舵机简介和C51例程

合集下载

舵机的控制方式和工作原理介绍

舵机的控制方式和工作原理介绍

舵机的控制方式和工作原理介绍舵机是一种常见的电动执行元件,广泛应用于机器人、遥控车辆、模型飞机等领域。

它通过电信号控制来改变输出轴的角度,实现精准的位置控制。

本文将介绍舵机的控制方式和工作原理。

一、舵机的结构和工作原理舵机的基本结构包括电机、减速装置、控制电路以及输出轴和舵盘。

电机驱动输出轴,减速装置减速并转动输出轴,而控制电路则根据输入信号来控制电机的转动或停止。

舵机的主要工作原理是通过PWM(脉宽调制)信号来控制。

PWM信号是一种周期性的方波信号,通过调整占空比即高电平的时间来控制舵机的位置。

通常情况下,舵机所需的控制信号频率为50Hz,即每秒50个周期,而高电平的脉宽则决定了输出轴的角度。

二、舵机的控制方式舵机的控制方式主要有模拟控制和数字控制两种。

1. 模拟控制模拟控制是指通过改变输入信号电压的大小,来控制舵机输出的角度。

传统的舵机多采用模拟控制方式。

在模拟控制中,通常将输入信号电压的范围设置在0V至5V之间,其中2.5V对应于舵机的中立位置(通常为90度)。

通过改变输入信号电压的大小,可以使舵机在90度以内左右摆动。

2. 数字控制数字控制是指通过数字信号(如脉宽调制信号)来控制舵机的位置。

数字控制方式多用于微控制器等数字系统中。

在数字控制中,舵机通过接收来自微控制器的PWM信号来转动到相应位置。

微控制器根据需要生成脉宽在0.5ms至2.5ms之间变化的PWM信号,通过改变脉宽的占空比,舵机可以在0度至180度的范围内进行精确的位置控制。

三、舵机的工作原理舵机的工作原理是利用直流电机的转动来驱动输出轴的运动。

当舵机接收到控制信号后,控制电路将信号转换为电机驱动所需的功率。

电机驱动输出轴旋转至对应的角度,实现精准的位置控制。

在舵机工作过程中,减速装置的作用非常重要。

减速装置可以将电机产生的高速旋转转换为较低速度的输出轴旋转,提供更大的扭矩输出。

这样可以保证舵机的运动平稳且具有较大的力量。

四、舵机的应用领域舵机以其精准的位置控制和力矩输出,广泛应用于各种领域。

教学课件PPT 89C51单片机的C51程序设计

教学课件PPT 89C51单片机的C51程序设计

程序存储器(64K字节)
对应MOVC @DPTR访问
可位寻址片内数据存储器(16字节,128位) 允许位和字节混合访问
间接寻址片内数据存储器(256字节)
可访问片内全部RAM空间
分页寻址片外数据存储器(256字节)
对应MOVX @R0访问
4.2 C51程序设计基础
C51存储类型定义举例:
unsigned char data x,y,z; /*在内部RAM区定义了3个无符号字节型变量x,y,z*/
40M/80M/100M,而且还有很多是单周期的。
4.2 C51程序设计基础
4.2.1 C51变量/常量存储类型
C51存储类型 对应89C51单片机存储器空间
data
直接寻址片内数据存储器(128字节)
xdata
片外数据存储器(64K字节)
说明 访问速度快 对应MOVX @DPTR访问
code bdata idata pdata
序号 语句
1
=
2
if
3
表达式1 ? 表达式2 : 表达式3
4
switch/case
5
while
6
do-while
7
for
8
函数
含义 赋值语句 条件语句 条件运算符 多分支语句 循环语句 循环语句 循环语句 模块化程序设计
4.2 C51程序设计基础
表4-6 常用语句
序号 语句
1
=
2
if
3
表达式1 ? 表达式2 : 表达式3
4.3 C51程序举例
例4:把外部数据RAM中从地址2000H单元开始的100个有符号 数逐一取出,若为正数则放回原单元,若为负数则求补后放回。

舵机

舵机

利用单片机PWM信号进行舵机控制基于单片机的舵机控制方法具有简单、精度高、成本低、体积小的特点,并可根据不同的舵机数量加以灵活应用。

在机器人机电控制系统中,舵机控制效果是性能的重要影响因素。

舵机可以在微机电系统和航模中作为基本的输出执行机构,其简单的控制和输出使得单片机系统非常容易与之接口。

舵机是一种位置伺服的驱动器,适用于那些需要角度不断变化并可以保持的控制系统。

其工作原理是:控制信号由接收机的通道进入信号调制芯片,获得直流偏置电压。

它内部有一个基准电路,产生周期为20ms,宽度为1.5ms的基准信号,将获得的直流偏置电压与电位器的电压比较,获得电压差输出。

最后,电压差的正负输出到电机驱动芯片决定电机的正反转。

当电机转速一定时,通过级联减速齿轮带动电位器旋转,使得电压差为0,电机停止转动。

图1 舵机的控制要求舵机的控制信号是PWM信号,利用占空比的变化改变舵机的位置。

一般舵机的控制要求如图1所示。

单片机实现舵机转角控制可以使用FPGA、模拟电路、单片机来产生舵机的控制信号,但FPGA成本高且电路复杂。

对于脉宽调制信号的脉宽变换,常用的一种方法是采用调制信号获取有源滤波后的直流电压,但是需要50Hz(周期是20ms)的信号,这对运放器件的选择有较高要求,从电路体积和功耗考虑也不易采用。

5mV以上的控制电压的变化就会引起舵机的抖动,对于机载的测控系统而言,电源和其他器件的信号噪声都远大于5mV,所以滤波电路的精度难以达到舵机的控制精度要求。

也可以用单片机作为舵机的控制单元,使PWM信号的脉冲宽度实现微秒级的变化,从而提高舵机的转角精度。

单片机完成控制算法,再将计算结果转化为PWM信号输出到舵机,由于单片机系统是一个数字系统,其控制信号的变化完全依靠硬件计数,所以受外界干扰较小,整个系统工作可靠。

单片机系统实现对舵机输出转角的控制,必须首先完成两个任务:首先是产生基本的PWM周期信号,本设计是产生20ms的周期信号;其次是脉宽的调整,即单片机模拟PWM 信号的输出,并且调整占空比。

舵机控制流程图演示教学

舵机控制流程图演示教学

舵机控制流程图常规舵机控制流程图1.5ms脉宽)带动电位器柄旋舵机电路方框图0.5—2.5msDC马达舵机说明1,电机经过变速(减速)后连接到电位器柄旋转2,输入脉冲宽度为0.5—2.5ms,周期为3ms—20ms(数字舵机的脉冲周期因不同的客户使用的周期不同,常用为10ms;模拟舵机周期为20ms.)3,脉冲宽度,表示电位器转动的角度不同(即舵臂角度不同) 4,电机转速为14000/分钟,减速比为250:1,要求舵角转速为0.10-0.2S/60度(此部份与电机转速有关,程序方面需注意及时扫描电位器角度而给电机改变不同供电方式),扫描不及时易出现舵臂回抖现象.5,脉冲宽度不变的情况下,能锁住电机.6,堵转4秒钟后,电机进入低压供电(或PWM少占空比)工作模式,堵转一旦去除,电机供电进入正常模式.程序其它要求(因客户要求不同,需做不同类型的舵机)1,马达供电PWM(周期或占空比可调)2,电位器角度识别精度可调(1023分,255分,511分..)3,舵转动角度可调(-90 +90度)参考电路图:VR15KR1220C4104123J1CON3VDDS11G12S23G24D25D26D17D18U1UD4606GS11G12S23G24D25D26D17D18U2UD4606GVDDVDDVSS1P3.0/SCL2SDA/P3.13VPP/P3.24ADC8/P005ADC9/P016ADC10/P027ADC11/P038ADC12/P049ADC13/P0510ADC14/P0611ADC0/P1012ADC1/P1113ADC2/P1214ADC3/P1315ADC4/P1416ADC5/P1517ADC6/P1618ADC7/P1719VDD20U3SC51P5708SN+C210uin3G1o u t2U4XC6206-33+C310USinSin3.3V3.3VR3220KR4220K A-+MG1MOTOR SERVO R21KC1104o u t1o u t2o u t3o u t4o u t1o u t2o u t3o u t4mo ter正转1111反转111111STOP STOPSTOP 电机正转电机反转不良舵机现象:1,堵转保护人为堵转电机时,约3秒后电机进入低电流(即低压,占空比少)供电方式,用以降低电机损耗而保护舵机.堵转一旦去除,电机需立即进入正常供电方式.不良现象:A,无保护功能B,堵转去除后电机不能马上进入正常状态2,马达抖动轻微外力作用舵臂时,因电位器角度有此而有细微变化(如:0.02度)下,马达转动以校正角度差.不良现象:A,马达校正时力度过大在,是出现抖动现象.(如角度差与电机供电时间或PWM没有建立关系;全压供电方式)堵转保护流程图无刷舵机控制流程图。

基于C51的多路舵机PWM控制原理(有程序)

基于C51的多路舵机PWM控制原理(有程序)

一、 基本原理介绍二、演示机构采用的是舵机,每个需要一路PWM 波和两路电源输入。

电源输入标准为5V 1-8A ,采用带输入和输出保护的50w 开关电源供电;PWM 波为50Hz ,正脉冲时间为0.5-2.5ms ,对应-90°至90°(实际使用中为了保护机械,为0.7-2.3ms ,舵机旋转范围为-70°至70°)。

由于系统对于输出的频率有5Hz 的限制,因此使用软件延迟来实现最多八路的的PWM 波输出。

PWM 波由MCU 通过软件延时产生,算法概述如下(流程图见附件):1. A 路输出2.5ms 脉冲(输出正脉冲,不足时间由低电平 补至2.5ms ),此时其他五路无输出,相当于输出2.5ms 低电平; 2. B 路输出2.5ms 脉冲(同A 路,不足时间由低电平补齐),此时包括A 路的其他五路无输出,相当于输出2.5ms 低电平;3. 同理,输出C,D,E,F 路4. 此时,1-3步总时间为2.5*6=15ms ,其中每路由一个小于2.5ms 的正脉冲和低电平时间组成。

由于输出周期为20ms ,故应再输出20ms-15ms=5ms 低电平时间,使得各路频率为50Hz 。

重复1-3步,得到输出波形如下图:(仅以4路为例,使用Proteus 仿真示波器,图2.2.2)可以看到,此时各路输出均为50Hz ,正脉冲时间为0.5-2.5ms图 2.2.1 舵机及其控制原理图2.2.2 Proteus仿真此算法在50Hz(20ms)频率的限制下,最多可输出8路PWM波形(8*2.5ms=20ms)三、实际程序程序如下:#include <stdio.h>#include <REG52.h>#define uchar unsigned char#define uint unsigned intsbit Out1=P2^0;sbit Out2=P2^1;sbit Out3=P2^2;sbit Out4=P2^3;sbit Out5=P2^4;void PWM(uint a, uint b,uint c, uint d,uint e) {uchar A,B,C,D,E;uint M=984;A=250-a;B=250-b;C=250-c;D=250-d;E=250-e;do { Out1 = 1; } while(a--);do { Out1 = 0; } while(A--);do { Out2 = 1; } while(b--);do { Out2 = 0; } while(B--);do { Out3 = 1; } while(c--);do { Out3 = 0; } while(C--);do { Out4 = 1; } while(d--);do { Out4 = 0; } while(D--);do { Out5 = 1; } while(e--);do { Out5 = 0; } while(E--);do{ }while(M--);}main()uchar a,b,c,d,e;uint m;a=170;b=149;c=d=e=149;SCON = 0x50; //REN=1允许串行接受状态,串口工作模式1 TMOD = 0x20; //定时器工作方式2PCON = 0x80;//TH1 = 0xFD; //baud*2 /* reload value 19200、数据位8、停止位1。

51单片机 舵机控制程序

51单片机 舵机控制程序

51单片机舵机控制程序题目:基于51单片机的舵机控制程序设计与实现第一章:引言1.1 研究背景51单片机是一种广泛应用于嵌入式系统中的微控制器,具有成本低、功耗低、可靠性高等优点。

而舵机是一种能够控制角度的电机装置,广泛应用于机器人、航模和自动化设备等领域。

本章旨在探讨基于51单片机的舵机控制程序设计与实现的意义和必要性。

1.2 研究目的本研究的主要目的在于设计并实现一套稳定、高效的舵机控制程序,为使用51单片机的嵌入式系统提供角度控制功能。

通过本研究,可以提高舵机控制的精度和稳定性,拓展舵机的应用领域。

第二章:51单片机舵机控制程序的设计2.1 硬件设计根据舵机的控制特点,我们需要通过PWM信号控制舵机转动的角度。

在硬件设计上,我们需要使用51单片机的定时器功能产生PWM信号,并通过IO口输出给舵机。

具体的设计方案包括选择合适的定时器、设置定时器的工作模式和频率等。

2.2 软件设计在软件设计上,我们需要通过编写51单片机的控制程序实现舵机的控制。

具体的设计流程包括:(1)初始化:设置定时器的工作模式和频率,配置IO口的输出模式。

(2)角度控制:根据舵机的角度范围和控制精度,将目标角度转换为占空比,并通过PWM信号控制舵机转动到目标角度。

(3)稳定性优化:通过对定时器周期和占空比的调整,优化舵机的稳定性,减小舵机的误差。

第三章:51单片机舵机控制程序的实现3.1 硬件搭建在实现阶段,我们需要根据硬件设计方案选购相应的硬件元件,并将其搭建成一个完整的舵机控制系统。

具体的搭建过程包括:(1)选购舵机和51单片机等硬件元件,并连接相关的信号线。

(2)按照硬件设计方案,搭建并调试舵机控制系统。

3.2 软件编写在软件实现阶段,我们需要使用51单片机的编程语言(如C语言或汇编语言)编写舵机控制程序,并通过编译和烧录等步骤将程序下载到51单片机中。

具体的编写过程包括:(1)按照软件设计方案,编写舵机控制程序的相关函数和逻辑。

舵机的基础知识

舵机的基础知识

舵机的文献综‎述最近几年国内‎机器人开始快‎速发展,很多高校、中小学在进行‎机器人技术教‎学。

小型的机器人、模块化的机器‎人、组件式机器人‎是教学机器人‎的首选。

在这些机器人‎产品中,舵机是最关键、使用最多的部‎件。

依据控制方式‎的特点,舵机应该称为‎微型伺服马达‎。

早期在模型上‎使用最多,主要用于控制模型的舵‎面,所以俗称舵机‎。

舵机接受一个‎简单的控制指‎令就可以自动‎转动到一个比‎较精确的角度‎,所以非常适合‎在关节型机器‎人产品上使用‎。

仿人型机器人‎就是舵机运用‎的最高境界。

一、舵机的结构舵机简单是集‎成了直流电机‎、电机控制器和‎减速器等,并封装在一个‎便于安装的外‎壳里的伺服单‎元。

能够利用简单‎的输入信号比‎较精确的控制‎转动角度的机‎电系统。

舵机内部有一‎个电位器(或其它角度传‎感器)用于检测输齿‎轮箱出轴转动‎角度,控制板根据电‎位器的信息能‎比较精确的控‎制和保持输出‎轴的角度。

这样的直流电‎机控制方式叫‎闭环控制,所以舵机更准‎确的说是伺服‎马达,英文 servo。

舵机的主体结‎构主要有几个‎部分:外壳、减速齿轮组、电机、电位器、控制电路。

简单的工作原‎理是:控制电路接收‎信号源的控制‎信号,并驱动电机转‎动;齿轮组将电机‎的速度成大倍‎数缩小,并将电机的输‎出扭矩放大相‎应倍数,然后输出;电位器和齿轮‎组的末级一起‎转动,测量舵机轴转‎动角度;电路板检测并‎根据电位器判‎断舵机转动角‎度,然后控制舵机‎转动到目标角‎度或保持在目‎标角度。

舵机的外壳一‎般是塑料的,特殊的舵机可‎能会有铝合金‎外壳。

金属外壳能够‎提供更好的散‎热,可以让舵机内‎的电机运行在‎更高功率下,以提供更高的‎扭矩输出。

金属外壳也可‎以提供更牢固‎的固定位置。

齿轮箱有塑料‎齿轮、混合齿轮、金属齿轮的差‎别。

塑料齿轮成本‎底,噪音小,但强度较低;金属齿轮强度‎高,但成本高,在装配精度一‎般的情况下会‎有很大的噪音‎。

51单片机控制舵机程序

51单片机控制舵机程序

#include 〈reg52。

h〉#define Stop 0 //宏定义,停止#define Left 1 //宏定义,左转#define Right 2 //宏定义,右转sbit ControlPort = P2^0;//舵机信号端口sbit KeyLeft = P1^0;//左转按键端口sbit KeyRight = P1^1;//右转按键端口sbit KeyStop = P1^2; //归位按键端口unsigned char TimeOutCounter = 0,LeftOrRight = 0;//TimeOutCounter:定时器溢出计数LeftOrRight:舵机左右旋转标志void InitialTimer (void ){TMOD=0x10;//定时/计数器1工作于方式1TH1 = (65535 - 500 ) / 256; //0。

25msTL1 = ( 65535 — 500 )%256;EA=1;//开总中断ET1=1; //允许定时/计数器1 中断TR1=1; //启动定时/计数器1 中断}void ControlLeftOrRight ( void )//控制舵机函数{if(KeyStop == 0 ){//while ( !KeyStop );//使标志等于Stop(0),在中断函数中将用到LeftOrRight = Stop;}if(KeyLeft == 0 ){//while (!KeyLeft ); //使标志等于Left(1),在中断函数中将用到LeftOrRight = Left;}if(KeyRight == 0 ){//while ( !KeyRight );//使标志等于Right(2),在中断函数中将用到LeftOrRight = Right;}}void main (void )//主函数{InitialTimer();for(;;){ControlLeftOrRight();}}void Timer1 (void )interrupt 3 //定时器中断函数{TH1 = ( 65535 - 500 )/ 256;TL1 = ( 65535 — 500 )% 256;TimeOutCounter ++;switch (LeftOrRight ){case 0 ://为0时,舵机归位,脉宽1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、概述舵机最早出现在航模运动中。

在航空模型中,飞行机的飞行姿态是通过调节发动机和各个控制舵面来实现的。

举个简单的四通飞机来说,飞机上有以下几个地方需要控制:1.发动机进气量,来控制发动机的拉力(或推力);2.副翼舵面(安装在飞机机翼后缘),用来控制飞机的横滚运动;3.水平尾舵面,用来控制飞机的俯仰角;4.垂直尾舵面,用来控制飞机的偏航角;遥控器有四个通道,分别对应四个舵机,而舵机又通过连杆等传动元件带动舵面的转动,从而改变飞机的运动状态。

舵机因此得名:控制舵面的伺服电机。

不仅在航模飞机中,在其他的模型运动中都可以看到它的应用:船模上用来控制尾舵,车模中用来转向等等。

由此可见,凡是需要操作性动作时都可以用舵机来实现。

2、结构和控制一般来讲,舵机主要由以下几个部分组成,舵盘、减速齿轮组、位置反馈电位计5k、直流电机、控制电路板等。

工作原理:控制电路板接受来自信号线的控制信号(具体信号待会再讲),控制电机转动,电机带动一系列齿轮组,减速后传动至输出舵盘。

舵机的输出轴和位置反馈电位计是相连的,舵盘转动的同时,带动位置反馈电位计,电位计将输出一个电压信号到控制电路板,进行反馈,然后控制电路板根据所在位置决定电机的转动方向和速度,从而达到目标停止。

舵机的基本结构是这样,但实现起来有很多种。

例如电机就有有刷和无刷之分,齿轮有塑料和金属之分,输出轴有滑动和滚动之分,壳体有塑料和铝合金之分,速度有快速和慢速之分,体积有大中小三种之分等等,组合不同,价格也千差万别。

例如,其中小舵机一般称作微舵,同种材料的条件下是中型的一倍多,金属齿轮是塑料齿轮的一倍多。

需要根据需要选用不同类型。

舵机的输入线共有三条,红色中间,是电源线,一边黑色的是地线,这辆根线给舵机提供最基本的能源保证,主要是电机的转动消耗。

电源有两种规格,一是4.8V,一是6.0V,分别对应不同的转矩标准,即输出力矩不同,6.0V对应的要大一些,具体看应用条件;另外一根线是控制信号线,Futaba的一般为白色,JR的一般为桔黄色。

另外要注意一点,SANWA的某些型号的舵机引线电源线在边上而不是中间,需要辨认。

但记住红色为电源,黑色为地线,一般不会搞错。

舵机的控制信号为周期是20ms的脉宽调制(PWM)信号,其中脉冲宽度从0.5ms-2.5ms,相对应舵盘的位置为0-180度,呈线性变化。

也就是说,给它提供一定的脉宽,它的输出轴就会保持在一个相对应的角度上,无论外界转矩怎样改变,直到给它提供一个另外宽度的脉冲信号,它才会改变输出角度到新的对应的位置上。

舵机内部有一个基准电路,产生周期20ms,宽度1.5ms的基准信号,有一个比较器,将外加信号与基准信号相比较,判断出方向和大小,从而产生电机的转动信号。

由此可见,舵机是一种位置伺服的驱动器,转动范围不能超过180度,适用于那些需要角度不断变化并可以保持的驱动当中。

比方说机器人的关节、飞机的舵面等。

常见的舵机厂家有:日本的Futaba、JR、SANWA等,国产的有北京的新幻想、吉林的振华等。

现举Futaba S3003来介绍相关参数,以供大家设计时选用。

之所以用3003是因为这个型号是市场上最常见的,也是价格相对较便宜的一种(以下数据摘自Futaba产品手册)。

尺寸(Dimensions):40.4×19.8×36.0 mm重量(Weight): 37.2 g工作速度(Operating speed):0.23 sec/60°(4.8V)0.19 sec/60°(6.0V)输出力矩(Output torque): 3.2 kg.cm (4.8V)4.1 kg.cm (6.0V)由此可见,舵机具有以下一些特点:>体积紧凑,便于安装;>输出力矩大,稳定性好;>控制简单,便于和数字系统接口;正是因为舵机有很多优点,所以,现在不仅仅应用在航模运动中,已经扩展到各种机电产品中来,在机器人控制中应用也越来越广泛。

3、用单片机来控制正是舵机的控制信号是一个脉宽调制信号,所以很方便和数字系统进行接口。

只要能产生标准的控制信号的数字设备都可以用来控制舵机,比方PLC、单片机等。

这里介绍利用51系列单片机产生舵机的控制信号来进行控制的方法,编程语言为C51。

之所以介绍这种方法只是因为笔者用2051实现过,本着负责的态度,所以敢在这里写出来。

程序用的是我的四足步行机器人,有删改。

单片机并不是控制舵机的最好的方法,希望在此能起到抛砖引玉的作用。

2051有两个16位的内部计数器,我们就用它来产生周期20 ms的脉冲信号,根据需要,改变输出脉宽。

基本思路如下(请对照下面的程序):我用的晶振频率为12M,2051一个时钟周期为12个晶振周期,正好是1/1000 ms,计数器每隔1/1000 ms计一次数。

以计数器1为例,先设定脉宽的初始值,程序中初始为1.5ms,在for循环中可以随时通过改变a值来改变,然后设定计数器计数初始值为a,并置输出p12为高位。

当计数结束时,触发计数器溢出中断函数,就是void timer0(void) interrupt 1 using1 ,在子函数中,改变输出p12为反相(此时跳为低位),在用20000(代表20ms周期)减去高位用的时间a,就是本周期中低位的时间,c=20000-a,并设定此时的计数器初值为c,直到定时器再次产生溢出中断,重复上一过程。

# include <reg51.h>#define uchar unsigned char#define uint unsigned intuint a,b,c,d;/*a为舵机1的脉冲宽度,b为舵机2的脉冲宽度,单位1/1000 ms *//*c、d为中间变量*//*以下定义输出管脚*/sbit p12=P1^2;sbit p13=p1^3;sbit p37=P3^7;/*以下两个函数为定时器中断函数*//*定时器1,控制舵机1,输出引脚为P12,可自定义*/void timer0(void) interrupt 1 using 1{p12=!p12; /*输出取反*/c=20000-c; /*20000代表20 ms,为一个周期的时间*/TH0=-(c/256); TL0=-(c%256); /*重新定义计数初值*/if(c>=500&&c<=2500)c=a;else c="20000-a"; /*判断脉宽是否在正常范围之内*/}/*定时器2,控制舵机2,输出引脚为P13,可自定义*/void timer1(void) interrupt 3 using 1{p13=!p13;d=20000-d;TH1=-(d/256); TL1=-(d%256);if(d>=500&&d<=2500)d=b;else d="20000-b";}/*主程序*/void main(void){TMOD=0x11; /*设初值*/p12=1;p13=1;a=1500;b=1500; /*数值1500即对应1.5ms,为舵机的中间90度的位置*/ c=a;d=b;TH0=-(a/256); TL0=-(a%256);TH1=-(b/256); TL1=-(b%256); /*设定定时器初始计数值*/EA=1;ET0=1; TR0=1;EX0=1;EX1=1;ET1=1; TR1=1;PX0=0;PX1=0;PT1=1;PT0=1;/*设定中断优先级*/for(;;){/*在这个for循环中,可以根据程序需要在任何时间改变a、b值来改变脉宽的输出时间,从而控制舵机*/}}因为在脉冲信号的输出是靠定时器的溢出中断函数来处理,时间很短,因此在精度要求不高的场合可以忽略。

因此如果忽略中断时间,从另一个角度来讲就是主程序和脉冲输出是并行的,因此,只需要在主程序中按你的要求改变a值,例如让a从500变化到2500,就可以让舵机从0度变化到180度。

另外要记住一点,舵机的转动需要时间的,因此,程序中a值的变化不能太快,不然舵机跟不上程序。

根据需要,选择合适的延时,用一个a递增循环,可以让舵机很流畅的转动,而不会产生像步进电机一样的脉动。

这些还需要实践中具体体会。

舵机的速度决定于你给它的信号脉宽的变化速度。

举个例子,t=0试,脉宽为0.5ms,t=1s时,脉宽为1.0ms,那么,舵机就会从0.5ms对应的位置转到1.0ms 对应的位置,那么转动速度如何呢?一般来讲,3003的最大转动速度在4.8V时为0.23s/60度,也就是说,如果你要求的速度比这个快的话,舵机就反应不过来了;如果要求速度比这个慢,可以将脉宽变化值线性到你要求的时间内,做一个循环,一点一点的增加脉宽值,就可以控制舵机的速度了。

当然,具体这一点一点到底是多少,就需要做试验了,不然的话,不合适的话,舵机就会向步进电机一样一跳一跳的转动了,尝试改变这“一点”,使你的舵机运动更平滑。

还有一点很重要,就是舵机在每一次脉宽值改变的时候总会有一个转速由零增加再减速为零的过程,这就是舵机会产生像步进电机一样运动的原因#include<reg51.h>unsigned char count; //0.5ms次数标识,可修改sbit pwm=P0^0; //PWM信号输出口sbit up=P3^2; //角度增加按键检测I/O口sbit down=P3^3; //角度减少按键检测I/O口unsigned char angle; //角度标识void delay(unsigned char z){unsigned char x,y;for(x=125;x>0;x--)for(y=z;y>0;y--);}void Time0_Init() //定时器初始化{TMOD=0x01; //定时器0工作在方式1IE=0x82;TH0=0xff;TL0=0xa3; //11.0592MHz晶振,0.5msTR0=1; //定时器开始}void Time0_Int() interrupt 1{TH0=0xff;TL0=0xa3;if(count<angle) //判断0.5ms次数是否小于角度标识pwm=1; //确实小于,pwm输出高电平elsepwm=0; //大于则输出低电平count=(count+1); //0.5ms次数加1count=count%40; //次数始终保持为40即保持周期为20ms }void keyscan() //按键扫描{if(up==0) //角度增加按键是否按下{delay(20); //按下延时,消抖if(up==0) //确实按下{angle++; //角度标识加1count=0; //按键按下则20ms周期从新开始if(angle==20)angle=19; //已经是180度,则保持// while(up==0); //等待按键放开}}if(down==0) //角度减少按键是否按下{delay(20);if(down==0){angle--; //角度标识减1count=0;if(angle==4)angle=5; //已经是0度,则保持// while(down==0);}}}void main(){angle=12;count=0;Time0_Init();while(1){keyscan(); //按键扫描} }。

相关文档
最新文档