因为π0,2θ⎛⎫∈ ⎪⎝⎭,则()()sin 0,1,cos 0,1θθ∈∈,所以只要证对任意01x <<,有12e ln x x x -+<,只要证对任意10x -<<,有()2e ln 1(1)x x x ++<+(※),因为由(2)知:当1a =时,若0x <,则()()01f x f <=,所以2e 1x x x --<,即2e 1x x x <++①,令函数()()ln 1(10)h x x x x =+--<<,则()1111x h x x x-'=-=++,所以当10x -<<时()0h x '>,所以()h x 在()1,0-单调递增;则()()00h x h <=,即()ln 1(10)x x x +<-<<,由①+②得()22e ln 121(1)x x x x x ++<++=+,所以(※)成立,所以()sin 1cos 1e e ln sin cos 1θθθθ--++<成立.【点睛】方法点睛:利用导数证明或判定不等式问题:1.通常要构造新函数,利用导数研究函数的单调性与极值(最值),从而得出不等关系;2.利用可分离变量,构造新函数,直接把问题转化为函数的最值问题,从而判定不等关系;3.适当放缩构造法:根据已知条件适当放缩或利用常见放缩结论,从而判定不等关系;4.构造“形似”函数,变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.19.(1)只有1,2,4,3,2是“对数凹性”数列,理由见解析(2)证明见解析(3)证明见解析【分析】(1)利用“对数凹性”数列的定义计算即可;(2)利用导数研究三次函数的性质结合()1,f f x x ⎛⎫ ⎪⎝⎭零点个数相同及“对数凹性”数列的定义计算即可;(3)将,p q 互换计算可得0=t ,令1,2p q ==,可证明{}n W 是等差数列,结合等差数列得通项公式可知()11n W c n d =+-,利用1n n W S n=及,n n S c 的关系可得()121n c c d n =+-,并判定{}n c 为单调递增的等差数列,根据等差数列求和公式计算()2124n n n S S S ++-结合基本不等式放缩证明其大于0即可.【详解】(1)根据“对数凹性”数列的定义可知数列1,3,2,4中2234≥⨯不成立,所以数列1,3,2,4不是“对数凹性”数列;而数列1,2,4,3,2中222214423342⎧≥⨯⎪≥⨯⎨⎪≥⨯⎩均成立,所以数列1,2,4,3,2是“对数凹性”数列;(2)根据题意及三次函数的性质易知2234()23f x b b x b x =++'有两个不等实数根,所以221324324Δ44303b b b b b b =-⨯>⇒>,又0(1,2,3,4)i b i >=,所以2324243b b b b b >>,显然()1000x f b =⇒=>,即0x =不是()f x 的零点,又2312341111f b b b b x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,令1t x =,则()231234f t b b t b t b t =+++也有三个零点,即32123431b x b x b x b f x x +++⎛⎫= ⎪⎝⎭有三个零点,则()321234g x b x b x b x b =+++有三个零点,所以()212332g x b x b x b =++'有两个零点,所以同上有22221321313Δ44303b b b b b b b b =-⨯>⇒>>,故数列1234,,,b b b b 为“对数凹性”数列(3)将,p q 互换得:()()()r q p t q p W p vr W r q W t =-+-+-=-,所以0=t ,令1,2p q ==,得()()(2210r W r W r W -+-+-=,所以()()()()12121211r W r W r W W r W W =-+-=+--,故数列{}n W 是等差数列,记221211022S c c d W W c -=-=-=>,所以()()2111112n c c W c n c n d -⎛⎫=+-=+- ⎪⎝⎭,所以()21n n S nW dn c d n ==+-,又因为11,1,2n n n c n c S S n -=⎧=⎨-≥⎩,所以()121n c c d n=+-,所以120n n c c d +-=>,所以{}n c 为单调递增的等差数列,所以()11210,2,2n n n n n n n n cc c c c c c S ++++>>+==.所以()()()()()22212111124(1)2n n n n n n S S S n c c n n c c c c ++++-=++-+++()()()()22112211(1)22n n n c c c c n c c n n ++⎡⎤+++>++-+⎢⎥⎣⎦()()222112112(1)22n n c c c n c c n n ++++⎛⎫=++-+ ⎪⎝⎭()()()2221111(1)2n n n c c n n c c ++=++-++()()2211(1)2n n n n c c +⎡⎤=+-++⎣⎦()2110n c c +=+>所以212n n n S S S ++≥,数列{}n S 是“对数凹性”数列【点睛】思路点睛:第二问根据定义及三次函数的性质、判别式先判定2324243b b b b b >>,再判定()1,f f x x ⎛⎫ ⎪⎝⎭零点个数相同,再次利用导函数零点个数及判别式判定2213133b b b b b >>即可;第三问根据条件将,p q 互换得0=t ,利用赋值法证明{}n W 是等差数列,再根据1n n W S n=及,n n S c 的关系可得n c 从而判定其为单调递增数列,根据等差数列求和公式计算()2124n n n S S S ++-结合基本不等式放缩证明其大于0即可.。

广西柳州市2024届高三第三次模拟考试数学试题含答案

广西柳州市2024届高三第三次模拟考试数学试题含答案

柳州市2024届高三第三次模拟考试数学(考试时间120分钟满分150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.某中学的学生积极参加体育锻炼,其中有90%的学生喜欢足球或游泳,60%的学生喜欢足球,80%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A .70%B .60%C .50%D .40%2.已知i 是虚数单位,若()()1i i a ++为实数,则实数a 的值为()A .1B .2-C .0D .1-3.已知()()12,3,3,,1AB AC t BC ===,则AB BC ⋅= ()A .3-B .2-C .2D .34.在天文学中,天体的明暗程度可以用星等或亮度来描述。

两颗星的星等与亮度满足12125lg 2E m m E -=,其中星等为k m 的星的亮度为()1,2k E k =,已知太阳的星等是26.7-,天狼星的星等是 1.45-,则太阳与天狼星的亮度的比值为()A .10.110B .10.1C .lg10.1D .10.110-5.从5名志愿者中选派4人在星期六和星期日参加公益活动,每人一天,每天两人,则不同的选派方法共有()A .60种B .48种C .30种D .10种6.已知,,,P A B C 是半径为2的球面上四点,ABC △为等边三角形且其面积为4,则三棱锥P ABC -体积的最大值为()A .334B .934C.D .153410.椭圆22221(0)x y a b a b+=>>的离心率为e ,右焦点为(),0F c ,方程20ax bx c +-=的两个实根分别为1x 和2x ,则点()12,P x x ()A .必在圆222x y +=内B .必在圆222x y +=上C .必在圆222x y +=外D .与圆222x y +=的关系与e 有关8.设函数()f x 是定义在R 上的奇函数,且对于任意的,x y R ∈,都有()()f x f y x y -<-,若函数()()g x f x x -=,则不等式()()2220g x x g x -+-<的解集是()A .()1,2-B .()1,2C .()(),12,-∞-+∞ D .()(),12,-∞+∞ 二、选择题:本题共3小题,每小题6分,共18分。

2024年山东潍坊市高三三模数学高考试卷试题(含答案详解)

2024年山东潍坊市高三三模数学高考试卷试题(含答案详解)

潍坊市高考模拟考试(潍坊三模)数学2024.5一、选择题:本题共8小题,每小题5分,共40分.每小题只有一个选项符合题目要求.1.设复数πsin 2i 4z θ⎛⎫=++ ⎪⎝⎭是纯虚数,则θ的值可以为()A .π4B .5π4C .2023π4D .2025π42.已知集合{}{}3,2,1,0,1,2,3,|3,Z A B x x n n =---==∈,则A B ⋂的子集个数是()A .3个B .4个C .8个D .16个3.如图,半径为1的圆M 与x 轴相切于原点O ,切点处有一个标志,该圆沿x 轴向右滚动,当圆M 滚动到与出发位置时的圆相外切时(记此时圆心为N ),标志位于点A 处,圆N 与x 轴相切于点B ,则阴影部分的面积是()A .2B .1C .π3D .π44.某同学在劳动课上做了一个木制陀螺,该陀螺是由两个底面重合的圆锥组成.已知该陀螺上、下两圆锥的体积之比为1:2,上圆锥的高与底面半径相等,则上、下两圆锥的母线长之比为()A B .12C .2D 5.牛顿迭代法是求方程近似解的一种方法.如图,方程()0f x =的根就是函数()f x 的零点r ,取初始值()0,x f x 的图象在点()()00,x f x 处的切线与x 轴的交点的横坐标为()1,x f x 的图象在点()()11,x f x 处的切线与x 轴的交点的横坐标为2x ,一直继续下去,得到12,,,n x x x ,它们越来越接近r .设函数()2f x x bx =+,02x =,用牛顿迭代法得到11619x =,则实数b =()A .1B .12C .23D .346.已知1F ,2F 分别为椭圆C :22162x y+=的左、右焦点,点()00,P x y 在C 上,若12F PF ∠大于π3,则0x 的取值范围是()A .(),-∞+∞B .(C .(),-∞+∞D .(7.已知函数()f x 的导函数为()f x ',且()1e f =,当0x >时,()1e xf x x<'+,则不等式()ln 1e xf x x ->的解集为()A .()0,1B .()0,∞+C .()1,∞+D .()()0,11,∞⋃+8.已知()()()()()()828901289321111x x a a x a x a x a x ++=+++++++++ ,则8a =()A .8B .10C .82D .92二、多项选择题:本大题共3个小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,选对但不全的得部分分,有选错的得0分.9.在棱长为1的正方体1111ABCD A B C D -中,M N ,分别为棱111,C D C C 的中点,则()A .直线BN 与1MB 是异面直线B .直线MN 与AC 所成的角是3πC .直线MN ⊥平面ADND .平面BMN 截正方体所得的截面面积为98.10.下列说法正确的是()A .从装有2个红球和2个黑球的口袋内任取2个球,事件“至少有一个黑球”与事件“至少有一个红球”是互斥事件B .掷一枚质地均匀的骰子两次,“第一次向上的点数是1”与“两次向上的点数之和是7”是相互独立事件C .若123452,,,,,x x x x x 的平均数是7,方差是6,则12345,,,,x x x x x 的方差是65D .某人在10次射击中,设击中目标的次数为X ,且()10,0.8B X ,则8X =的概率最大11.已知12F F ,双曲线()222:104x y C b b-=>的左、右焦点,点P 在C 上,设12PF F △的内切圆圆心为I ,半径为r ,直线PI 交12F F 于Q ,若53PQ PI = ,1215PI PF t PF =+,R t ∈则()A .25t =B .圆心I 的横坐标为1C .5r =D .C 的离心率为2三、填空题:本大题共3个小题,每小题5分,共15分.12.已知向量()()()1,2,4,2,1,a b c λ==-=,若()20c a b ⋅+= ,则实数λ=13.已知关于x 的方程()()2cos 0x k ωϕω+=≠的所有正实根从小到大排列构成等差数列,请写出实数k 的一个取值为14.已知,,a b c 均为正实数,函数()()22ln f x x a b x x =+++.(1)若()f x 的图象过点()1,2,则12a b+的最小值为;(2)若()f x 的图象过点(),ln c ab c +,且()3a b t c +≥恒成立,则实数t 的最小值为.四、解答题:本大题共5小题,共77分.解答应写出文字说明、说明过程或演算步骤.15.如图,在直三棱柱111ABC A B C -中,1,2AB AC AB AC AA ⊥==,E 是棱BC的中点.(1)求证:1//A C 平面1AB E ;(2)求二面角11A B E A --的大小.16.已知正项等差数列{}n a 的公差为2,前n 项和为n S ,且12311S S S ++,,成等比数列.(1)求数列{}n a 的通项公式n a ;(2)若()1,1sin ,2nn n n S b n S n π⎧⎪⎪=⎨-⎪⋅⎪⎩为奇数,为偶数,求数列{}n b 的前4n 项和.17.在平面直角坐标系中,O 为坐标原点,E 为直线:1l y =-上一点,动点F 满足FE l ⊥,OF OE ⊥ .(1)求动点F 的轨迹C 的方程;(2)若过点1,02T ⎛⎫⎪⎝⎭作直线与C 交于不同的两点,M N ,点()1,1P ,过点M 作y 轴的垂线分别与直线,OP ON 交于点,A B .证明:A 为线段BM 的中点.18.某高校为了提升学校餐厅的服务水平,组织4000名师生对学校餐厅满意度进行评分调查,按照分层抽样方法,抽取200位师生的评分(满分100分)作为样本,绘制如图所示的频率分布直方图,并将分数从低到高分为四个等级:满意度评分[0,60)[60,80)[80,90)[]90100,满意度等级不满意基本满意满意非常满意(1)求图中a 的值,并估计满意度评分的25%分位数;(2)若样本中男性师生比为1:4,且男教师评分为80分以上的概率为0.8,男学生评分为80分以上的概率0.55,现从男性师生中随机抽取一人,其评分为80分以上的概率为多少?(3)设在样本中,学生、教师的人数分别为()1200m n n m ≤≤≤,,记所有学生的评分为12,,m x x x ,,其平均数为x ,方差为2x s ,所有教师的评分为12,,n y y y ,,其平均数为y ,方差为2y s ,总样本的平均数为z ,方差为2s ,若245x y x y s s s ==,试求m 的最小值.19.一个完美均匀且灵活的项链的两端被悬挂,并只受重力的影响,这个项链形成的曲线形状被称为悬链线.1691年,莱布尼茨、惠根斯和约翰・伯努利等得到“悬链线”方程e e 2x xccc y -⎛⎫+ ⎪⎝⎭=,其中c 为参数.当1c =时,就是双曲余弦函数()e e ch 2x x x -+=,类似地双曲正弦函数()e e sh 2x xx --=,它们与正、余弦函数有许多类似的性质.(1)类比三角函数的三个性质:①倍角公式sin22sin cos x x x =;②平方关系22sin cos 1x x +=;③求导公式()()''sin cos cos sin x x x x ⎧=⎪⎨=-⎪⎩,写出双曲正弦和双曲余弦函数的一个正确的性质并证明;(2)当0x >时,双曲正弦函数()sh y x =图象总在直线y kx =的上方,求实数k 的取值范围;(3)若1200x x >>,,证明:()()()()()2221112121ch sh 1ch sh sin sin cos .x x x x x x x x x x ⎡⎤⎡⎤+--⋅+>+--⎣⎦⎣⎦1.C【分析】根据题意得到πsin 04θ⎛⎫+= ⎪⎝⎭,将四个选项代入检验,得到答案.【详解】由题意得πsin 04θ⎛⎫+= ⎪⎝⎭,A 选项,当π4θ=时,ππsin 144⎛⎫+= ⎪⎝⎭,不合题意,A 错误;B 选项,当5π4θ=时,5ππsin 144⎛⎫+=- ⎪⎝⎭,不合要求,B 错误;C 选项,当2023π4θ=时,2023ππsin sin 506π044⎛⎫+==⎪⎝⎭,故C 正确;D 选项,当2025π4θ=时,2025ππsin 144⎛⎫+=⎝⎭,D 错误.故选:C 2.C【分析】由交集的定义求得A B ⋂,根据子集个数的计算方法即可求解.【详解】由题意得,{3,0,3}A B ⋂=-,则A B ⋂的子集有328=个,故选:C .3.B【分析】根据给定条件,求出劣弧AB 的长,再利用扇形面积公式计算即得.【详解】由圆M 与圆N 外切,得2MN =,又圆M ,圆N 与x 轴分别相切于原点O 和点B ,则2OB MN ==,所以劣弧AB 长等于2OB =,所以劣弧AB 对应的扇形面积为12112⨯⨯=.故选:B 4.A【分析】由圆锥的体积公式及圆锥高、半径与母线的关系计算即可.【详解】设上、下两圆锥的底面半径为r ,高分别为12,h h ,体积分别为12,V V ,因为上圆锥的高与底面半径相等,所以1h r =,则2111222221π1312π3r h V h r V h h r h ====得,22h r =,=,5=,故选:A .5.D【分析】求得()f x 在()()22f ,的切线方程,代入16,019⎛⎫⎪⎝⎭求解即可.【详解】()2f x x b '=+,(2)4f b '=+,()242f b =+,则()f x 在()()22f ,处的切线方程为()()()4242y b b x -+=+-,由题意得,切线过16,019⎛⎫⎪⎝⎭代入得,()()16424219b b ⎛⎫-+=+- ⎪⎝⎭,解得34b =,故选:D .6.D【分析】由已知可知1PF ,2PF的坐标和模,由向量数量积的定义及坐标运算可得关于0x 的不等关系,即可求解.【详解】因为椭圆C :22162x y +=,所以26a =,22b =,所以2224c a b =-=,所以()12,0F -,()22,0F ,因为点()00,P x y 在C 上,所以2200162x y +=,所以2200123y x =-,0x <<,又()1002,PF x y =--- ,()2002,PF x y =-- ,所以222120002423PF PF x y x ⋅=+-=- ,又)10033PF x ==+=+ ,)2003PF x x ==-=- ,所以121212cos PF PF PF PF F PF ⋅=⋅∠ ,因为12F PF ∠大于π3,所以121212πcos cos 3PF PF F PF PF PF ⋅∠<⋅ ,所以()()2000221233332x x x -<+⋅-⋅,解得0x <<所以0x 的取值范围是(.故选:D .7.A【分析】由不等式化简构造新函数,利用导数求得新函数的单调性,即可求解原不等式.【详解】不等式()ln 1exf x x->等价于()e ln x f x x >+,即()e ln 0x f x x -+>,构造函数()()e ln ,0x g x f x x x =-+>,所以1()()e xg x f x x''=--,因为0x >时,()1e xf x x<'+,所以()0g x '<对(0,)∀∈+∞x 恒成立,所以()g x 在(0,)+∞单调递减,又因为(1)(1)e ln10g f =--=,所以不等式()e ln 0x f x x -+>等价于()(1)g x g >,所以01x <<,即()ln 1exf x x->的解集为()0,1.故选:A.8.B【分析】由()()()()88321211x x x x ⎡⎤⎡⎤++=++++⎣⎦⎣⎦,利用二项式定理求解指定项的系数.【详解】()()()()88321211x x x x ⎡⎤⎡⎤++=++++⎣⎦⎣⎦,其中()811x ⎡⎤++⎣⎦展开式的通项为()()88188C 11C 1rrr r rr T x x --+=+⋅=+,N r ∈且8r ≤,当0r =时,()()8818C 11T x x =+=+,此时只需乘以第一个因式()12x ⎡⎤++⎣⎦中的2,可得()821x +;当1r =时,()()77128C 181T x x =+=+,此时只需乘以第一个因式()12x ⎡⎤++⎣⎦中的()1x +,可得()881x +.所以82810a =+=.故选:B【点睛】关键点点睛:本题的关键点是把()()832x x ++表示成()()81211x x ⎡⎤⎡⎤++++⎣⎦⎣⎦,利用即可二项式定理求解.9.ABD【分析】根据异面直线成角,线面垂直的判定定理,梯形面积公式逐项判断即可.【详解】对于A ,由于BN ⊂平面11BB C C ,1MB 平面1111BB C C B ,B BN =∉,故直线BN 与1MB 是异面直线,故A 正确;对于B ,如图,连接1CD ,因为M N ,分别为棱111C D C C ,的中点,所以1∥MN CD ,所以直线MN 与AC 所成的角即为直线1CD 与AC 所成的角,又因为1ACD △是等边三角形,所以直线1CD 与AC 所成的角为π3,故直线MN 与AC 所成的角是π3,故B 正确;对于C ,如图,假设直线MN ⊥平面ADN ,又因为DN ⊂平面ADN ,所以MN DN ⊥,而222MN DN DM ===,这三边不能构成直角三角形,所以DN 与MN 不垂直,故假设错误,故C 错误;对于D ,如图,连接11,A B A M ,因为111,A B CD CD MN ∥∥,所以1//A B MN ,所以平面BMN 截正方体所得的截面为梯形1A BNM ,且11,2MN A B A M BN ====4,所以截面面积为19(2248⨯+⨯=,故D 正确.故选:ABD.10.BCD【分析】由互斥事件的定义即可判断A ;由独立事件的乘法公式验证即可判断B ;由平均值及方差的公式即可判断C ;由二项分布的概率公式即可判断D .【详解】对于A ,事件“至少有一个黑球”与事件“至少有一个红球”可以同时发生,所以不是互斥事件,故A 错误;对于B ,设A =“第一次向上的点数是1”,B =“两次向上的点数之和是7”,则()16P A =,()61366P B ==,()136P AB =,因为()()()P AB P A P B =⋅,所以事件A 与B 互相独立,故B 正确;对于C ,由123452,,,,,x x x x x 的平均数是7,得12345,,,,x x x x x 的平均数为8,由123452,,,,,x x x x x 方差是6,则()()222222123451234514752536xx x x x x x x x x ++++-+++++⨯+=,所以()()222222123451234516856x x x x x x x x x x ++++-+++++⨯=,所以12345,,,,x x x x x 的方差()()22222212345123451685655xx x x x x x x x x ++++-+++++⨯=,故C 正确;对于D ,由()10,0.8B X 得,当()110,Z x r r r =≤≤∈时,()101041C 55rrr P x r -⎛⎫⎛⎫==⋅ ⎪⎪⎝⎭⎝⎭,当2r ≥时,令()()()101011111041C 411551141C 55r rr r r r P x r r P x r k ----⎛⎫⎛⎫⋅ ⎪ ⎪=-⎝⎭⎝⎭==≥=-⎛⎫⎛⎫⋅ ⎪ ⎝⎭⎝⎭,即445r ≤,令()()()10101911041C 1551141041C 55r rrr r r P x r r P x r k -+-+⎛⎫⎛⎫⋅ ⎪ ⎪=+⎝⎭⎝⎭==≥=+-⎛⎫⎛⎫⋅ ⎪ ⎪⎝⎭⎝⎭,解得395r ≥,即394455r ≤≤,所以当8r =时,()8P X =最大,故D 正确,故选:BCD .11.ACD【分析】由121533PQ PF t PF =+ ,且12,,F Q F 三点共线,得到25t =,可判定A 正确;根据双曲线的定义和122EF EF c +=,求得12,EF a c EF c a =+=-,可判定B 错误;利用角平分线定理得到11222PF QF PF QF ==,结合三角形的面积公式,分别求得,c r 的值,可判定C 正确;结合离心率的定义和求法,可判定D 正确.【详解】对于A 中,因为12515333PQ PI PF t PF ==+,且12,,F Q F 三点共线,所以15133t +=,可得25t =,所以A 正确;对于B 中,设切点分别为,,E F G ,则12122EF EF PF PF a -=-=,又因为122EF EF c +=,所以12,EF a c EF c a =+=-,所以点E 为右顶点,圆心I 的横坐标为2,所以B 错误;对于C 中,因为121233PQ PF PF =+ ,所以122QF QF =,由角平分线定理,得11222PF QF PF QF ==,又因为1224PF PF a -==,所以128,4PF PF ==,由53PQ PI = 可得52P y r =,所以()121152122222PF F S c r c r =+⋅=⨯⨯ ,可得4c =,所以128F F =,则12PF F △为等腰三角形,所以1211(812)422PF F S r =+⋅=⨯⨯ 5r =,所以C 正确;对于D 中,由离心率422c e a ===,所以D 正确.【点睛】方法点拨:对于双曲线的综合问题的求解策略:1、与双曲线的两焦点有关的问题,在“焦点三角形”中,常利用正弦定理、余弦定理,结合122PF PF a -=,运用平方的方法,建立12PF PF ⋅的联系;2、当与直线有关的问题,常常联立直线与双曲线的方程,消元后利用一元二次方程的判别式,根与系数的关系构造相关变量关系式进行求解;3、当与向量有关相结合时,注意运用向量的坐标运算,将向量间的关系转化为点的坐标问题,再根据与系数的关系,将所求问题与条件建立联系求解.12.3-【分析】根据向量线性运算和数量积公式得到方程,求出答案.【详解】()()()22,44,26,2a b +=+-=,()()()21,6,2620c a b λλ⋅+=⋅=+=,解得3λ=-.故答案为:3-13.10,,12(答案不唯一,填写其中一个即可)【分析】根据三角降幂公式化简,再结合图象求得k 的取值即可.【详解】因为()()2cos 0x k ωϕω+=≠,所以cos 2()12x k ωϕ++=,即cos 2()21x k ωϕ+=-,要想方程所有正实根从小到大排列构成等差数列,则需要210k -=或1±,所以10,1,2k =.故答案为:10,,12(答案不唯一,填写其中一个即可).14.9113【分析】(1)由()f x 的图象过点()1,2得21a b +=,根据基本不等式“1”的妙用计算即可;(2)由()f x 的图象过点(),ln c ab c +得()22c ac b a c +=-,进而得出22c ac b a c+=-,利用换元法及基本不等式即可求得3ca b+的最大值,即可得出t 的最小值.【详解】(1)由()f x 的图象过点()1,2得,(1)122f a b =++=,即21a b +=,所以()12222559b a a b a b a b ⎛⎫++=++≥+ ⎪⎝⎭,当且仅当22b a a b =,即13a b ==时等号成立.由()3a b t c +≥恒成立得,3ct a b≥+,(2)因为()f x 的图象过点(),ln c ab c +,则()()22ln ln f c c a b c c ab c =+++=+,即()22c ac b a c +=-,当2a c =时,0c =不合题意舍,所以2a c ≠,即2a c ≠,则22c acb a c+=-,则由0b >得2a c >,所以222222233533512ac c c ac a ac c c a b a ac c a a a c c c --===+-+⎛⎫+-+ ⎪⎝⎭+-,设20am c-=>,所以()()222237332521351a m m c m m a a m m c c -==+++-++⎛⎫-+ ⎪⎝⎭1131337m m =≤++,当且仅当33m m=,即1m =,则3,4a c b c ==时,等号成立,故答案为:9;113.【点睛】方法点睛:第二空由()f x 的图象过点(),ln c ab c +得出22c acb a c+=-,代入消元得出关于,a c 的齐次式,换元后根据基本不等式计算可得.15.(1)证明见解析(2)30︒【分析】(1)取11B C 的中点D ,连接1,,A D CD DE ,先得出平面1//A DC 平面1AB E ,由面面平行证明线面平行即可;(2)建立空间直角坐标系,根据面面夹角的向量公式计算即可.【详解】(1)取11B C 的中点D ,连接1,,A D CD DE ,由直三棱柱111ABC A B C -得,1111,//B C BC B C BC =,1111,//AA BB AA BB =,因为E 是棱BC 的中点,点D 是11B C 的中点,所以1B D CE =,所以四边形1ECDB 为平行四边形,所以1//CD B E ,同理可得四边形1BEDB 为平行四边形,所以11,//,BB DE BB DE =所以11,//AA DE AA DE =,所以四边形1AEDA 为平行四边形,所以1//A D AE ,因为AE ⊂平面1AB E ,1A D ⊄平面1AB E ,所以1A D //平面1AB E ,同理可得//CD 平面1AB E ,又1A D CD D = ,1,A D CD ⊂平面1A DC ,所以平面1//A DC 平面1AB E ,又1AC ⊂平面1A DC ,所以1//A C 平面1AB E .(2)设122AB AC AA ===,以A 为原点,分别以1,,AB AC AA 所在直线为,,x y z 轴建立空间直角坐标系,如图所示,则()()()()110,0,0,0,0,1,2,0,1,1,1,0A A B E ,所以()()()()11111,1,0,2,0,1,2,0,0,1,1,1AE AB A B EA ====--,设平面1AEB 的一个法向量为()1111,,n x y z =,由11100AE n AB n ⎧⋅=⎪⎨⋅=⎪⎩ 得,1111020x y x z +=⎧⎨+=⎩,取11x =,的()11,1,2n =-- ,设平面11A EB 的一个法向量为()2222,,n x y z =,由112120A B n EA n ⎧⋅=⎪⎨⋅=⎪⎩ 得,2222200x x y z =⎧⎨--+=⎩,取21y =,的()20,1,1n = ,设平面1AEB 与平面11A EB 的夹角为θ,则1212cos n n n n θ⋅===由图可知二面角11A B E A --为锐角,则二面角11A B E A --的大小为30︒.16.(1)21n a n =+(2)28(1)41nn n n -++【分析】(1)根据12311S S S ++,,成等比数列求得1a ,即可求得{}n a 的通项公式.(2)根据{}n a 的通项公式求得n S ,分奇偶项分别求出n b 再求和,即可求得{}n b 的前4n 项和.【详解】(1)因为2213(1)(1)S S S =++,所以2111(22)(1)(37)a a a +=++,即11(1)(3)0a a +-=,解得11a =-或3,又因为0n a >,所以13a =,所以32(1)21n a n n =+-=+.(2)1()(2)2n n n a a S n n +==+,所以1111()22nS n n =-+,所以n 为奇数时,1341134111111111111(1()()2323524141n n b b b S S S n n --+++=+=-+-++--+ 11(1)241n =-+,n 为偶数时,424424(42)44(42)16n n n n b b S S n n n n n--+=-=-⨯-⨯+=-24416(12)8(1)n b b b n n n +++=-+++=-+ ,所以前4n 项和4112(1)8(1)8(1)24141n nT n n n n n n =--+=-+++.17.(1)2y x =(2)证明见详解.【分析】(1)设动点F 的坐标为(),x y ,直接利用题中的条件列式并化简,从而求出动点F 的轨迹方程;(2)要证A 为线段BM 的中点,只需证12A B x x x =+即可,设直线的方程为12x my =+,设点()11,M x y ,()22,N x y ,()1,A A x y ,()1,B B x y ,联立直线与曲线的方程,列出韦达定理,由直线OP ,ON 可求得点,A B ,计算120B A x x x +-=即可证.【详解】(1)设点(),F x y ,则(),1E x -,因为OF OE ⊥,所以0OF OE =⋅ ,所以20x y -=,即2x y =,所以动点F 的轨迹方程为:2y x =;(2)因为BM y ⊥轴,所以设()11,M x y ,()22,N x y ,()1,A A x y ,()1,B B x y ,若要证A 为线段BM 的中点,只需证12A B x x x =+即可,当直线MN 斜率不存在或斜率为0时,与抛物线只有一个交点,不满足题意,所以直线MN 斜率存在且不为0,12120x x y y ≠,设直线MN :12x my =+,0m ≠,由212x my y x⎧=+⎪⎨⎪=⎩得22210mx x -+=,442148m m ∆=-⨯⨯=-,由题意可知,直线MN 与抛物线C 有两个交点,所以0∆>,即480m ->,所以12m <,由根与系数的关系得,121x x m +=,1212x x m=,由题意得,直线OP 方程y x =,所以()11,A y y ,直线ON 方程22y y x x =,所以2112,x y B y y ⎛⎫⎪⎝⎭,所以22212111111111222222212B A x y x x x x x x x y x x x x y x x ⎛⎫⋅+-=+-=+-=+- ⎪⎝⎭()121211112122222112202x x x x x x x x x x x x x x m m +-⎛⎫=⋅=+-=-⨯= ⎪⎝⎭,所以A 为线段BM 的中点.18.(1)0.035a =;72.5(2)0.6(3)160【分析】(1)由频率分布直方图的概率和为1,列出方程,求得0.035a =,再利用百分位数的计算方法,即可求解;(2)设“抽到男学生”为事件A ,“评分80分以上”为事件B ,结合全概率公式,即可求解;(3)根据题意,利用方差的计算公式,求得245x y s s s =,得到160y x y x s s m n s s +=,令x y s t s =,得到160n my t +=,利用基本不等式求得nmy t+≥200n m =-,得出不等式160≥m 的范围,即可求解.【详解】(1)解:由频率分布直方图的性质,可得:(0.0020.0040.00140.00200.0025)101a +++++⨯=,解得0.035a =,设25%分位数为0x ,由分布直方图得0.020,040.140.2++=,所以0700.05100.2x -=,解得072.5x =.(2)解:设“抽到男学生”为事件A ,“评分80分以上”为事件B ,可得()0.8,(|)0.55,()0.2,(|)0.8P A P B A P A P B A ====,由全概率公式得()()(|)()(|)0.80.550.20.80.6P B P A P B A P A P B A =⋅+⋅=⨯+⨯=.(3)解:由x y =,可得mx n yz x m n+==+,所以22222111111[()()][()()]200200m n m ni i i i i j i j s x z y z x x y y =====-+-=-+-∑∑∑∑2214()2005x y x y ms ns s s =+=,所以22160x y x y ms ns s s +=,即160y xy xs s mn s s +=,令x y s t s =,则160nmy t+=,由于n my t +≥=n my t =时,等号成立,又因为200n m =-,可得160≥=220064000m m -+≥,解得40m ≤或160m ≥,因为1200n m ≤≤≤且200m n +=,所以160m ≥,所以实数m 的最大值为160.19.(1)答案见解析,证明见解析(2)(],1-∞(3)证明见解析【分析】(1)类比,写出平方关系,倍角关系和导数关系,并进行证明;(2)构造函数()()sh F x x kx =-,()0,x ∞∈+,求导,分1k ≤和1k >两种情况,结合基本不等式,隐零点,得到函数单调性,进而得到答案;(3)结合新定义将所证变为()()121112121e sin e sin e cos x x x x x x x x x +-+>-+-,设函数()=e sin x f x x -,即证()()()12121f x x f x x f x >+'+,先利用导数求得()=e cos x f x x -'在()0,∞+上单调递增,再设()()()()()111,0h x f x x f x xf x x =+-->',利用导数得其单调性及()0h x >,从而()()()111f x x f x xf x >+'+,得证.【详解】(1)平方关系:()()22chsh 1x x -=;倍角公式:()()()sh 22sh ch x x x =;导数:()()sh()ch()ch()sh()x x x x ''⎧=⎪⎨=⎪⎩.理由如下:平方关系,()()2222e e e e ch sh 22x x x x x x --⎛⎫⎛⎫+--=- ⎪ ⎪⎝⎭⎝⎭2222e e e e 12244x x x x --++=--=+;倍角公式:()()()()()22e e e e e e sh 22sh ch 22x x x x x x x x x ----+-===;导数:()()e e ee sh()ch 22x xxxx x --'--+===,()e e ch()sh 2x x x x -'-==;以上三个结论,证对一个即可.(2)构造函数()()sh F x x kx =-,()0,x ∞∈+,由(1)可知()()ch F x x k ='-,①当1k ≤时,由e e ch()12x xx -+=≥,又因为0x >,故e e x x -≠,等号不成立,所以()()ch 0F x x k '=->,故()F x 为严格增函数,此时()(0)0F x F >=,故对任意0x >,()sh x kx >恒成立,满足题意;②当1k >时,令()()(),0,G x F x x ∞∈'=+,则()()sh 0G x x ='>,可知()G x 是严格增函数,答案第15页,共15页由(0)10G k =-<与1(ln 2)04G k k=>可知,存在唯一0(0,ln 2)x k ∈,使得0()0G x =,故当0(0,)x x ∈时,0()()()0F x G x G x =<=',则()F x 在0(0,)x 上为严格减函数,故对任意0(0,)x x ∈,()()00F x F <=,即()sh x kx >,矛盾;综上所述,实数k 的取值范围为(],1-∞;(3)因为()()ch sh e xx x +=,所以原式变为()()21212121e 1e sin sin cos x x x x x x x x --⋅>+--,即证()()121112121e sin e sin e cos x x x x x x x x x +-+>-+-,设函数()=e sin x f x x -,即证()()()12121f x x f x x f x >+'+,()=e cos x f x x -',设()()=e cos x t x f x x =-',()e sin x t x x '=+,0x >时()0t x '>,()t x 在()0,∞+上单调递增,即()=e cos x f x x -'在()0,∞+上单调递增,设()()()()()111,0h x f x x f x xf x x =+-->',则()()()11h x f x x f x =+'-'',由于()=e cos x f x x -'在()0,∞+上单调递增,11x x x +>,所以()()11f x x f x +>'',即()0h x '>,故()h x 在()0,∞+上单调递增,又()00h =,所以0x >时,()0h x >,所以()()()1110f x x f x xf x +-->',即()()()111f x x f x xf x >+'+,因此()()()12121f x x f x x f x >+'+恒成立,所以原不等式成立,得证.【点睛】思路点睛:对新定义的题型要注意一下几点:(1)读懂定义所给的主要信息筛选出重要的关键点(2)利用好定义所给的表达式以及相关的条件(3)含有参数是要注意分类讨论的思想.。

安徽省“江淮十校”2025届高三第三次模拟考试数学试卷含解析

安徽省“江淮十校”2025届高三第三次模拟考试数学试卷含解析

安徽省“江淮十校”2025届高三第三次模拟考试数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若函数()2ln f x x x ax =-有两个极值点,则实数a 的取值范围是( )A .10,2⎛⎫ ⎪⎝⎭B .1,12⎛⎫ ⎪⎝⎭C .1,2D .()2,e2.若复数z 满足()1i z i +=(i 是虚数单位),则z 的虚部为( ) A .12B .12-C .12i D .12i -3.已知函数()(0x f x m m m =->,且1)m ≠的图象经过第一、二、四象限,则|(2)|a f =,384b f ⎛⎫= ⎪⎝⎭,|(0)|c f =的大小关系为( ) A .c b a << B .c a b << C .a b c <<D .b a c <<4.某几何体的三视图如图所示,则该几何体的体积是( )A .53π B .43π C .223π+D .243π+5.已知直线22+=mx ny ()0,0m n >>过圆()()22125x y -+-=的圆心,则11m n+的最小值为( ) A .1B .2C .3D .46.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,77.给出下列四个命题:①若“p 且q ”为假命题,则p ﹑q 均为假命题;②三角形的内角是第一象限角或第二象限角;③若命题0:p x R ∃∈,200x ≥,则命题:p x R ⌝∀∈,20x <;④设集合{}1A x x =>,{}2B x x =>,则“x A ∈”是“x B ∈”的必要条件;其中正确命题的个数是( ) A .1B .2C .3D .48.泰山有“五岳之首”“天下第一山”之称,登泰山的路线有四条:红门盘道徒步线路,桃花峪登山线路,天外村汽车登山线路,天烛峰登山线路.甲、乙、丙三人在聊起自己登泰山的线路时,发现三人走的线路均不同,且均没有走天外村汽车登山线路,三人向其他旅友进行如下陈述: 甲:我走红门盘道徒步线路,乙走桃花峪登山线路; 乙:甲走桃花峪登山线路,丙走红门盘道徒步线路; 丙:甲走天烛峰登山线路,乙走红门盘道徒步线路;事实上,甲、乙、丙三人的陈述都只对一半,根据以上信息,可判断下面说法正确的是( ) A .甲走桃花峪登山线路 B .乙走红门盘道徒步线路 C .丙走桃花峪登山线路D .甲走天烛峰登山线路9.若双曲线E :22221x y a b-=(0,0a b >>)的一个焦点为(3,0)F ,过F 点的直线l 与双曲线E 交于A 、B 两点,且AB 的中点为()3,6P --,则E 的方程为( )A .22154x y -=B .22145x y -=C .22163x y -=D .22136x y -=10.水平放置的ABC ,用斜二测画法作出的直观图是如图所示的A B C ''',其中2,O A O B ''''== 3O C ''=,则ABC 绕AB 所在直线旋转一周后形成的几何体的表面积为( )A .83πB .163πC .(833)π+D .(16312)π+11.已知全集,,则( )A .B .C .D .12.已知向量11,,2a b m ⎛⎫==⎪⎝⎭,若()()a b a b +⊥-,则实数m 的值为( ) A .12B .32C .12±D .32±二、填空题:本题共4小题,每小题5分,共20分。

河南省濮阳市2024届高三下学期数学模拟试题(三)

河南省濮阳市2024届高三下学期数学模拟试题(三)一、单选题1.已知复数z 满足()132z i i +=+,则复数z 的虚部为 A .12i -B .12iC .12D .12-2.抛物线24y x =的焦点到准线的距离为( ) A .2B .1C .14D .183.某圆锥的侧面展开图是面积为3π,圆心角为2π3的扇形,则该圆锥的轴截面的面积为( ) A.92B .C .D .24.已知向量2a =r ,b r 在a r方向上的投影向量为3a -r ,则a b ⋅=r r ( )A .12B .12-C .6D .6-5.某班派遣,,,,A B C D E 五位同学到甲、乙、丙三个街道打扫卫生.每个街道至少有一位同学去,至多有两位同学去,且,A B 两位同学去同一个街道,则不同的派遣方法有( ) A .18B .24C .36D .486.如图,将绘有函数()()πsin 0,0π3f x M x M ϕϕ⎛⎫=+><< ⎪⎝⎭部分图像的纸片沿x 轴折成直二面角,此时,A B ϕ=( )A .π6B .π3C .2π3D .5π67.若函数()221e e x xf x x ax a +=+-有三个不同的零点,则实数a 的取值范围是( )A .211,0e ⎛⎫-- ⎪⎝⎭B .310,e e ⎛⎫ ⎪-⎝⎭C .31,0e e ⎛⎫⎪-⎝⎭ D .210,1e ⎛⎫+ ⎪⎝⎭8.点M 是椭圆()222210+=>>x y a b a b上的点,以M 为圆心的圆与x 轴相切于椭圆的焦点F ,圆M 与y 轴相交于,P Q 两点,若PQM V 是锐角三角形,则椭圆离心率的取值范围是( )A .()2 B .⎫⎪⎪⎝⎭C .⎫⎪⎪⎝⎭D .⎝⎭二、多选题9.对于下列概率统计相关知识,说法正确的是( ) A .数据1,2,3,4,5,6,8,9,11的第75百分位数是6B .若事件,M N 的概率满足()()()()0,1,0,1P M P N ∈∈,则()()||1P N M P N M +=C .由两个分类变量,X Y 的成对样本数据计算得到211.612χ=,依据0.001α=的独立性检验()0.00110.828x =,可判断,X Y 独立D .若一组样本数据()(),1,2,,i i x y i n =⋅⋅⋅的对应样本点都在直线47y x =-+上,则这组样本数据的相关系数为1-10.如图,正方体1111ABCD A B C D -的棱长为4,点M 是其侧面11ADD A 上的一个动点(含边界),点P 是线段1CC 上的动点,则下列结论正确的是( )A .存在点,P M ,使得二面角--M DC P 大小为5π6B .存在点,P M ,使得平面11B D M 与平面PBD 平行C .当P 为棱1CC 的中点且PM =MD .当M 为1A D 的中点时,四棱锥M ABCD -外接球的表面积为32π311.已知()f x 是定义在R 上的不恒为零的函数,对于任意,x y ∈R 都满足()()()2f x f x y f y -=+-,且()1f x +为偶函数,则下列说法正确的是( )A .()02f =B .()f x 为奇函数C .()f x 是周期函数D .()24148n f n ==∑三、填空题12.若{}{}2|01|20x x x x x m -+>=∅I ≤≤,则实数m 的取值范围为.13.已知数列{}n a 的通项公式为{}12,n n n a n b -=+的通项公式为13n b n =-.记数列{}n n a b +的前n 项和为n S ,则4S =,n S 的最小值为.14.设00a b >>,,记M 为13b a a b+,,三个数中最大的数,则M 的最小值.四、解答题15.在ABC V 中,内角,,A B C 所对的边分别为,,a b c ,设,,a b c 满足条件222b c bc a +-=和12c b = (1)求角A 和tan B ; (2)求()cos 2A B +.16.如图,侧面11BCC B 水平放置的正三棱台11111,24ABC A B C AB A B -==,(1)求证:1AA ⊥平面11BCC B ;(2)求直线AB 和平面1ACB 所成角的正弦值.17.黎曼猜想是解析数论里的一个重要猜想,它被很多数学家视为是最重要的数学猜想之一.它与函数()1e 1s x x f x -=-(0,1,x s s >>为常数)密切相关,请解决下列问题:(1)当2s =时,求()f x 在点()()1,1f 处的切线方程; (2)当2s >时,证明()f x 有唯一极值点.18.已知双曲线()221222:10,0,,x y C a b F F a b-=>>分别是C 的左、右焦点.若C 的离心率2e =,且点()4,6在C 上. (1)求C 的方程;(2)若过点2F 的直线l 与C 的左、右两支分别交于,A B 两点,与抛物线216y x =交于,P Q 两点,试问是否存在常数λ,使得1AB PQλ-为定值?若存在,求出常数λ的值;若不存在,请说明理由.19.现有一种不断分裂的X 细胞,每个时间周期T 内分裂一次,一个X 细胞每次分裂能生成一个或两个新的X 细胞,每次分裂后原X 细胞消失.设每次分裂成一个新X 细胞的概率为p ,分裂成两个新X 细胞的概率为1p -;新细胞在下一个周期T 内可以继续分裂,每个细胞间相互独立.设有一个初始的X 细胞,在第一个周期T 中开始分裂,其中1,12p ⎛⎫∈ ⎪⎝⎭.(1)设2T 结束后,X 细胞的数量为ξ,求ξ的分布列和数学期望; (2)设()*N nT n ∈结束后,X 细胞数量为m 的概率为()m P n .(ⅰ)求()2P n ; (ⅱ)证明:()36481P n <.。

湖北省黄冈市高三数学模拟考试试题(三)

湖北省黄冈市高三数学模拟考试试题(三)2002.6说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =3sin(32π+x )的周期、振幅依次是 A.4π,3 B.4π,-3 C.π,3 D.π,-3 2.A ,B 是x 轴上两点,点P 的横坐标为2,且|PA |=|PB |,若直线PA 的方程为x -y +1=0,则直线PB 的方程为A.2x -y -1=0B.x +y -5=0C.2x +y -7=0D.2y -x -4=03.已知集合A ={1,2,3},B ={-1,0,1},满足条件f (3)=f (1)+f (2)的映射f :A →B 的个数是A.2B.4C.6D.7 4.若直线a ⊥b ,且a ∥平面α,则直线b 与平面α的位置关系是 A.b ⊂α B.b ∥αC.b ⊂α或b ∥αD.b 与α相交或b ∥α或b ⊂α都有可能5.函数y =|tg x |·cos x (0≤x <23π,且x ≠2π)的图象是6.(理)在极坐标系中,圆锥曲线ρsin 2θ=4cos θ绕极点逆时针旋转2π所得曲线的极坐标方程是A.ρcos 2θ=4sin θB.ρcos 2θ=-4sin θC.ρcos 2θ=8sin θD.ρsin 2θ=-4cos θ(文)直线x +7y =10把圆x 2+y 2=4分成两段弧,则这两段弧长之差的绝对值为A.πB.32π C. 2πD.2π 7.已知奇函数f (x ),g (x ),f (x )>0的解集为(a 2,b ),g (x )>0的解集为(2,22ba ),则f (x )g (x )>0的解集是A.(2,22ba ) B.(-b 2,-a 2) C.(a 2,),2()22a bb --⋃ D.(2,22ba )∪(-b 2,-a 2) 8.等比数列{a n }中,a 1+a 2+a 3=16,a 1+a 2+…+a 6=14,S n =a 1+a 2+…+a n ,则n n S ∞→lim =A.3128 B.9128C.128D.329.已知圆柱的上下两底面圆都在球面上,底面一条直径的两个端点间的球面距离是球大圆周长的41,圆柱的母线长为l ,则这个球的半径长为 A.22l B.l C.2 l D.2l10.已知双曲线192522=-y x 的左支上有一点M 到右焦点F 1的距离为18,N 是MF 1的中点,O 为坐标原点,则|ON |等于A.4B.2C.1D.32 11.函数f 1(x )=x x f x f x x f x +=+=-=-1)(,1,1)(,1432的图象分别是点集C 1,C 2,C 3,C 4,这些图象关于直线x =0的对称曲线分别是点集D 1,D 2,D 3,D 4,现给出下列四个命题:①D 1⊆D 2;②D 1∪D 3=D 2∪D 4;③D 4⊆D 3;④D 1∩D 3=D 2∩D 4.其中,正确命题的序号是A.①,③B.①,②C.③,④D.②,④ 12.(理)设n 满足C 0n +C 1n +2C 2n +…+n C nn <450的最大自然数,则n 等于 A.4 B.5 C.7 D.6(文)设S= C 0n +C 1n +2C 2n +…+n C nn ,则S 等于A.n ·2n -1B.n ·2n -1-1 C.n 2n -1+1 D.n 2n第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题4分,共16分,请将答案填写在题中横线上) 13.某邮局现只有邮票0.6元,0.8元,1.1元的三种面值邮票,现有邮资为7.50元的邮件一件,为使粘贴的邮票张数最少,且资费恰为7.50元,则至少要购买_______张邮票.14.抛物线的准线为y 轴,焦点运动的轨迹为y 2-4x 2+8y =0(y ≠0),则其顶点运动的轨迹方程为_______.15.关于复数z =cosπααα2,0(,2sin2∈+i ]有下列命题:①若z =z ,则α=2π;②将复数z 在复平面内对应的向量OP 逆时针旋转90°得到向量OQ ,则OQ 对应的复数是-si nπααα2,0(,2cos 2∈+i ];③复数z 在复平面内对应的轨迹是单位圆; ④复数z 2的辐角主值是α.其中,正确命题的序号是_______. (把你认为正确的命题的序号都填上).16.如图,在正方形ABCD —A 1B 1C 1D 1中,选出两条棱和两条面的对角线,使这四条线段所在的直线两两都是异面直线,如果我们选定一条面的对角线AB 1,那么另外三条线段可以是_______(只需写出一种情况即可).三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)已知函数f (x)=2a cos 2x +b sin x cos x ,且f (0)=2,f (2321)3+=π. (Ⅰ)求f (x )的最大值与最小值.(Ⅱ)若α-β≠k π,k ∈Z ,且f (α)=f (β),求tan(α+β)的值. 18.(本小题满分12分) 已知数列{a n }为等差数列,公差为d ,{b n }为等比数列,公式为q ,且d =q =2,b 3+1=a 10=5,设c n =a n b n .(Ⅰ)求数列{c n }的通项公式;(Ⅱ)设数列{c n }的前n 项和为S n ,求nnn S nb ∞→lim的值.19.(本小题满分12分)如图,已知多面体ABCDE 中,AB ⊥平面ACD ,AC =AD =CD =DE =2,AB =1,F 为CE 的中点.(Ⅰ)求证:BF ⊥平面CDE ; (Ⅱ)求多面体ABCDE 的体积;(Ⅲ)(理)求平面BCE 和平面ACD 所成的锐二面角的大小.20.(本小题满分12分)某商场以100元/件的价格购进一批羊毛衫,以高于进价的相同价格出售.销售有淡季与旺季之分.标价越高,购买人数越少.我们称刚好无人购买时的最低标价为羊毛衫的最高价格,市场调查发现:①购买人数是羊毛衫标价的一次函数; ②旺季的最高价格是淡季最高价格的23倍; ③旺季商场以140元/件价格销售时,商场能获取最大利润.问:在淡季销售时,商场要获取最大利润,羊毛衫的标价应定为多少? 21.(本小题满分12分)如图,A ,B 是两个定点,且|AB |=2,动点M 到A 点的距离是4,线段MB 的垂直平分线l 交MA 于点P ,直线k 垂直于直线AB ,且B 点到直线k 的距离为3.(Ⅰ)求证:点P 到点B 的距离与点P 到直线k 的距离之比为定值;(Ⅱ)(理)若P 点到A ,B 两点的距离之积为m ,当m 取最大值时,求P 点的坐标;(Ⅲ)若|PA |-|PB |=1,求cos APB 的值. 22.(本小题满分14分)定义在(-1,1)上的函数f (x )满足:(Ⅰ)对任意x ,y ∈(-1,1)都有f (x )+f (y)=f (xyyx ++1);(Ⅱ)当x ∈(-1,0)时,有f (x )>0. (Ⅰ)判定f (x )在(-1,1)上的奇偶性,并说明理由. (Ⅱ)判定f (x )在(-1,0)上的单调性,并给出证明.(Ⅲ)(理)求证:).)(21()131()111()51(2N n f n n f f f ∈>+++++(文)求证:).)(21()11()131(2N n n f n f n n f ∈+-+=++湖北省黄冈市高三数学模拟考试试题(三)答案一、1.A 2.B 3.D 4.D 5.C 6.(理)A (文)B 7.C 8.B 9.A 10.A 11.D 12.C二、13.8 14.y 2-16x 2+8y =0(y ≠0) 15.①②16.BC 1,CD ,A 1D 1或CC 1,BD ,A 1D 1或BC ,C 1D 1,A 1D 或BC ,DD 1,A 1C 1(任选填一种) 三、17.解:(Ⅰ)由f (0)=2a =2,∴a =1,f (,23214321)3+=+=b a π∴b =2 ∴f (x )=2cos 2x +2sin x cos x =sin2x +cos2x +1=1)42sin(2++πx∴f (x )最大值为2+1,最小值为1-2.6分(Ⅱ)若f (α)=f (β),则sin(2α+4π)=sin(2β+4π), ∴2α+4π=2k π+2β+4π或2α+4π=2k π+π-(2β+4π),即α-β=k π(舍去)或α+β=k π+4π,k ∈Z ,∴tan(α+β)=tan(k π+4π)=1. 12分 18.解:(Ⅰ)由已知,有⎩⎨⎧=⨯+=+⋅.592,512121a b 解得b 1=1,a 1=-13. 2分从而a n =-13+(n -1)·2=2n -15,b n =1×2n -1=2n -1, c n =a n b n =(2n -15)2n -1 5分(Ⅱ)∵S n =a 1b 1+a 2b 2+…+a n b n , ①∴aS n =a 1b 2+a 2b 3+…+a n -1b n +a n b n +1. ②7分①-②得(1-q )S n =a 1b 1+d (b 2+b 3+…+b n )-a n b n +1=a 1b 1+d ·qq b n ---1)1(12-a n b n +1=-13+2·21)21(21---n -(2n -15)·2n =-[(2n -17)·2n +17],∴S n =(2n -17)·2n+17.10分∴)12.(412172)172(1lim172)172(2lim lim 11分=⋅+⋅-=+⋅-⋅=∴-∞→-∞→∞→n n n n n nn n n n n n S nb 19.解:(Ⅰ)取CD 中点G ,连AG ,FG ,则有FG AB DE 21.∴AG BF ,又△ACD 为正三角形,∴AG ⊥CD ,又DE ⊥平面ACD , ∴FG ⊥平面ACD .∴FG ⊥AG .∴AG ⊥平面CDE ∴BF ⊥平面CED .4分 (Ⅱ)V ABCDE =V B —ACD +V B —CDE =.32233233222131243312=⋅⋅+=⋅⋅⋅⋅+⋅⋅⋅BF AB (Ⅲ)由(1)知AB 21DE,延长DA ,EB 交于P ,连P C ,则可证得A ,B 分别为PD ,PE 中点,∴PC ∥BF ∥AG ,∴PC ⊥平面CDE ,∴∠DCE 为平面BCE 和平面ACD 所成二面角的平面角,又∠DCE =45°,即所成锐二面角为45°.12分20.解:设羊毛衫出售价格为x 元/件,购买人数为y 人,最高价格为x 0,则存在 a ,b 使y =ax +b .由条件知:a <0且0=ax 0+b∴x 0=-ab.因此y =a (x -x 0)=-a (x 0-x ),商场利润s =y (x -100)=-a (x 0-x )(x -100)≤-a (2020)2100()2100+-=++-x a x x x∥ = ∥ = ∥ = ∥ =当且仅当x 0-x =x -100,即x =50+2x 时“=”成立. 6分 因此商场定价x =50+2x 时能获最大利润,设旺、淡季的最高价格分别为a ,b .淡季能获最大利润的价格为c ,则140=50+2a,a =180, 9分 ∴b =32a =120.∴c=50+2b=110(元/件)12分 21.(Ⅰ)证明:以直线AB 为x 轴,AB 的中点为原点建立直角坐标系,则点A ,B 的坐标分别为(-1,0),(1,0).∵l 为MB 的垂直平分线,∴|PM |=|PB |,|PA |+|PB |=|PA |+|PM |=|MA |=4.∴P 点的轨迹是以A ,B 为两个焦点,长轴长为4的椭圆,其方程为.13422=+y x 根据椭圆的定义可知,点P 到点B 的距离与点P 到直线k :x =4(恰为椭圆的右准线)的距离之比为离心率e =21.4分 (Ⅱ)解:m =|PA |·|PB |≤(2)2PBPA +=4,当且仅当|PA |=|PB |时,m 最大,这时P 点的坐标为(0,3)或(0,-3).8分(Ⅲ)解:由|PA |-|PB |=1及|PA |+|PB |=4,得 |PA |=25,|PB |=23. 又|AB |=2,所以△APB 为直角三角形,∠ABP =90°.故cos APB =53=PAPB . 22.解:(Ⅰ)x ,y ∈(-1,1).f (x )+f (y )=f (xyyx ++1),令x =y =0,得f (0)=0.令y =-x ,得f (x )+f (-x )=f (0)=0, ∴f (-x )=-f (x )∴f (x )在(-1,1)上是奇函数.4分 (Ⅱ)设-1<x 1<x 2<0,则f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (21211x x x x --),∵x 1-x 2<0,1-x 1x 2>0, ∴-1<21211x x x x --<0.x ∈(-1,0)时f (x )>0∴f (x 1)-f (x 2)>0,从而f (x )在(-1,0)上是单调减函数. 8分(Ⅲ)(理)∵f (1312++n n )。

_数学丨2023届高考全国甲卷乙卷全真模拟(三)数学试卷及答案

2023年高考数学全真模拟卷三(全国卷)理科数学(考试时间:120分钟;试卷满分:150分)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求)1.已知集合{}31A x x =-<,{B y y ==,则A B = ()A .∅B .[)4,+∞C .()2,+∞D .[)0,22.某班40人一次外语测试的成绩如下表:分数727375767880838791人数1234108642其中中位数为()A .78B .80C .79D .78和893.若复数z 满足()()1i i 4z -+=,其中i 为虚数单位,则z 的虚部为()A .2B .2-C .1D .1-4.双曲线22221(0,0)x y a b a b -=>>,焦点到渐近线的距离为1,则双曲线方程为()A .2214y x -=B .2214x y -=C .22123x y -=D .22132x y -=5.“天圆地方”观反映了中国古代科学对宇宙的认识,后来发展成为中国传统文化的重要思想.中国古人将琮、璧、圭、璋、璜、琥六种玉制礼器谓之“六瑞”,玉琮内圆外方,表示天和地,中间的穿孔表示天地之间的沟通,可以说是中国古代世界观很好的象征物.下面是一玉琮图及其三视图,设规格如图所示(单位:cm ),则三视图中A ,B 两点在实物中对应的两点在实物玉璧上的最小距离约为()(3π≈ 1.4≈)A .8.4B .9.8C .10.4D .11.26.已知定义在R 上的函数()21x mf x -=-(m 为实数)是偶函数,记0.5log 3a =,()2log 5b f =,()c f m =,则a 、b 、c 的大小关系为()A .a b c<<B .a c b<<C .c<a<bD .c b a<<7.若某一几何体的三视图如图所示,则该几何体是()A .三棱柱B .四棱柱C .五棱柱D .六棱柱8.已知,a b ∈R ,则“1ab ≥”是“222a b +≥”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件9.已知△ABC 满足22AB BA CA =⋅,则△ABC 的形状为()A .直角三角形B .等边三角形C .等腰直角三角形D .等腰三角形10.在新型冠状病毒肺炎疫情联防联控期间,社区有5名医务人员到某学校的高一、高二、高三3个年级协助防控和宣传工作.若每个年级至少分配1名医务人员,则不同的分配方法有()A .25种B .50种C .300种D .150种11.已知函数()2tan sin tan 1xf x x x =++,则下列结论正确的是()A .()f x 在区间ππ,33⎛⎫- ⎪⎝⎭上单调递减B .()f x 在区间π0,2⎛⎫ ⎪⎝⎭上有极小值C .设()()2g x f x =-在区间ππ,22⎛⎫- ⎪⎝⎭上的最大值为M ,最小值为m ,则4M m +=D .()f x 在区间ππ,22⎛⎫- ⎪⎝⎭内有且只有一个零点12.已知函数()f x 的定义域为R ,且满足()()110f x f x -+-=,()()8f x f x +=,()11f =,()31f =-,()()21,021,24x a x f x x b x ⎧-++<≤⎪=⎨+-<≤⎪⎩,给出下列结论:①1a =-,3b =-;②()20231f =;③当[]4,6x ∈-时,()0f x <的解集为()()2,02,4- ;④若函数()f x 的图象与直线y mx m =-在y 轴右侧有3个交点,则实数m 的取值范围是111,16264⎛⎫⎛⎫--⋂- ⎪ ⎪⎝⎭⎝⎭.其中正确结论的个数为()A .4B .3C .2D .1第II 卷(非选择题)二、填空题(本题共4小题,每小题5分,共20分)13.函数()12f x x x=+在1x =处切线的倾斜角为_______.14.已知平面向量(2,)a x =-,b = ,且()a b b -⊥,实数x 的值为_____.15.设1F 、2F 分别为椭圆()222210x y a b a b+=>>的左右焦点,与直线y b =相切的圆2F 交椭圆于点E ,且E 是直线1EF 与圆2F 相切的切点,则椭圆焦距与长轴长之比为________.16.已知函数()ln f x ax x x =-与函数()e 1xg x =-的图象上恰有两对关于x 轴对称的点,则实数a 的取值范围为__________.三、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答)(一)必考题:共60分17.已知公差不为0的等差数列{}n a 的前n 项和为n S ,2S 、4S 、55S +成等差数列,且2a 、7a 、22a 成等比数列.(1)求{}n a 的通项公式;(2)若11n n n b a a +=,数列{}n b 的前n 项和为n T ,证明:16n T <.18.为促进新能源汽车的推广,某市逐渐加大充电基础设施的建设,该市统计了近五年新能源汽车充电站的数量(单位:个),得到如下表格:年份编号x 12345年份20162017201820192020新能源汽车充电站数量y /个37104147196226(1)已知可用线性回归模型拟合y 与x 的关系,请用相关系数加以说明;(2)求y 关于x 的线性回归方程,并预测2024年该市新能源汽车充电站的数量.参考数据:51710i i y ==∑,512600i i i x y ==∑,()521149.89i i yy =-=∑ 3.16≈.参考公式:相关系数()()niix x yyr --=∑回归方程ˆˆˆybx a =+中斜率和截距的最小二乘估计公式分别为;()()()121ˆniii nii x x y y b x x ==--=-∑∑,ˆˆay bx =-.19.如图,在四棱锥P -ABCD 中,AB CD ∥,AB ⊥BC ,122BC CD PA PD AB =====,PC =E 为AB 的中点.(1)证明:BD ⊥平面APD ;(2)求平面APD 和平面CEP 的夹角的余弦值.20.已知抛物线()2:20C x pyp =>的焦点为F ,准线为l ,点P 是直线1:2l y x =-上一动点,直线l 与直线1l 交于点Q ,QF =(1)求抛物线C 的方程;(2)过点P 作抛物线C 的两条切线,PA PB ,切点为,A B ,且95FA FB -≤⋅≤,求PAB 面积的取值范围.21.已知01a <<,函数()1x f x x a -=+,()1log a g x x x =++.(1)若()e e g =,求函数()f x 的极小值;(2)若函数()()y f x g x =-存在唯一的零点,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,直线l 的参数方程为cos sin x t y t αα⎧=⎪⎨=⎪⎩(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立坐标系,曲线C 的极坐标方程为2853cos 2ρθ=-,直线l 与曲线C 相交于A ,B 两点,)M .(1)求曲线C 的直角坐标方程;(2)若2AM MB =,求直线l 的斜率.[选修4-5:不等式选讲]23.已知:()1f x x x m =+--,0m >.(1)若2m =,求不等式()2f x >的解集;(2)()()g x f x x m =--,若()g x 的图象与x 轴围成的三角形面积不大于54,求m 的取值范围.2023年高考数学全真模拟卷三(全国卷)理科数学(考试时间:120分钟;试卷满分:150分)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求)1.已知集合{}31A x x =-<,{B y y ==,则A B = ()A .∅B .[)4,+∞C .()2,+∞D .[)0,2【答案】C【分析】根据一元一次不等式可解得集合A ,再根据函数值域求法可求得集合B ,由交集运算即可得出结果.【详解】由题意可得{}2A x x =>,由函数值域可得{}0B y y =≥,所以{}2A B x x ⋂=>.故选:C 2.某班40人一次外语测试的成绩如下表:分数727375767880838791人数1234108642其中中位数为()A .78B .80C .79D .78和89【答案】C【分析】根据中位数的概念即可求得.【详解】解:由题意得:所有成绩从小到大排列,第二十位是78,第二十一位是80,则中位数为7880792+=.故选:C 3.若复数z 满足()()1i i 4z -+=,其中i 为虚数单位,则z 的虚部为()A .2B .2-C .1D .1-【答案】C【分析】根据复数的除法运算与减法运算得2i z =+,进而根据复数的概念求解即可.【详解】解:由题意可知()()()41i 4i i 2i 1i 1i 1i z +=-=-=+--+,所以,z 的虚部为1.故选:C.4.双曲线22221(0,0)x y a b a b -=>>,焦点到渐近线的距离为1,则双曲线方程为()A .2214y x -=B .2214x y -=C .22123x y -=D .22132x y -=【答案】B【分析】由离心率可得12b a =,从而可得渐近线方程,根据焦点到渐近线的距离为1可得c ,从而可求a ,故可得双曲线的方程.【详解】由题可知c a =,222514b e a =+=,得12b a =,则渐近线方程为20x y ±=,焦点到渐近线的距离为1,1=,可解得c =,所以2a =,由222c a b =+得1b =.所以双曲线方程为2214x y -=.故选:B.5.“天圆地方”观反映了中国古代科学对宇宙的认识,后来发展成为中国传统文化的重要思想.中国古人将琮、璧、圭、璋、璜、琥六种玉制礼器谓之“六瑞”,玉琮内圆外方,表示天和地,中间的穿孔表示天地之间的沟通,可以说是中国古代世界观很好的象征物.下面是一玉琮图及其三视图,设规格如图所示(单位:cm ),则三视图中A ,B 两点在实物中对应的两点在实物玉璧上的最小距离约为()(3π≈ 1.4≈)A .8.4B .9.8C .10.4D .11.2【答案】A【分析】玉琮的中空部分看成一圆柱,A ,B 两点可看成是圆柱轴截面所对应矩形的对角线的端点,将圆柱侧面展开,线段AB 的长就是沿该圆柱表面由A 到B 的最短距离.【详解】本题考查传统文化与圆柱的侧面展开图.由题意,将玉琮的中空部分看成一圆柱,A ,B 两点可看成是圆柱轴截面所对应矩形的对角线的端点,现沿该圆柱表面由A到B ,如图,将圆柱侧面展开,可知()min 8.4AB =≈.故选:A .6.已知定义在R 上的函数()21x mf x -=-(m 为实数)是偶函数,记0.5log 3a =,()2log 5b f =,()c f m =,则a 、b 、c 的大小关系为()A .a b c <<B .a c b<<C .c<a<bD .c b a<<【答案】B【分析】由偶函数的性质可得m 的值,即可得函数()f x 的解析式,分析函数单调性,结合对数的运算性质比较大小.【详解】()21x mf x -=-(m 为实数)是R 上的偶函数,∴()()f x f x -=,即2121x m x m ----=-,∴--=-x m x m ,即()()22x m x m --=-,∴0mx =,则0m =,此时()21xf x =-,0.5log 30a =<,()2log 540b f ==>,()(0)0c f m f ===,则a c b <<.故选:B7.若某一几何体的三视图如图所示,则该几何体是()A .三棱柱B .四棱柱C .五棱柱D .六棱柱【答案】C【分析】根据三视图还原出立体图形即可得到答案.【详解】根据其三视图还原出其立体图形如下图所示,易得其为五棱柱,故选:C.8.已知,a b ∈R ,则“1ab ≥”是“222a b +≥”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【分析】根据充分条件、必要条件及不等式的性质可得解.【详解】由22||12||||2ab a b a b ≥⇒+≥≥,而222a b +≥不一定能得到1ab ≥,例如,0,2a b ==,所以“1ab ≥”是“222a b +≥”的充分而不必要条件.故选:A 9.已知△ABC 满足22AB BA CA =⋅,则△ABC 的形状为()A .直角三角形B .等边三角形C .等腰直角三角形D .等腰三角形【答案】D【分析】根据已知得到22cos c bc A =,利用正弦定理可求得sin 2sin cos =C B A ,结合三角形内角和为π以及两角和的正弦公式可求得in 0()s A B -=,即可确定三角形形状.【详解】解:根据22AB BA CA =⋅得到:22cos c bc A =,由正弦定理2sin sin b cR B C==,可得2sin 2sin sin cos C B C A =,又C 为三角形的内角,得到sin 0C ≠,可得sin 2sin cos =C B A ,又[]sin sin ()sin()C A B A B π=-+=+,∴sin()sin cos cos sin 2sin cos A B A B A B B A +=+=,即sin cos cos sin 0A B A B -=,∴in 0()s A B -=,且A 和B 都为三角形的内角,∴A B =,则ABC 的形状为等腰三角形.故选:D .10.在新型冠状病毒肺炎疫情联防联控期间,社区有5名医务人员到某学校的高一、高二、高三3个年级协助防控和宣传工作.若每个年级至少分配1名医务人员,则不同的分配方法有()A .25种B .50种C .300种D .150种【答案】D【分析】首先分析将5个人分为三小组且每小组至少有一人,则可能分法有:(2,2,1),(3,1,1)两种情况,每种情况利用分步计数原理计算情况数,最后相加即可.【详解】当5个人分为2,2,1三小组,分别来自3个年级,共有2213531322C C C A 90A ⋅=种;②当5个人分为3,1,1三小组时,分别来自3个年级,共有3113521322C C C A 60A ⋅=种.综上,选法共有9060150+=.故选:D.11.已知函数()2tan sin tan 1xf x x x =++,则下列结论正确的是()A .()f x 在区间ππ,33⎛⎫- ⎪⎝⎭上单调递减B .()f x 在区间π0,2⎛⎫ ⎪⎝⎭上有极小值C .设()()2g x f x =-在区间ππ,22⎛⎫- ⎪⎝⎭上的最大值为M ,最小值为m ,则4M m +=D .()f x 在区间ππ,22⎛⎫- ⎪⎝⎭内有且只有一个零点【答案】D【分析】由商数关系化简函数,结合导数法可得函数性质及图象,即可逐个判断.【详解】因为()22sin tan cos sin sin tan 1sin 1cos xx x f x x x x x x =+=++⎛⎫+ ⎪⎝⎭πsin sin cos π,2x x x x k k ⎛⎫=+≠+∈ ⎪⎝⎭Z ,所以()()()22cos cos 12cos 1cos 1f x x x x x '=+-=-⋅+.当ππ,22x ⎛⎫∈- ⎪⎝⎭时,令()0f x '=,解得π3x =±,则当x 变化时,()f x ',()f x 的变化情况如下表所示.x ππ,23⎛⎫-- ⎪⎝⎭π3-ππ,33⎛⎫- ⎪⎝⎭π3ππ,32⎛⎫ ⎪⎝⎭()f x '-0+0-所以()f x 在区间ππ,22⎛⎫- ⎪⎝⎭上的图象如图所示.对A ,()f x 在区间ππ,33⎛⎫- ⎪⎝⎭上单调递增,A 错;对B ,()f x 在区间π0,2⎛⎫ ⎪⎝⎭上有极大值,无极小值,B 错;对C ,()()2g x f x =-在区间ππ,22⎛⎫- ⎪⎝⎭上的最大值为24M =-,最小值为24m =--,4M m +=-,C 错;对D ,()f x 在区间ππ,22⎛⎫- ⎪⎝⎭内有且只有一个零点,D 对.故选:D.12.已知函数()f x 的定义域为R ,且满足()()110f x f x -+-=,()()8f x f x +=,()11f =,()31f =-,()()21,021,24x a x f x x b x ⎧-++<≤⎪=⎨+-<≤⎪⎩,给出下列结论:①1a =-,3b =-;②()20231f =;③当[]4,6x ∈-时,()0f x <的解集为()()2,02,4- ;④若函数()f x 的图象与直线y mx m =-在y 轴右侧有3个交点,则实数m 的取值范围是111,16264⎛⎫⎛⎫--⋂- ⎪ ⎪⎝⎭⎝⎭.其中正确结论的个数为()A .4B .3C .2D .1【答案】C【分析】由()11f =,()31f =-解出,a b 的值可判断①;由周期和奇偶函数的性质计算()20231f =-可判断②;作出函数()f x 在[]0,4上的图象,根据图象可判断③;讨论当0m >和0m <,方程()mx m f x -=的解的个数可判断④.【详解】因为()()110f x f x -+-=,所以()()f x f x -=-,所以函数()f x 为奇函数,()00f =.因为()()8f x f x +=,所以()f x 的周期为8.又()()21111f a =-++=,所以10a +=,所以1a =-,()3311f b =+-=-,所以3b =-,故①正确.因为,()()()()202325381111f f f f =⨯-=-=-=-,故②错误.易知()()211,0231,24x x f x x x ⎧--+<≤⎪=⎨--<≤⎪⎩,作出函数()f x 在[]0,4上的图象,根据函数()f x 为奇函数,及其周期为8,得到函数()f x 在R 上的图象,如图所示,由()f x 的图象知,当[]4,6x ∈-时,()0f x <的解集为()()2,02,4- ,故③正确.由题意,知直线()1y mx m m x =-=-恒过点()1,0,与函数()f x 的图象在y 轴右侧有3个交点根据图象可知当0m >时,应有51m m ⨯-<,即14m <,且同时满足()mx m f x -=,[]8,10x ∈无解,即当[]8,10x ∈时,()()()108f x x x =--,()()108x x mx m --=-无解,所以Δ0<,解得1616m -<<+所以1164m -<<.当0m <时,应有31m m ⨯->-,即12m >-,且同时满足()mx m f x -=,[]6,8x ∈无解,即当[]6,8x ∈时,()()()68f x x x =--,()()58x x mx m --=-无解,所以Δ0<,解得1212m --<<-+1122m -<<-+综上,1164m -<或1122m -<<-+.故选:C.第II 卷(非选择题)二、填空题(本题共4小题,每小题5分,共20分)13.函数()12f x x x=+在1x =处切线的倾斜角为_______.【答案】45【分析】求导,求出斜率,进而可得倾斜角.【详解】()212f x x '=-+,则()11211f '=-+=,即函数()12f x x x=+在1x =处切线的斜率为1,则倾斜角为45 故答案为:45 14.已知平面向量(2,)a x =-,b = ,且()a b b -⊥,实数x 的值为_____.【答案】【分析】表示出(3,a b x -=- ,其与b =数量积为0,可算得出x .【详解】解:因为(2,)a x =-,b = ,所以(3,a b x -=-又()a b b -⊥,则()30a b b x -⋅=-= 故x =故答案为:15.设1F 、2F 分别为椭圆()222210x y a b a b+=>>的左右焦点,与直线y b =相切的圆2F 交椭圆于点E ,且E 是直线1EF 与圆2F 相切的切点,则椭圆焦距与长轴长之比为________.【答案】3【分析】根据题意可得12EF EF ⊥,利用椭圆性质可得()()22222a b b c -+=,结合222a b c =+,即可求得22c a .【详解】如图所示,连接2EF ,易得12EF EF ⊥,圆2F 的半径r b =,所以2EF b =,而122EF EF a +=,所以12EF a b =-,122F F c =,所以()()22222a b b c -+=,且有222a b c =+,化简可得23a b =,所以()22249a a c =-,所以2259a c =,可得22c a =.故答案为:16.已知函数()ln f x ax x x =-与函数()e 1xg x =-的图象上恰有两对关于x 轴对称的点,则实数a 的取值范围为__________.【答案】(),1e -∞-【分析】图象恰有两对关于x 轴对称的点,即0x ∃>,使得()()f x g x -=,即ln e 1xax x x -+=-有两解,对等式全分离,构造()ln e 1x x x h x x-+=,求导求单调性,求出值域,对图象进行判断,即可得出a 的取值范围.【详解】因为函数()f x 与()g x 的图象上恰有两对关于x 轴对称的点,所以0x >时()()f x g x -=有两解,即ln e 1x ax x x -+=-有两解,所以ln e 1x x x a x-+=有两解,令()ln e 1x x x h x x -+=,则()()()2e 11x x h x x --'=,所以当()0,1x ∈时,()0h x '>,函数()h x 单调递增;当()1,x ∈+∞时,()0h x '<,函数()h x 单调递减,所以()h x 在1x =处取得极大值,()11e h =-,且()0,1x ∈时,()h x 的值域为(),1e -∞-;()1,x ∈+∞时,()h x 的值域为(),1e -∞-,因此ln e 1x x x a x-+=有两解时,实数a 的取值范围为(),1e -∞-.故答案为:(),1e -∞-三、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答)(一)必考题:共60分17.已知公差不为0的等差数列{}n a 的前n 项和为n S ,2S 、4S 、55S +成等差数列,且2a 、7a 、22a 成等比数列.(1)求{}n a 的通项公式;(2)若11n n n b a a +=,数列{}n b 的前n 项和为n T ,证明:16n T <.【答案】(1)21n a n =+(2)证明见解析【分析】(1)公式法列方程组解决即可;(2)运用裂项相消解决即可.【详解】(1)由题知,设{}n a 的公差为d ,由题意得42527222250S S S a a a d =++⎧⎪=⎨⎪≠⎩,即11121112(46)(2)(510)5(6)()(21)0a d a d a d a d a d a d d +=++++⎧⎪+=++⎨⎪≠⎩,解得132a d =⎧⎨=⎩,所以1(1)3(1)221n a a n d n n =+-=+-⨯=+,所以{}n a 的通项公式为21n a n =+.(2)证明:由(1)得21n a n =+,所以111111(21)(23)22123n n n b a a n n n n +⎛⎫===- ⎪++++⎝⎭,所以1111111111123557212323236n T n n n ⎛⎫⎛⎫=-+-+⋅⋅⋅+-=-<⎪ ⎪+++⎝⎭⎝⎭.18.为促进新能源汽车的推广,某市逐渐加大充电基础设施的建设,该市统计了近五年新能源汽车充电站的数量(单位:个),得到如下表格:年份编号x 12345年份20162017201820192020新能源汽车充电站数量y /个37104147196226(1)已知可用线性回归模型拟合y 与x 的关系,请用相关系数加以说明;(2)求y 关于x 的线性回归方程,并预测2024年该市新能源汽车充电站的数量.参考数据:51710i i y ==∑,512600i i i x y ==∑,()521149.89i iy y =-=∑ 3.16≈.参考公式:相关系数()()niix x yyr --=∑回归方程ˆˆˆybx a =+中斜率和截距的最小二乘估计公式分别为;()()()121ˆniii nii x x y y b x x ==--=-∑∑,ˆˆay bx =-.【答案】(1)答案见解析;(2)ˆ471yx =+;预测2024年该市新能源汽车充电站的数量为424个.【分析】(1)利用相关系数的计算公式即可得解;(2)先利用已知数据和公式得到y 关于x 的线性回归方程,再将2024年所对应的年份编号代入线性回归方程即可得解.【详解】解:(1)由已知数据得()11234535x =⨯++++=,17101425y =⨯=,()()()2222152101210i i x x=-=-+-+++=∑,()()55115260053142470iii i i i x x yy x y x y ==--=-=-⨯⨯=∑∑,所以4700.993.16149.89r ≈≈⨯.因为y 与x 的相关系数近似为0.9,接近1,说明y 与x 的线性相关程度相当高,从而可以用线性回归模型拟合y 与x 的关系.(2)由(1)得()()()51215470ˆ4710iii ii x x y y bx x ==--===-∑∑,ˆˆ1424731ay bx =-=-⨯=,放所求线性回归方程为ˆ471yx =+.将2024年对应的年份编号9x =代人回归方程得ˆ4791424y=⨯+=,故预测2024年该市新能源汽车充电站的数量为424个.19.如图,在四棱锥P -ABCD 中,AB CD ∥,AB ⊥BC ,122BC CD PA PD AB =====,PC =E 为AB的中点.(1)证明:BD ⊥平面APD ;(2)求平面APD 和平面CEP 的夹角的余弦值.【答案】(1)证明见解析(2)22【分析】(1)已知条件求出AB ,BD ,AD 的长度,勾股定理证得BD AD ⊥,取AD 的中点O ,连接OP ,OC ,有PO AD ⊥,得PO ,勾股定理证得PO OC ⊥,从而PO ⊥平面ABCD ,有BD OP ⊥,所以BD ⊥平面APD .(2)建立空间直角坐标系,求相关点的坐标,求相关向量的坐标,求平面APD 和平面CEP 的一个法向量,利用向量夹角公式求平面APD 和平面CEP 的夹角的余弦值【详解】(1)在直角梯形ABCD 中,易得AB =4,BD =AD =,∴222AD BD AB +=,∴BD ⊥AD .取AD 的中点O ,连接OP ,OC ,易得PO ⊥AD ,PO =,如图所示,在△CDO 中,易得OC ==,又PC =,∴222OC PO PC +=,∴PO ⊥OC ,又PO ⊥AD ,AD OC O = ,,AD OC ⊂平面ABCD ,∴PO ⊥平面ABCD ,BD ⊂平面ABCD ,∴BD ⊥OP ,又BD ⊥AD ,AD OP O ⋂=,,AD OP ⊂平面APD ,∴BD ⊥平面APD .(2)如图,以D 为坐标原点,DA ,DB 所在直线分别为x ,y 轴,过点D 且与PO 平行的直线为z 轴建立空间直角坐标系,则D (0,0,0),()A ,()0,B ,)E,P,()C ,∴(CP =,()CE = ,∵BD ⊥平面APD ,∴平面APD 的一个法向量为()10,1,0n =.设平面CEP 的法向量为()2,,n x y z =u u r,则2200n CP n CE ⎧⋅=⎪⎨⋅=⎪⎩,得00⎧+=⎪⎨=⎪⎩,取y =1,得()20,1,1n = ,∴122cos ,2n n =,∴平面APD 和平面CEP 的夹角的余弦值为22.20.已知抛物线()2:20C x py p =>的焦点为F ,准线为l ,点P 是直线1:2l y x =-上一动点,直线l 与直线1l 交于点Q,QF =(1)求抛物线C 的方程;(2)过点P 作抛物线C 的两条切线,PA PB ,切点为,A B ,且95FA FB -≤⋅≤,求PAB 面积的取值范围.【答案】(1)24x y=(2)⎡⎣【分析】(1)计算2,22p p Q ⎛⎫-- ⎪⎝⎭,0,2p F⎛⎫⎪⎝⎭,根据距离公式计算得到2p =,得到抛物线方程.(2)求导得到导函数,计算切线方程得到AB 的直线方程为()002y y xx +=,联立方程,根据韦达定理得到根与系数的关系,根据向量运算得到034y -≤≤,再计算PAB S =△.【详解】(1)直线1:2l y x =-,当2p y =-时,22p x =-,即2,22p p Q ⎛⎫-- ⎪⎝⎭,0,2p F⎛⎫⎪⎝⎭,则QF ==,解得2p =或25p =-(舍去),故抛物线C 的方程为24x y =.(2)设()11,A x y ,()22,B x y ,()00,P x y ,24x y =,2x y '=,PA 的直线方程为:()1112x y x x y =-+,整理得到()112y y xx +=,同理可得:PB 方程为()222y y xx +=,故()()010*******y y x x y y x x ⎧+=⎪⎨+=⎪⎩,故AB 的直线方程为()002y y xx +=,()00224y y xx x y ⎧+=⎨=⎩,整理得到200240x x x y -+=,12012024 x x x x x y +=⎧⎨=⎩,()()()1122121212,1,11FA FB x y x y x x y y y y ⋅=-⋅-=+-++()02221212221212000216123164x x x x x x x x y x y y +-=+-+=-++=-,09235y -≤-≤,解得034y -≤≤,设P 到AB 的距离为d ,12PABS AB d =⋅=△,034y -≤≤,故[]2044,20y +∈,4,PAB S ⎡∈⎣△21.已知01a <<,函数()1x f x x a -=+,()1log a g x x x =++.(1)若()e e g =,求函数()f x 的极小值;(2)若函数()()y f x g x =-存在唯一的零点,求a 的取值范围.【答案】(1)2(2)1,1e ⎡⎫⎪⎢⎣⎭【分析】(1)由()e e g =可求出1ea =,则()1e xf x x -=+,然后对函数求导,由导数的正负可求出函数的单调区间,从而可求出函数的极小值;(2)令()1log 1x a F x ax -=--(0x >),则()111ln ln x F x xa a x a -⎛⎫'=- ⎪⎝⎭,令()11ln ln x x xaa a ϕ-=-,利用导数可求出其单调区间和最小值,然后分11ln 10ln a a a----≥和10ea <<讨论函数的零点即可.【详解】(1)由()1e e e 1log e e ea g a =⇒++=⇒=,所以()1e x f x x -=+,()11e xf x -'=-,令()01f x x '=⇒=,当1x <时,()0f x '<,当1x >时,()0f x ¢>,所以()f x 在(,1)-∞上递减,在(1,)+∞上递增,所以()f x 的极小值为()12f =;(2)()()1log 1x a f x g x a x --=--,令()1log 1x a F x a x -=--(0x >),()F x 存在唯—的零点,()11111ln ln ln ln x x F x a a xa a x a x a --⎛⎫'=-=- ⎪⎝⎭,令()11ln ln x x xaa a ϕ-=-,()()11ln ln x x a x a a ϕ-'=+,令()10ln x x aϕ'=⇒=-,当10ln x a<<-时,()0x ϕ'<;当1ln x a>-时,()0x ϕ'>,所以()x ϕ在10,ln a ⎛⎫- ⎪⎝⎭上递减,在1,ln a ⎛⎫-+∞ ⎪⎝⎭上递增,所以()11ln min 11ln ln ax a a a ϕϕ--⎛⎫=-=-- ⎪⎝⎭,①若11ln 10ln aa a----≥,即111ln ln ln ln a a a ⎛⎫⎛⎫--≤- ⎪ ⎪⎝⎭⎝⎭,令1ln t a-=,所以()111ln ln 10t t t t t ⎛⎫--≤⇒-+≥ ⎪⎝⎭,所以1t ≥,所以11ln a -≥,即11ea <时,()()min 00x F x ϕ'≥⇒≥,所以()F x 在()0,∞+上递增,注意到()10F =,所以()F x 存在唯一的零点,符合题意②当10e a <<时,()100ln aϕ=->,()min 0x ϕ<,()22213(ln )133ln ln ln a a a a a aϕ-=-=,令22()3(ln )1t a a a =-,10ea <<,则221()3[2(ln )2ln ]6ln (ln 1)t a a a a a a a a a'=+⋅⋅=+,因为10ea <<,所以ln 1a <-,所以()6ln (ln 1)0t a a a a '=+>,所以22()3(ln )1t a a a =-在10,e ⎛⎫⎪⎝⎭上单调递增,所以2221113()3(ln 110e e e e t a t ⎛⎫⎛⎫<=-=-< ⎪ ⎪⎝⎭⎝⎭,所以()22213(ln )133ln 0ln ln a a a a a aϕ-=-=>所以()x ϕ即()F x '在10,ln a ⎛⎫- ⎪⎝⎭和1,ln a ⎛⎫-+∞ ⎪⎝⎭上各有一个零点1x ,2x ,()F x 在()10,x 上递增,()12,x x 上递减,()2,0x 上递增,而()11ln 0ln F a a'=-<,所以121x x <<,()1log 1x a F x a x -=--,当110a x a -<<时,()111log 11(1)0a F a a x a x -------<-=<;当1x a >时,()10log 10a F x a>--=,而()()110F x F >=,()()210F x F <=,所以()F x 在()10,x ,()12,x x 和()2,x +∞上各有一个零点,共3个零点了,舍去.综上,a 的取值范围为1,1e ⎡⎫⎪⎢⎣⎭.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,直线l的参数方程为cos sin x t y t αα⎧=⎪⎨=⎪⎩(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立坐标系,曲线C 的极坐标方程为2853cos 2ρθ=-,直线l 与曲线C 相交于A ,B两点,)M.(1)求曲线C 的直角坐标方程;(2)若2AM MB = ,求直线l 的斜率.【答案】(1)2214x y +=(2)【分析】(1)根据极坐标与直角坐标直角的转化222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪=+⎩,运算求解;(2)联立直线l 的参数方程和曲线C 的直角坐标方程,根据参数的几何意义结合韦达定理运算求解.【详解】(1)∵()()222222288453cos 2cos 4sin 5cos sin 3cos sin ρθθθθθθθ===-++--,则2222cos 4sin 4ρθρθ+=,∴2244x y +=,即2214x y +=,故曲线C 的直角坐标方程为2214x y +=.(2)将直线l的参数方程为cos sin x t y t αα⎧=⎪⎨=⎪⎩(t 为参数)代入曲线C 的直角坐标方程为2214x y +=,得)()22cos sin 14t t αα+=,整理得()()222cos 4sin 10t t ααα++-=,设A ,B 两点所对应的参数为12,t t ,则121222221,cos 4sin cos 4sin t t t t ααααα+=-=-++,∵2AM MB = ,则122t t =-,联立1212222cos 4sin t t t t ααα=-⎧⎪⎨+=-⎪+⎩,解得122222cos 4sin cos 4sin t t αααααα⎧=-⎪⎪+⎨⎪=⎪+⎩,将12,t t 代入12221cos 4sin t t αα=-+得2222221cos 4sin cos 4sin cos 4sin αααααααα⎛⎫⎛⎫-=- ⎪⎪ ⎪⎪+++⎝⎭⎝⎭,解得2223tan 4k α==,故直线l的斜率为2±.[选修4-5:不等式选讲]23.已知:()1f x x x m =+--,0m >.(1)若2m =,求不等式()2f x >的解集;(2)()()g x f x x m =--,若()g x 的图象与x 轴围成的三角形面积不大于54,求m 的取值范围.【答案】(1)3,2∞⎛⎫+ ⎪⎝⎭;(2)(]0,8.【分析】(1)利用零点分段法求解出绝对值不等式;(2)先求出()21,312,121,1x m x m g x x m x m x m x -++>⎧⎪=+--≤≤⎨⎪--<-⎩,由()0g x =,解得:122121,3m x m x -=+=,则()21444133m x x m ---==+,由函数单调性得到()()max 1g x g m m ==+,根据函数图象与x 轴围成的三角形面积不大于54,列出方程,求出m 的取值范围.【详解】(1)当2m =时,()3,21221,123,1x f x x x x x x >⎧⎪=+--=--≤≤⎨⎪-<-⎩,当2x >时,()32f x =>成立;当12x -≤≤时,()212f x x =->,则322x <≤;当1x <-时,()32f x =-<不合题意,综上,()2f x >的解集为3,2∞⎛⎫+ ⎪⎝⎭;(2)因为0m >,所以()21,12312,121,1x m x m g x x x m x m x m x m x -++>⎧⎪=+--=+--≤≤⎨⎪--<-⎩,由()0g x =,解得:122121,3m x m x -=+=,则()21444133m x x m ---==+,当1x <-时,()g x 单调递增,当1x m -≤≤时,()g x 单调递增,当x >m 时,()g x 单调递减,所以当x m =时,()g x 取得最大值,()()max 1g x g m m ==+,∴图象与x 轴围成的三角形面积为()()221421154233S m m =⨯+=+≤,解得:108m -≤≤,又0m >,则08m <≤,∴m 的取值范围是(]0,8.。

2025届北京市人民大学附属中学高三第三次模拟考试数学试卷含解析

2025届北京市人民大学附属中学高三第三次模拟考试数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.蒙特卡洛算法是以概率和统计的理论、方法为基础的一种计算方法,将所求解的问题同一定的概率模型相联系;用均匀投点实现统计模拟和抽样,以获得问题的近似解,故又称统计模拟法或统计实验法.现向一边长为2a 的正方形模型内均匀投点,落入阴影部分的概率为p ,则圆周率π≈( )A .42p +B .41p +C .64p -D .43p +2.设实数满足条件则的最大值为( ) A .1B .2C .3D .43.在边长为1的等边三角形ABC 中,点E 是AC 中点,点F 是BE 中点,则AF AB ⋅=( ) A .54B .34C .58D .384.地球上的风能取之不尽,用之不竭.风能是淸洁能源,也是可再生能源.世界各国致力于发展风力发电,近10年来,全球风力发电累计装机容量连年攀升,中国更是发展迅猛,2014年累计装机容量就突破了100GW ,达到114.6GW ,中国的风力发电技术也日臻成熟,在全球范围的能源升级换代行动中体现出大国的担当与决心.以下是近10年全球风力发电累计装机容量与中国新增装机容量图. 根据所给信息,正确的统计结论是( )A .截止到2015年中国累计装机容量达到峰值B .10年来全球新增装机容量连年攀升C .10年来中国新增装机容量平均超过20GWD .截止到2015年中国累计装机容量在全球累计装机容量中占比超过135.将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案种数是( ) A .18种B .36种C .54种D .72种6.已知函数()32,0log ,0x x f x x x ⎧≤=⎨>⎩,则3=3f f ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭( ) A .22B .12C .3log 2-D .3log 27.设,,D E F 分别为ABC ∆的三边BC,CA,AB 的中点,则EB FC +=( ) A .12AD B .AD C .BCD .12BC 8. 若x,y 满足约束条件x 0x+y-30z 2x-2y 0x y ≥⎧⎪≥=+⎨⎪≤⎩,则的取值范围是A .[0,6]B .[0,4]C .[6, +∞)D .[4, +∞)9.已知函数log ()a y x c =+(a ,c 是常数,其中0a >且1a ≠)的大致图象如图所示,下列关于a ,c 的表述正确的是( )A .1a >,1c >B .1a >,01c <<C .01a <<,1c >D .01a <<,01c <<10.已知复数2(1)(1)i z a a =-+-(i 为虚数单位,1a >),则z 在复平面内对应的点所在的象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限11.已知函数()sin 3cos f x a x x =-的图像的一条对称轴为直线56x π=,且12()()4f x f x ⋅=-,则12x x +的最小值为( ) A .3π-B .0C .3π D .23π 12.已知函数()xf x a =(0a >,且1a ≠)在区间[],2m m 上的值域为[],2m m ,则a =( )A .2B .14C .116或2 D .14或4 二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学模拟试卷 (三)
一.选择题
1.已知平面向量a =(3,1),b =(x ,–3),且a b ⊥,则x= ( ) A. –3 B. –1 C. 1 D . 3 2.已知{}2
13|||,|6,2
2A x x B x x x ⎧
⎫=+>=+≤⎨⎬⎩

则A B = ( ) A.[)
(]3,21,2-- B.(]()3,21,--+∞ C. (][)3,21,2-- D.(](],31,2-∞-
3.设函数 2322,(2)()42(2)x x f x x x a x +⎧->⎪
=--⎨⎪≤⎩
在x=2处连续,则a= ( )
A.1
2
- B.14-
C.14
D.1
3
4.→∞--+-+-+++++123212lim 11111
n n n
n n n n n () 的值为 ( ) A. –1 B.0 C. 1
2
D.1
5.函数22sin sin 44
f x x x ππ
=+--()()()
是 ( ) A.周期为π的偶函数 B.周期为π的奇函数 C. 周期为2π的偶函数 D..周期为2π的奇函数
6.一台X 型号自动机床在一小时内不需要工人照看的概率为0.8000,有四台这中型号的自动机床各自独立工作,则在一小时内至多2台机床需要工人照看的概率是 ( ) A.0.1536 B. 0.1808 C. 0.5632 D. 0.9728
7.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是 ( ) A.
23 B. 76 C. 45 D. 56
8. 若双曲线2
2
20)x y k
k -=>(的焦点到它相对应的准线的距离是2,则k= ( )
A. 6
B. 8
C. 1
D. 4
9.当04
x π
<<时,函数22cos ()cos sin sin x
f x x x x =-的最小值是 ( )
A. 4
B.
12 C.2 D. 1
4
10. 变量x 、y 满足下列条件:
212,
2936,2324,0,0.
x y x y x y x y +≥⎧⎪+≥⎪⎨+=⎪⎪≥≥⎩ 则使z=3x+2y 的值最小的(x ,y )是 A. ( 4.5 ,3 ) B. ( 3,6 ) C. ( 9, 2 ) D. ( 6, 4 ) 二.填空题
11. 如右下图,定圆半径为a ,圆心为 ( b ,c ), 则直线ax+by+c=0与直线 x –y+1=0的交点在第______象限.
12. 某班委会由4名男生与3名女生组成,现从中选出2人担任正
副班长,其中至少有1名女生当选的概率是 (用分数作答)____________.
13. 已知复数z 与 (z +2)2-8i 均是纯虚数,则 z = . 14. 由图(1)有面积关系: PA B PAB S PA PB S PA PB ''∆∆''⋅=⋅, 则由(2) 有体积关系:
.P A B C P ABC V V '''--=
图(2)
图(1)
15. 函数10)f x In x =>())(的反函数1().f x -=
标准答案
一、选择题:
二、填空题:
(11) 三 (12)7
5 (13)-2i (14)PC PB PA PC PB PA ⋅⋅⋅⋅''' (15))(22R x e
e x x ∈+。

相关文档
最新文档