语音信号采样和频谱分析.docx
语音信号的采集和频谱分析

语音信号的采集和频谱分析:[y,fs,bits]=wavread('voice'); %读取音频信息(双声道,16位,频率44100Hz)sound(y,fs,bits); %回放该音频Y=fft(y,4096); %进行傅立叶变换subplot(211);plot(y);title('声音信号的波形');subplot(212)plot(abs(Y));title('声音信号的频谱');窗函数设计低通滤波器:fp=1000;fc=1200;as=100;ap=1;fs=22000;wp=2*fp/fs;wc=2*fc/fs;N=ceil((as-7.95)/(14.36*(wc-wp)/2))+1;beta=0.1102*(as-8.7);window=Kaiser(N+1,beta);b=fir1(N,wc,window);freqz(b,1,512,fs);结果:滤波:[y,fs,bits]=wavread('voice');d=filter(b,a,y);D=fft(d);subplot(211)plot(d);title('滤波后的声音波形')subplot(212)plot(abs(D))title('滤波后的声音频谱')回放:sound(d,fs,bits)与滤波之前相比,噪音明显降低了许多。
过零率的计算要用下面的代码:zcr = zeros(size(y,1)1);delta= 0.02;for i=1:size(y,1)x=y(i,:);for j=1;length(x)-1if x(j)*x(j+1)<0 &abs(x(j)-x(j+1))>deltazcr(i)=zcr(i)+1;endendend其中设置了门限delta=0.02。
这是个经验值,可以进行细微的调整。
语音信号处理实验报告.docx

在实验中,当P值增加到一定程度,预测平方误差的改善就不很明显了,而且会增加计算量,一般取为8~14,这里P取为10。
5.基音周期估计
①自互相关函数法
②短时平均幅度差法
二.实验过程
1. 系统结构
2.仿真结果
(1)时域分析
男声及女声(蓝色为时域信号,红色为每一帧的能量,绿色为每一帧的过零率)
某一帧的自相关函数
3.频域分析
①一帧信号的倒谱分析和FFT及LPC分析
②男声和女声的倒谱分析
③浊音和清音的倒谱分析
④浊音和清音的FFT分析和LPC分析(红色为FFT图像,绿色为LPC图像)
从男声女声的时域信号对比图中可以看出,女音信号在高频率分布得更多,女声信号在高频段的能量分布更多,并且女声有较高的过零率,这是因为语音信号中的高频段有较高的过零率。
2.频域分析
这里对信号进行快速傅里叶变换(FFT),可以发现,当窗口函数不同,傅里叶变换的结果也不相同。根据信号的时宽带宽之积为一常数这一性质,可以知道窗口宽度与主瓣宽度成反比,N越大,主瓣越窄。汉明窗在频谱范围中的分辨率较高,而且旁瓣的衰减大,具有频谱泄露少的有点,所以在实验中采用的是具有较小上下冲的汉明窗。
三.实验结果分析
1.时域分析
实验中采用的是汉明窗,窗的长度对能否由短时能量反应语音信号的变化起着决定性影响。这里窗长合适,En能够反应语音信号幅度变化。同时,从图像可以看出,En可以作为区分浊音和清音的特征参数。
短时过零率表示一帧语音中语音信号波形穿过横轴(零电平)的次数。从图中可以看出,短时能量和过零率可以近似为互补的情况,短时能量大的地方过零率小,短时能量小的地方过零率较大。从浊音和清音的时域分析可以看出,清音过零率高,浊音过零率低。
声音信号的频谱分析与频率测量方法

声音信号的频谱分析与频率测量方法声音是我们日常生活中不可或缺的一部分,我们通过声音来交流、表达情感,甚至通过声音来判断事物的性质。
然而,声音是如何产生的?我们如何对声音进行分析和测量呢?本文将介绍声音信号的频谱分析与频率测量方法。
声音信号是由空气中的振动引起的,当物体振动时,会产生压力波,通过空气传播出去,我们就能听到声音。
声音信号可以通过振动的频率和振幅来描述,其中频率是指振动的周期性,而振幅则是指振动的强度。
频谱分析是一种将声音信号分解成不同频率成分的方法。
它可以帮助我们了解声音信号的频率分布情况,从而更好地理解声音的特性。
频谱分析的基本原理是将声音信号转换为频域表示,即将信号从时域转换为频域。
这可以通过傅里叶变换来实现。
傅里叶变换是一种将时域信号转换为频域信号的数学方法。
它将信号分解成一系列正弦波的叠加,每个正弦波都有不同的频率和振幅。
通过傅里叶变换,我们可以得到声音信号的频谱图,从而了解声音信号中不同频率成分的贡献程度。
频谱图通常以频率为横轴,振幅或能量为纵轴,通过不同的颜色或灰度表示不同频率成分的强度。
频谱图可以直观地展示声音信号的频率分布情况,帮助我们分析声音的特性。
例如,在音乐领域,频谱分析可以用来研究音乐的音色特点,判断乐器的类型等。
除了频谱分析,频率测量是对声音信号进行定量分析的重要方法。
频率是声音信号中最基本的特征之一,它决定了声音的音调高低。
频率测量可以通过多种方法实现,其中一种常用的方法是自相关法。
自相关法是一种基于信号自身的周期性特点进行频率测量的方法。
它通过计算信号与自身的延迟版本之间的相似程度来确定信号的周期性。
具体而言,自相关法将信号与其自身进行延迟,然后计算它们之间的相关性。
通过寻找最大相关性的延迟值,我们可以得到信号的主要频率成分。
除了自相关法,还有一些其他的频率测量方法,如峰值检测法、零交叉法等。
这些方法在不同的应用场景下有着各自的优势和适用性。
例如,峰值检测法适用于测量周期性信号的频率,而零交叉法适用于测量非周期性信号的频率。
语音信号的频域分析

实验二:语音信号的频域分析实验目的:以MATLAB 为工具,研究语音信号的频域特性,以及这些特性在《语音信号处理》中的应用情况。
实验要求:利用所给语音数据,分析语音的频谱、语谱图、基音频率、共振峰等频域参数。
要求会求取这些参数,并举例说明这些参数在语音信号处理中的应用。
实验内容:1、 语音信号的频谱分析1.1加载“ma1_1”语音数据。
基于DFT 变换,画出其中一帧数据(采样频率为8kHz ,帧长为37.5ms ,每帧有300个样点)的频域波形(对数幅度谱)。
load ma1_1;x = ma1_1 (4161:4460); plot (x)N = 1024; k = - N/2:N/2-1;X = fftshift (fft (x.*hann (length (x)),N));plot (k,20*log10 (abs(X))), axis ([0 fix(N/2) -inf inf ])已知该帧信号的时域波形如图(a )所示,相应的10阶LPC 谱如图(b )所示。
问题1:这帧语音是清音还是浊音?基于DFT 求出的对数幅度谱和相应的LPC 谱相比,两者有什么联系和区别?问题2:根据这帧基于DFT 的对数幅度谱,如何估计出共振峰频率和基音周期?问题3:时域对语音信号进行加窗,反映在频域,其窗谱对基于DFT 的对数幅度谱有何影响?如何估计出窗谱的主瓣宽度?1.2对于浊音语音,可以利用其频谱)(ωX 具有丰富的谐波分量的特点,求出其谐波乘积谱:∏==R r r X HPSx 1)()(ωω式中,R 一般取为5。
在谐波乘积谱中,基频分量变得很大,更易于估计基音周期。
1.3加载“vowels.mat”语音数据,分别画出一帧/i/和一帧/u/(采样频率为10kHz,帧长为30ms,每帧有300个样点)的基于DFT的对数幅度谱。
其Matlab代码如下:load vowelsx = vowels.i_1(2001:2300);N = 1024; k= -N/2:N/2-1;X = fftshift (fft (x.*hann (length(x)),N));plot (k,20*log10(abs(X))), axis([0 fix(N/2) 0 100])x = vowels.u_1(2001:2300);N= 1024; k = -N/2:N/2-1;X = fftshift (fft (x.*hann(length(x)),N));plot (k,20*log10(abs(X))), axis([0 fix(N/2) 0 100])1.4画出一帧清音语音的基于DFT的对数幅度谱。
语音信号采样和频谱分析

语音信号采样和频谱分析一.实验目的(1)掌握傅里叶变换的物理意义,深刻理解傅里叶变换的内涵;(2)了解MATLAB 对声音信号的处理指令;(3)了解计算机存储信号的方式及语音信号的特点;(4)加深对采样定理的理解;(5)加深学生对信号分析工程应用的理解,拓展学生在信号分析领域的综合应用能力。
二.实验内容本实验利用MATLAB 指令录制一段语音信号,观察其时域波形并进行傅里叶变换,观察其频域的频谱。
根据该信号的频谱构成,选择三种不同的采样频率重新录制该语音信号,并试听回放效果,进行比较,以验证采样定理,并了解MATLAB 对声音信号的处理指令,加深对采样定理的理解。
关键词:傅里叶变换 信号采样三、实验原理语音信号是一种连续变化的模拟信号,而计算机只能处理和记录二进制的数字信号,因此,由自然音而得的音频信号必须用计算机的声音编辑工具,先进行语音采样,然后利用了计算机上的A/D 转换器,将模拟的声音信号变成离散的量化了的数字信号量化和编码,变成二进制数据后才能送到计算机进行再编辑和存储。
语音信号输出时,量化了的数字信号又通过D/A 转换器,把保存起来的数字数据恢复成原来的模拟的语音信号。
(1)应用MATLAB 进行声音的录制 (2)应用MATLAB 进行声音的播放 (3)语音信号的频谱分析 。
傅里叶变换建立了信号频谱的概念。
所谓傅里叶分析即分析信号的频谱(频率构成)、频带宽度等。
对语音信号的分析也不例外,也必须采用傅里叶变换这一工具。
对于连续时间信号)(t f ,其傅里叶变换)(ωF 为:⎰∞∞--=dt e t f F t j ωω)()(四、实验任务(1)应用MATLAB 进行声音的录制在MATLAB 命令窗口中键入“y=wavrecord(8000,8000,1)”,并按回车键,此时刻以后的1(8000/8000)秒时段内的声音信号将以y 为文件名,以数字声音信号.wav 格式存储在MATLAB 的工作空间里。
语音信号的采集与频谱分析(附代码)

After that,two noise signals are added to the original signal respectively and let them pass a filter to analyse it.In the two process mentioned before,I make comparison between the before and after frequency domain.
本设计给信号加了两种噪声并通过观察加噪后的频谱和试听回放效果比较加噪前后的差别,
最后,设计了FIR数字低通滤波器和带通滤波器,分析滤波前后的频谱。再次试听回放效果,得出结论。
关键词:语音、FFT、频谱图、噪声、滤波器
Abstract
This design is based on the general function of Matlaband Adobeedition to deal with Audio signals. The original signals are collected by iPhone’s built-in recording equipment.
Sampling Theorem is the base of my design.It is by sampling we can get discrete signals from the original one and draw the image in time domain.Also,fast fourier transform is employed(FFT)to get the signals in frequency domain.The ayalysis of frequency domain is the highlight of this design.
语音信号的采集与频谱分析(附代码)

《信号与系统》大作业语音信号的采集与频谱分析——基于Matlab的语音信号处理学生姓名:学号:专业班级:电子工程学院卓越班指导老师:2015年6月22日摘要本设计用苹果手机自带的录音设备采集了原始语音,并导入了电脑转成wav格式,然后用MATLAB和Adobe audition对其进行时域分析。
接着利用傅里叶变换进行了频域分析,绘制频谱图,再录制一段加上歌曲的伴奏的语音与原唱进行了对比分析,得出了我与歌星在频域上的差别。
本设计给信号加了两种噪声并通过观察加噪后的频谱和试听回放效果比较加噪前后的差别,最后,设计了FIR数字低通滤波器和带通滤波器,分析滤波前后的频谱。
再次试听回放效果,得出结论。
关键词:语音、FFT、频谱图、噪声、滤波器AbstractThis design is based on the general function of Matlab and Adobe edition to deal with Audio signals. The original signals are collected by iPhone’s built-in recording equipment.First,I compare the file generated by myself with that of thesame song sang by a famous singer.The emphasis is generally laid on analysing the difference in frequncy domain,but time domain will be included too.After that,two noise signals are added to the original signal respectively and let them pass a filter to analyse it.In the two process mentioned before,I make comparison between the before and after frequency domain.Sampling Theorem is the base of my design.It is by sampling we can get discrete signals from the original one and draw the image in time domain.Also,fast fourier transform is employed(FFT)to get the signals in frequency domain.The ayalysis of frequency domain is the highlight of this design.Through this design,I can deepen my comprehension of principles of audio signals and I have learnt how to deal with it.Through met with much hindrance,I improved my skills finally.Keywords: audio signal、TTT、noise、filter1 绪论1.1课题的研究意义语音信号处理属于信息科学的一个重要分支,它是研究用数字信号处理技术对语音信号进行处理的一门新兴学科,同时又是综合性的多学科领域和涉及面很广的交叉学科,因此我们进行语言信号处理具有时代的意义。
语音信号采集和分析报告

语音信号的采集与分析一、背景介绍1、语音信号处理的相关内容通过语音相互传递信息是人类最重要的基本功能之一.语言是人类特有的功能.声音是人类常用工具,是相互传递信息的最重要的手段.虽然,人可以通过多种手段获得外界信息,但最重要,最精细的信息源只有语言,图像和文字三种.与用声音传递信息相比,显然用视觉和文字相互传递信息,其效果要差得多.这是因为语音中除包含实际发音内容的话言信息外,还包括发音者是谁及喜怒哀乐等各种信息.所以,语音是人类最重要,最有效,最常用和最方便的交换信息的形式.另一方面,语言和语音与人的智力活动密切相关,与文化和社会的进步紧密相连,它具有最大的信息容量和最高的智能水平。
语音信号处理是研究用数字信号处理技术对语音信号进行处理的一门学科,处理的目的是用于得到某些参数以便高效传输或存储;或者是用于某种应用,如人工合成出语音,辨识出讲话者,识别出讲话内容,进行语音增强等.语音信号处理是一门新兴的学科,同时又是综合性的多学科领域,是一门涉及面很广的交叉学科.虽然从事达一领域研究的人员主要来自信息处理及计算机等学科.但是它与语音学,语言学,声学,认知科学,生理学,心理学及数理统计等许多学科也有非常密切的联系.语音信号处理是许多信息领域应用的核心技术之一,是目前发展最为迅速的信息科学研究领域中的一个.语音处理是目前极为活跃和热门的研究领域,其研究涉及一系列前沿科研课题,巳处于迅速发展之中;其研究成果具有重要的学术及应用价值.2、工作流程:相关的信号与系统知识:傅里叶变换在信号处理中具有十分重要的作用,它通常能使信号的某些特性变得很明显,而在原始信号中这些特性可能含糊不清或至少不明显.在语音信号处理中,傅里叶表示在传统上一直起主要作用.其原因一方面在于稳态语音的生成模型由线性系统组成,此系统被一随时间作周期变化或随机变化的源所激励.因而系统输出频谱反映了激励与声道频率响应特性.另一方面,语音信号的频谱具有非常明显的语音声学意义,可以获得某些重要的语音特征(如共振峰频率和带宽等).根据语音信号的产生模型,可以将其用一个线性非时变系统的输出表示,即看作是声门激励信号和声道冲激响应的卷积.在语音信号数字处理所涉及的各个领域中,根据语音信号求解声门激励和声道响应具有非常重要的意义.例如,为了求得语音信号的共振蜂就要知道声道传递函数(共振峰就是声道传递函数的各对复共轭极点的频率).又如,为了判断语音信号是清音还是浊音以及求得浊音情况下的基音频率,就应知道声门激励序列.在实现各种语音编码,合成,识别以及说话人识别时无不需要由语音信号来求得声门激励序列和声道冲激响应. 3、相关MATLAB知识:MATLAB 语言是一种数据分析和处理功能十分强大的计算机应用软件 ,它可以将声音文件变换为离散的数据文件 , 然后利用其强大的矩阵运算能力处理数据,如数字滤波、傅里叶变换、时域和频域分析、声音回放以及各种图的呈现等, 信号处理是MATLAB 重要应用的领域之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
语音信号采样和频谱分析
一.实验目的
(1)掌握傅里叶变换的物理意义,深刻理解傅里叶变换的内涵;
(2)了解 MATLAB对声音信号的处理指令;
(3)了解计算机存储信号的方式及语音信号的特点;
( 4)加深对采样定理的理解;
(5)加深学生对信号分析工程应用的理解,拓展学生在信号分析领域的综合应用能力。
二.实验内容
本实验利用 MATLAB指令录制一段语音信号,观察其时域波形并进行傅里叶变换,观察其频域的频谱。
根据该信号的频谱构成,选择三种不同的采样频率重新录制该语音信号,并试听回放效果,进行比较,以验证采样定理,并了解MATLAB对声音信号的处理指令,加深对采样定理的理解。
关键词:傅里叶变换信号采样
三、实验原理
语音信号是一种连续变化的模拟信号,而计算机只能处理和记录二进制的数字信号,因此,
由自然音而得的音频信号必须用计算机的声音编辑工具,先进行语音采样,然后利用了计算机上的
A/D 转换器,将模拟的声音信号变成离散的量化了的数字信号量化和编码,变成二进制数据后才能
送到计算机进行再编辑和存储。
语音信号输出时,量化了的数字信号又通过 D/A 转换器,把保存起
来的数字数据恢复成原来的模拟的语音信号。
(1)应用 MATLAB进行声音的录制(2)应用 MATLAB进行声音的播放( 3)语音信号的频谱分析。
傅里叶变换建立了信号频谱的概念。
所谓傅里叶分析即分析信号的频谱(频率构成)、频带宽
度等。
对语音信号的分析也不例外,也必须采用傅里叶变换这一工具。
对于连续时间信号 f (t ) ,
其傅里叶变换 F () 为:F () f (t )e j t dt
四、实验任务
(1)应用 MATLAB进行声音的录制
在 MATLAB命令窗口中键入“ y=wavrecord(8000,8000,1) ”,并按回车键,此时刻以后的(18000/8000 )秒时段内的声音信号将以y 为文件名,以数字声音信号 .wav 格式存储在 MATLAB的工作空间里。
纪录长度为 80000,采样频率为 8000Hz,声道数为 1。
图为录制的语音:“信号与系统”。
(2)应用 MATLAB进行声音的播放
在 MATLAB命令窗口中键入“ sound(y,Fs) ”, 按下回车键就能听到回放的声音。
当 Fs=8000 时,听到的是原来未失真的声音;当 Fs=6000时,听到的声音比较低沉;当 Fs=10000时,听到的声音很
尖锐。
(3)语音信号的频谱分析
在 MATLAB命令窗口中键入“ p=fft(y);plot(abs(p))”按下回车键后出现如图所示图形:从图
中可以看出该音频的上限频率为 4000Hz。
来源于网络
(4)采样定理
一个频谱受限的信号 f(t), 如果频谱只占据
m
~
m 的范围,则信号 f (t ) 可以用等间隔的抽
样值唯一地表示。
而抽样间隔必须不大于
1
(其中
m
2 f m ),或者说,最低抽样频率为 2 f m 。
2 f m
低抽样频率为 2 f m 。
该实验中,音频的上限频率为 4000Hz ,所以采用的抽样信号的频率为该频率
的两倍 8000Hz 。
当采用小于 8000Hz 的频率抽样时,回放声音低沉;当采用大于
8000Hz 的频率采
样时,回放声音尖锐。
结论:
本次试验是进行语音信号的采集和频谱分析,实验纪录了长度为 80000,采样频率为 8000Hz 采样一段音频, 并进行频谱分析, 最终经过分析得只有以两倍上限频率回放音频时才会得到原音频
信号,否则都会失真。
本次试验不仅学习到了新知识, 而且复习到了抽样定理的许多内容,加深
了对这些内容的理解,受益很多! !
来源于网络。