直线与平面垂直的判定与性质
直线与平面垂直的判定与性质(共26张PPT)

目 录
• 直线与平面垂直的判定 • 直线与平面垂直的性质 • 直线与平面垂直的证明 • 直线与平面垂直的应用 • 总结与展望 • 参考文献
01
直线与平面垂直的判定
直线与平面垂直的定义
01
直线与平面垂直是指直线与平面 内的任意一条直线都垂直。
02
如果一条直线与平面内的任意一 条直线都垂直,则这条直线与该 平面垂直。
建筑设计
在建筑设计中,直线与平面垂直的应用非常重要, 如确定建筑物的垂直度和水平面等。
机械制造
在机械制造中,直线与平面垂直的应用可以帮助 制造出精确的机械部件。
道路建设
在道路建设中,直线与平面垂直的应用可以帮助 确保道路的平直度和坡度等。
05
总结与展望
总结直线与平面垂直的判定与性质
判定方法 通过直线与平面内两条相交直线垂直来判定直线与平面垂直。
通过直线与平面内无数条直线垂直来判定直线与平面垂直。
总结直线与平面垂直的判定与性质
• 通过直线与平面垂直的性质定理来判定直线与平面垂直。
总结直线与平面垂直的判定与性质
01
性质定理
02
03
04
直线与平面垂直,则该直线与 平面内任意一条直线都垂直。
直线与平面垂直,则该直线所 在的所有直线都与该平面垂直
证明
假设有一条直线l与平面α垂直,那么直线l与平面α内的任意一条直线m都垂直。 由于直线l与平面α内的直线m都垂直,所以它们之间的夹角为90°,即直线l与平 面α内的任意一条直线都垂直。
直线与平面垂直的性质推论
推论1
证明
推论2
证明
如果一条直线与平面内的两 条相交直线都垂直,那么这
直线、平面垂直的判定及其性质

直线、平面垂直的判定及其性质(答案)【知识要点】一、直线与平面垂直的判定与性质 1、直线与平面垂直的判定(1)定义:如果一条直线与一个平面内的任何一条直线都垂直,那么这条直线和这个平面垂直。
(2)判定定理1:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。
符号表示:αα⊥⇒⎪⎭⎪⎬⎫=⊂⊥⊥l A n m n m n l m l 、,(3)判定定理2:如果两条平行直线中的一条直线垂直于一个平面,那么另一条也垂直于这个平面。
符号表示:αα⊥⇒⎭⎬⎫⊥a b b a2、直线与平面垂直的性质定理如果两条直线同时垂直于一个平面,那么这两条直线平行。
【例题1—1】下列说法中不正确的是( D )A 、空间中,一组对边平行且相等的四边形一定是平行四边形B 、同一平面的两条垂线一定共面C 、过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一平面内D 、过一条直线有且只有一个平面与已知平面垂直 二、两个平面垂直的判定与性质 1、两个平面垂直的判定(1)定义:两个平面相交,如果所成的二面角是直二面角,那么这两个平面互相垂直。
(2)判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
符号表示:βααα⊥⇒⊂⊥a a ,2、两个平面垂直的性质定理(1)如果两个平面垂直,那么在一个平面内垂直于它们交线的直线必垂直于另一个平面。
符号表示:βαβαβα⊥⇒⊥⊂=⊥a l a a l ,,,(2)如果两个平面垂直,那么经过一个平面内的一点且垂直于另一个平面的直线必在另一个平面内。
符号表示:αβαβα⊂⇒⊥∈∈⊥a a a P P ,,,【例题2—1】如图,已知PA 垂直于圆O 所在的平面,AB 是圆O 的直径,点C 是圆O 上任意一点,过A 作PC AE ⊥与E ,PB AF ⊥于F ,求证: (1)⊥AE 平面PBC ; (2)平面⊥PAC 平面PBC ; (3)EF PB ⊥。
高中 直线、平面垂直的判定与性质 知识点+例题+练习

教学过程在四棱锥P-ABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.规律方法证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面).解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.【训练1】(2013·江西卷改编)教学效果分析教学过程如图,直四棱柱ABCD-A1B1C1D1中,AB∥CD,AD⊥AB,AB=2,AD=2,AA1=3,E为CD上一点,DE=1,EC=3.证明:BE⊥平面BB1C1C.考点二平面与平面垂直的判定与性质【例2】(2014·深圳一模)如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB=BC=AA1,且AC=2BC,点D是AB的中点.证明:平面ABC1⊥平面B1CD.规律方法证明两个平面垂直,首先要考虑直线与平面的垂直,也教学效果分析教学过程可简单地记为“证面面垂直,找线面垂直”,是化归思想的体现,这种思想方法与空间中的平行关系的证明非常类似,这种转化方法是本讲内容的显著特征,掌握化归与转化思想方法是解决这类问题的关键.【训练2】如图,在长方体ABCDA1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中点.证明:平面ABM⊥平面A1B1M.考点三平行、垂直关系的综合问题教学效果分析教学过程【例3】(2013·山东卷)如图,在四棱锥P-ABCD中,AB⊥AC,AB⊥P A,AB∥CD,AB=2CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点.(1)求证:CE∥平面P AD;(2)求证:平面EFG⊥平面EMN.规律方法线面关系与面面关系的证明离不开判定定理和性质定理,而形成结论的“证据链”依然是通过挖掘题目已知条件来实现的,如图形固有的位置关系、中点形成的三角形的中位线等,都为论证提供了丰富的素材.【训练3】(2013·辽宁卷)如图,AB是圆O的直径,P A垂直圆O所在的平面,C是圆O上的点.(1)求证:BC⊥平面P AC;(2)设Q为P A的中点,G为△AOC的重心,求证:QG∥平面PBC.教学效果分析1.转化思想:垂直关系的转化2.在证明两平面垂直时一般先从现有的直线中寻找平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决.如有平面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直,然后进一步转化为线线垂直.故熟练掌握“线线垂直”、“面面垂直”间的转化条件是解决这类问题的关键.创新突破6——求解立体几何中的探索性问题【典例】(2012·北京卷)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.[反思感悟] (1)解决探索性问题一般先假设其存在,把这个假设作已知条件,和题目的其他已知条件一起进行推理论证和计算,在推理论证和计算无误的前提下,如果得到了一个合理的结论,则说明存在,如果得到了一个不合理的结论,则说明不存在.(2)在处理空间折叠问题中,要注意平面图形与空间图形在折叠前后的相互位置关系与长度关系等,关键是点、线、面位置关系的转化与平面几何知识的应用,注意平面几何与立体几何中相关知识点的异同,盲目套用容易导致错误.【自主体验】(2014·韶关模拟)如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD=12AB=2,点E为AC中点,将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图2.(1)求证:DA⊥BC;(2)在CD上找一点F,使AD∥平面EFB.基础巩固题组(建议用时:40分钟)一、填空题1.设平面α与平面β相交于直线m,直线a在平面α内,直线b 在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的________条件.2.(2014·绍兴调研)设α,β为不重合的平面,m,n为不重合的直线,则下列正确命题的序号是________.①若α⊥β,α∩β=n,m⊥n,则m⊥α;②若m⊂α,n⊂β,m⊥n,则n⊥α;③若n⊥α,n⊥β,m⊥β,则m⊥α;④若m∥α,n∥β,m⊥n,则α⊥β.3.如图,AB是圆O的直径,P A垂直于圆O所在的平面,C是圆周上不同于A,B的任一点,则图形中有________对线面垂直.4.若M是线段AB的中点,A,B到平面α的距离分别是4 cm,6 cm,则M到平面α的距离为________.5.(2014·郑州模拟)已知平面α,β,γ和直线l,m,且l⊥m,α⊥γ,α∩γ=m,β∩γ=l,给出下列四个结论:①β⊥γ;②l⊥α;③m⊥β;④α⊥β.其中正确的是________.6.如图,在四棱锥P ABCD中,P A⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为正确的条件即可)7.设α,β是空间两个不同的平面,m,n是平面α及β外的两条不同直线.从“①m⊥n;②α⊥β;③n⊥β;④m⊥α”中选取三个作为条件,余下一个作为结论,写出你认为正确的一个命题:________(用代号表示).8.如图,P A⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E,F分别是点A在PB,PC上的正投影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确结论的序号是________.二、解答题9.(2013·北京卷)如图,在四棱锥P ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面P AD⊥底面ABCD,P A⊥AD.E和F分别是CD和PC的中点.求证:(1)P A⊥底面ABCD;(2)BE∥平面P AD;(3)平面BEF⊥平面PCD.10.(2013·泉州模拟)如图所示,在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,点M是棱BB1上一点.(1)求证:B1D1∥平面A1BD;(2)求证:MD⊥AC;(3)试确定点M的位置,使得平面DMC1⊥平面CC1D1D.能力提升题组(建议用时:25分钟)一、填空题1.如图,在斜三棱柱ABCA1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在直线______上.2.如图,在四面体ABCD中,若截面PQMN是正方形,则在下列命题中,错误的为________.①AC⊥BD;②AC∥截面PQMN;③AC=BD;④异面直线PM与BD所成的角为45°.3.(2013·南通二模)如图,已知六棱锥P ABCDEF的底面是正六边形,P A⊥平面ABC,P A=2AB,则下列结论中:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面P AE;④∠PDA=45°.其中正确的有________(把所有正确的序号都填上).二、解答题4.(2014·北京西城一模)。
直线、平面垂直的判定及其性质

(2)求证:MN⊥CD;
(3)若∠PDA=45°,求证:MN⊥平面PCD.
二、直线与平面垂直的性质
1、如果一条直线和一个平面垂直,那么这条直线和这个平面 内的任何一条直线都垂直.
2、如果两条直线同垂直于一个平面, 那么这两条直线平行.
例4、已知三棱柱:ABC A1 B1C1的侧棱 与底面边长都相等,
(1)若A1 AB A1 AC BAC 60 , 求证:A1 A BC;
A1 B1 C1
(2)若A1在底面的射 影恰为底面ABC的 中心,求AB1与面ABC 所成的角的正弦值.
B
A
C
三、两个平面垂直的判定
1、根据定义.证明两平面所成的二面角是直二面角.
2、如果一个平面经过另一个平面的一条垂线,那么这两 个平面互相垂直.(判定定理)
F
l
(2)解
如图所示,假设存在F使平
F
面AFD⊥平面BFC,
∵AD∥BC,∴AD∥平面BFC, ∴AD平行于平面AFD与平面BFC的 交线l. ∵EP⊥平面ABCD, ∴EP⊥AD,而AD⊥AB, ∴AD⊥平面EAB,∴l⊥平面FAB, ∴∠AFB为平面AFD与平面BFC所成二面角的平面角,
l
∵P是AB中点,且FP⊥AB,
一、三垂线定理和三垂线定理的逆定理 三垂线定理 在平面内的一条直线,如果和这个平面的一
条斜线的射影垂直,那么它也和这条斜线垂 直.
已知 PA、PO分别是平面的垂线、斜线,AO是PO在
平面上的射影。a ,a⊥AO,则 P
PA a aPO aAO
a⊥PO
P
1
M
2
A
1
B
D
直线平面垂直的判定及性质

(2)连接PM、CM,∵∠PDA=45°,PA⊥AD, ∴AP=AD. ∵四边形ABCD为矩形,∴AD=BC,∴PA=BC. 又∵M为AB的中点,∴AM=BM. 而∠PAM=∠CBM=90°,∴PM=CM. 又N为PC的中点,∴MN⊥PC. 由(1)知,MN⊥CD,PC∩CD=C, ∴MN⊥平面PCD. 探究提高 垂直问题的证明,其一般规律是“由已 知想性质,由求证想判定”,也就是说,根据已 知条件去思考有关的性质定理;根据要求证的结 论去思考有关的判定定理,往往需要将分析与综 合的思路结合起来.
基础自测Βιβλιοθήκη 1.设l、m、n均为直线,其中m、n在平面α内,
则“l⊥α”是“l⊥m且l⊥n”的( A )
A.充分不必要条件 B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
解析 当l⊥α时,l⊥m且l⊥n.但当l⊥m,l⊥n
时,若m、n不是相交直线,则得不到l⊥α.
2.若P是平面α外一点,则下列命题正确的是( D) A.过P只能作一条直线与平面α相交 B.过P可作无数条直线与平面α垂直 C.过P只能作一条直线与平面α平行 D.过P可作无数条直线与平面α平行 解析 过P点存在一平面与α平行,则该平面内 过P的直线有无数条都与α平行.
(2)解 取AB的中点E,连结DE、PE,
由E为AB的中点知DE∥BC,
∵AB⊥BC,∴AB⊥DE.
∵PD⊥平面ABC,∴PD⊥AB.
又AB⊥DE,DE∩PD=D,
∴AB⊥平面PDE,∴PE⊥AB.
∴∠PED是二面角P—AB—C的平面角.
在△PED中,DE 1 BC 6 , PD 3, ∠PDE=90°,
在底面四边形ABCD中,AB∥DC,AB=2DC,
直线、平面垂直的判定及性质

第3讲直线、平面垂直的判定及性质1.直线与平面垂直:(1)方法1:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.(2)方法2:如果两条直线平行,其中一条直线垂直于一个平面,那么另一条直线垂直于该平面.(3)方法3:如果两个平面垂直,那么一个平面内垂直于它们的交线的直线垂直于另一个平面.2.面面垂直:(1)方法1:两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直.(2) 方法2:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.考向一直线与平面垂直的判定与性质【1】如图,在四棱锥P-ABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.【2】(2012·南通调研)如图,平面P AC⊥平面ABC,点E、F、O分别为线段P A、PB、AC的中点,点G 是线段CO的中点,AB=BC=AC=4,P A=PC=2 2.求证:(1)P A⊥平面EBO;(2)FG∥平面EBO.【3】(2012·福建卷)如图,在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD的中点.(1)求证:B1E⊥AD1;(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE;若存在,求出AP的长;若不存在,说明理由.【4】(2012·镇江调研)如图所示,四棱锥P-ABCD的底面是一直角梯形,BA⊥AD,CD⊥AD,CD=2AB,P A⊥底面ABCD,E为PC的中点.(1)证明:EB∥平面P AD;(2)若P A=AD,证明:BE⊥平面PDC.【5】(2011·扬州调研)如图,在平行四边形ABCD中,BD⊥CD,正方形ADEF所在的平面和平面ABCD 垂直,点H是BE的中点,点G是AE、DF的交点.(1)求证:GH∥平面CDE;(2)求证:BD⊥平面CDE.【6】(2012·扬州调研)在正三棱柱ABC-A1B1C1中,点D是BC的中点,BC=BB1.(1)求证:A1C∥平面AB1D;(2)试在棱CC1上找一点M,使MB⊥AB1.考向二平面与平面垂直的判定与性质【7】如图所示,△ABC为正三角形,EC⊥平面ABC,BD∥CE,EC=CA=2BD,M是EA的中点.求证:(1)DE=DA;(2)平面BDM⊥平面ECA.【8】(2011·江苏卷)如图在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,AB =AD ,∠BAD =60°,E ,F 分别是AP ,AD 的中点.求证:(1)直线EF ∥平面PCD ; (2)平面BEF ⊥平面P AD .考向三 线面、面面垂直的综合应用【9】(2012·广东)如图所示,在四棱锥P -ABCD 中,AB ⊥平面P AD ,AB ∥CD ,PD =AD ,E 是PB 的中点,F 是DC 上的点且DF =12AB ,PH 为△P AD 中AD 边上的高. (1)证明:PH ⊥平面ABCD ; (2)若PH =1,AD =2,FC =1,求三棱锥E -BCF 的体积; (3)证明:EF ⊥平面P AB .【10】(2012·南通市第一学期期末考试)在如图所示的几何体中,四边形ABCD 是正方形,MA ⊥平面ABCD ,PD ∥MA ,E 、G 、F 分别为MB 、PB 、PC 的中点,且AD =PD =2MA .(1)求证:平面EFG ⊥平面PDC ; (2)求三棱锥P -MAB 与四棱锥P -ABCD 的体积之比.考向四 求线段的长度问题【11】(2011·浙江卷)如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)在线段AP 上是否存在点M ,使得二面角A -MC -B 为直二面角?若存在,求出AM 的长;若不存在,请说明理由.【12】(2011·江西卷)如图,在△ABC 中,∠B =π2,AB =BC =2,P 为AB 边上一动点,PD ∥BC 交AC 于点D ,现将△PDA 沿PD 翻折至△PDA ′,使平面PDA ′⊥平面PBCD .(1)当棱锥A ′-PBCD 的体积最大时,求P A 的长;(2)若点P 为AB 的中点,E 为A ′C 的中点,求证:A ′B ⊥DE .【训练达标】【1】如图,在四棱锥P —ABCD 中,P A ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,P A =AB =BC ,E 是PC 的中点.证明:(1)CD ⊥AE ; (2)PD ⊥平面ABE .【2】(2012·江苏)如图,在直三棱柱ABC -A 1B 1C 1中,A 1B 1=A 1C 1,D ,E 分别是棱BC ,CC 1上的点(点D不同于点C ),且AD ⊥DE ,F 为B 1C 1的中点.求证:(1)平面ADE ⊥平面BCC 1B 1; (2)直线A 1F ∥平面ADE .【3】如图所示,在四棱锥P —ABCD 中,平面P AD ⊥平面ABCD ,AB ∥DC ,△P AD 是等边三角形,已知BD =2AD =8,AB =2DC =4 5.(1)设M 是PC 上的一点,求证:平面MBD ⊥平面P AD ; (2)求四棱锥P —ABCD 的体积.【4】如图所示,已知长方体ABCD —A 1B 1C 1D 1的底面ABCD 为正方形,E 为线段AD 1的中点,F 为线段BD 1的中点,(1)求证:EF ∥平面ABCD ;(2)设M 为线段C 1C 的中点,当D 1D AD的比值为多少时,DF ⊥平面D 1MB ?并说明理由.【5】如图,在四棱锥P —ABCD 中,P A ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,P A =AB =BC ,E 是PC 的中点.(1)求PB 和平面P AD 所成的角的大小;(2)证明AE ⊥平面PCD ;(3)求二面角A —PD —C 的正弦值.【6】如图所示,M,N,K分别是正方体ABCD—A1B1C1D1的棱AB,CD,C1D1的中点.求证:(1)AN∥平面A1MK;(2)平面A1B1C⊥平面A1MK.【7】如图所示,在斜三棱柱A1B1C1—ABC中,底面是等腰三角形,A1B1=A1C1,侧面BB1C1C⊥底面A1B1C1.(1)若D是BC的中点,求证:AD⊥CC1;(2)过侧面BB1C1C的对角线BC1的平面交侧棱于M,若AM=MA1,求证:截面MBC1⊥侧面BB1C1C.【8】如图,在正方体ABCD—A1B1C1D1中,E、F分别是CD、A1D1的中点.(1)求证:AB1⊥BF;(2)求证:AE⊥BF;(3)棱CC1上是否存在点P,使BF⊥平面AEP?若存在,确定点P的位置,若不存在,说明理由.【9】如图所示,在三棱锥P—ABC中,△P AB是等边三角形,∠P AC=∠PBC=90°.(1)证明:AB⊥PC;(2)若PC=4,且平面P AC⊥平面PBC,求三棱锥P—ABC的体积.【10】如图,在三棱柱ABC—A1B1C1中,AA1⊥BC,∠A1AC=60°,A1A=AC=BC=1,A1B= 2.(1)求证:平面A1BC⊥平面ACC1A1;(2)如果D为AB中点,求证:BC1∥平面A1CD.。
直线与平面垂直的判定和性质

直线与平面垂直的判定和性质1.定义:一条直线和平面内的任何一条直线都垂直,我们说这条直线和这个平面互相垂直,直线叫做平面的垂线,平面叫做直线的垂面. 2. 直线和平面垂直的判定定理.如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面. 3.直线和平面垂直的性质定理如果两条直线同垂直与一个平面,那么这两条直线平行 4.唯一性定理(1)过一点有且只有一条直线与已知平面垂直。
(2)过一点有且只有一个平面与已知直线垂直。
5.距离(1)点到平面的距离的定义:从平面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离. (2)直线和平面的距离的定义:一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离.6、平面的斜足、斜线、斜线在平面内的射影(1)直线l 与平面α斜交:当直线l 与平面α相交且不垂直时,叫做直线l 与平面α斜交。
此时l 叫平面α的斜线;直线l 与平面α斜交于点M ,点M 叫斜足。
(2)点的射影:直线α⊥PQ 于Q ,点Q 是点P 在α内的射影。
PQ 是P 到平面α的垂线段。
(3)直线l 在平面α上的射影:直线MQ 叫作直线l 在平面α上的射影。
射影定理:从平面外一点向这个平面所引的垂线段和斜线段中: (1) 射影相等的两条斜线段相等,射影较长的斜线段也较长; (2) 相等的斜线段的射影相等,较长的斜线段的射影较长; (3) 垂线段比任何一条线段都短。
7、直线与平面α所成的角:(1)斜线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角,叫做这条直线和这个平面所成的角;(2)直线和平面垂直,它们所成的角是90;(3)直线在平面内或与平面平行,它们所成的角是0; 注:一条直线和平面α所成的角的范围是]2,0[π直线和平面所成角的步骤 : ①作图—找出或作出直线在平面上的射影 ②证明—证明所找或所作的角即为所求角 ③计算—通常在三角形中计算角8.三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直 三垂线定理的逆定理:在平面内的一条直线,如果和这个平面上的一条斜线垂直,那么它也和这条斜线的射影垂直例题:1.一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是( ) A . 垂直 B . 平行 C . 相交不垂直 D .不确定2、下列命题中错误的是( )A .若一直线垂直于一平面,则此直线必垂直于这一平面内所有直线B .若一平面经过另一平面的垂线,则两个平面互相垂直C .若一条直线垂直于平面内的无数条直线,则此直线垂直于这一平面D .若平面内的一条直线和这一平面的一条斜线的射影垂直,则它也和这条斜线垂直3.如图,已知正四棱柱1111D C B A ABCD -中,过点B 作B 1C 的垂线交侧棱CC 1于点E ,交B 1C 于点F ,求证:A 1C ⊥平面BDE ;4.如图,四面体ABCD 中,O 分别是BD的中点,2,CA CB CD BD AB AD ======求证:AO ⊥平面BCD ;5.正方体ABCD -A 1B 1C 1D 1中,E 、F 分别是AA 1、AB 的中点,则EF 与对角面BDD 1B 1所成角的度数是( )A .30°B .45°C .60°D .150°6.如图,已知三棱锥S -ABC 中,底面ABC 为边长等于2的等边三角形,SA ⊥底面ABC ,SA =3,那么直线SB 与平面SAC 所成角的正弦值为________.7.如图,直线l 是平面α的斜线,AB ⊥α,B 为垂足,如果θ=45°,∠AOC=60°,则∠BOC=( ) A .45° B .30° C .60° D .15°8.在正方体ABCD —A 1B 1C 1D 1中,求: (1)直线1D B 与平面ABCD 所成角的正弦值。
直线、平面垂直的判定及其性质

直线、平面垂直的判定及其性质知识要点梳理知识点一、直线和平面垂直的定义与判定1.直线和平面垂直定义如果直线和平面内的任意一条直线都垂直,我们就说直线与平面互相垂直,记作.直线叫平面的垂线;平面叫直线的垂面;垂线和平面的交点叫垂足.2.直线和平面垂直的判定定理判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.知识点二、斜线、射影、直线与平面所成的角一条直线和一个平面相交,但不和这个平面垂直,这条直线叫做这个平面的斜线.过斜线上斜足外的一点间平面引垂线,过垂足和斜足的直线叫做斜线在这个平面内的射影.平面的一条斜线和它在平面上的射影90],叫做这条直线和这个平面所成的角.所成的锐角[00至0知识点三、二面角1.二面角定义平面内的一条直线把平面分成两部分,这两部分通常称为半平面.从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫二面角的棱,这两个半平面叫做二面角的面.2.二面角的平面角在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的射线,则这两条射线构成的角叫做二面角的平面角.二面角的大小可以用它的平面角来度量,二面角的平面角是多少度,就说这个二面角是多少度.平面角是180]直角的二面角叫做直二面角二面角范围是[00至0知识点四、平面与平面垂直的定义与判定1.平面与平面垂直定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面垂直. 表示方法:平面与垂直,记作.2.平面与平面垂直的判定定理判定定理:一个平面过另一个平面的垂线,则这两个平面垂直. 符号语言: 图形语言:知识点五、直线与平面垂直的性质1.基本性质一条直线垂直于一个平面,那么这条直线垂直于这个平面内的所有直线.2.性质定理1垂直于同一个平面的两条直线平行.2垂直于同一条直线的两个平面平行知识点六、平面与平面垂直的性质性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.如果两个平面互相垂直那么经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内 例1 在三棱锥P A B C -中,侧面PAC 与面ABC 垂直,3PA PB PC ===.求证:A B B C ⊥; 设23AB BC ==,求A C 与平面PBC 所成角的大小.例2 如图,直角A B C △所在平面外一点S ,且SA SB SC ==,点D 为斜边A C 的中点.求证:SD ⊥平面ABC ;若A B B C =,求证:B D ⊥面S A C .例3 在正方体ABCD-A1B1C1D1中.(1)求直线A1B 和平面ABCD 所成的角;(2)求直线A1B 和平面A1B1CD 所成的角.例4如图所示,河堤斜面与水平面所成二面角为300,堤面上有一条直道CD ,它与堤角的水平线AB 的夹角为450 ,沿这条直道从堤脚C 向上行走10m 到达E 处,此时人升高了多少m ?例5 在四面体ABCD 中,已知AC ⊥BD,∠ BAC= ∠CAD=45°,∠BAD=60°,求证:平面ABC ⊥平面ACD.例6四棱锥P-ABCD 的底面是矩形,AB=2,侧面PAB 是等边三角形,且侧面PAB ⊥底面ABCD.证明:侧面PAB ⊥侧面PBC ;(2)求侧棱PC 与底面ABCD 所成的角A B C DE一、选择题1.两异面直线在平面α内的射影()A.相交直线 B.平行直线 C.一条直线—个点 D.以上三种情况均有可能2.在下列四个命题中,假命题为()A.如果一条直线垂直于平面内的无数条直线,那么这条直线和这个平面垂直B.垂直于三角形两边的直线必垂直于第三边C.过点A垂直于直线a的所有直线都在过点A垂直于a的平面内D.如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面3.已知P是四边形ABCD所在平面外一点且P在平面ABCD内的射影在四边形ABCD内,若P到这四边形各边的距离相等,那么这个四边形是()A.圆内接四边形 B.矩形 C.圆外切四边形 D.平行四边形4.在△ABC中,AB=AC=5,BC=6,PA⊥平面ABC,PA=8,则P到BC的距离等于()A.5 B.52 C.35 D.455.A、B两点相距4cm,且A、B与平面a的距离分别为3cm和1cm,则AB与平面a所成角的大小是()A.30°B.60°C.90°D.30°或90°6. 直线a不垂直于平面α,则α内与a垂直的直线有()A.0条B.1条C.无数条D.α内所有直线7. 已知三条直线m,n,l,三个平面α,β,γ.下面四个命题中,正确的是()A.αγαββγ⊥⎫⇒⎬⊥⎭//B.mll mββ⎫⇒⊥⎬⊥⎭//C.mm nnγγ⎫⇒⎬⎭//////D.mm nnγγ⊥⎫⇒⎬⊥⎭//8. 设a,b是异面直线,下列命题正确的是()A.过不在a,b上的一点P一定可以作一条直线和a,b都相交B.过不在a,b上的一点P一定可以作一个平面和a,b垂直C.过a一定可以作一个平面与b垂直D.过a一定可以作一个平面与b平行二、填空题1.AB是平面α的斜线段,其长为a,它在平面α内的射影A′B的长为b,则垂线A′A_________.2.如果直线l、m与平面α、β、γ满足:l=β∩γ,l⊥α,mα和m⊥γ,现给出以下四个结论:α∥γ且l⊥m;②αγ且m∥β③αβ且l⊥m;④αγ且l⊥m;其中正确的为“________”3.给出以下四个命题(1)两条平行直线在同一平面内的射影一定是平行直线;(2)两条相交直线在同一平面内的射影一定是相交直线;(3)两条异面直线在同一平面内的射影—定是两条相交直线;(4)一个锐角在平面内的射影一定是锐角.其中假命题的共有_________个.4. αβ,是两个不同的平面,m n ,是平面α及β之外的两条不同的直线,给出四个论断: m n ⊥①;αβ⊥②;n β⊥③;m α⊥④.以其中三个论断作为条件,余下的一个论断作为结论,写出你认为正确的一个命题__________.5 设O 为平行四边形A B C D 对角线的交点,P 为平面A C 外一点且有P A P C =,PB PD =,则P O 与平面A B C D 的关系是_____________.6.设三棱锥P A B C -的顶点P 在底面ABC 内射影O (在A B C △内部,即过P 作P O ⊥底面ABC ,交于O ),且到三个侧面的距离相等,则O 是A B C △的______心.三、解答题1如图所示,平面α∥平面β,点A ∈α,C ∈α,点B ∈β,D ∈β,点E ,F 分别在线段AB ,CD 上,且AE ∶EB=CF ∶FD.求证:EF ∥β;(2)若E ,F 分别是AB ,CD 的中点,AC=4,BD=6且AC ,BD 所成的角为60°,求EF 的长2在正三棱柱ABC ﹣A1B1C1中,侧棱长为,底面三角形的边长为1,则BC1与侧面ACC1A1所成的角是3.三棱锥 P-ABC 中,PC ⊥平面ABC ,PC =32 ,D 是 BC 的中点,且△ADC 是边长为 2的正三角形,求二面角 P-AB -C 的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线与平面垂直的判定与性质
典型例题
1、设m 、n 是两条不同的直线,α、β是两个不同的平面.考查下列命题,其中正确的命题是( )
A .βαβα⊥⇒⊥⊂⊥n m n m ,,
B .n m n m ⊥⇒⊥βαβα//,,//
C .n m n m ⊥⇒⊥⊥βαβα//,,
D .ββαβα⊥⇒⊥=⊥n m n m ,, 解析:正确的命题是n m n m ⊥⇒⊥βαβα//,,//,选B.
2、如图,四面体ABCD 中,O 、E 分别BD 、 BC 的中点,CA =CB =CD =BD =2 求证:AO ⊥平面BCD ;
本小题主要考查直线与平面的位置关系、异面直线所
成的角以及点到平面的距离基本知识,考查空间想象
能力、逻辑思维能力和运算能力。
)证明:连结OC ,,.BO DO AB AD AO BD ==∴⊥ ,,.BO DO BC CD CO BD ==∴⊥
在AOC ∆中,由已知可得1, 3.AO CO ==
而2,AC = 2
2
2
,AO CO AC ∴+=
90,o AOC ∴∠=即.AO OC ⊥
,BD OC O = AO ∴⊥平面BCD
一、选择题
1.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 是A 1B 1
的中点,则E 到平面AB C 1D 1的距离为( ) A .
2
3
B .22
C .2
1 D .
3
3
2、在正四面体P -ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,下面四个结论中不成立...的是( )
(A )BC //平面PDF (B )DF ⊥平面P A E
A B M D E O
C
(C )平面PDF ⊥平面ABC (D )平面P AE ⊥平面 ABC
3、设γβα、、为平面,l n m 、、为直线,则β⊥m 的一个充分条件是 ( )
(A) l m l ⊥=⋂⊥,,βαβα (B) γβγαγα⊥⊥=⋂,,m (C) αγβγα⊥⊥⊥m ,,
(D) αβα⊥⊥⊥m n n ,,
4、如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..
的是 (A )BD ∥平面CB 1D 1 (B)AC 1⊥BD
(C)AC 1⊥平面CB 1D 1 (D)异面直线AD 与CB1 所成的角为60°
5、(选做)已知二面角l αβ--的大小为060,,m n 为异面直线,且,m n ββ⊥⊥,则,m n 所成的角为
(A )030 (B )060 (C )090 (D )0120 二、填空题
6、如图,PA ⊥平面ABC ,∠ABC=90°且PA=AC=BC=a 则异面直线PB 与AC 所成角的正切值等于 .
7、如图,在正三棱柱111C B A ABC -中,1=AB .若二面角1C AB C --的大小为 60,则点C 到平面1ABC 的距离为______________.
8(选做)如图,正方体1AC 的棱长为1,过点作平面1A BD 的垂线,垂足为点H .有下列四个命题
A.点H 是1A BD △的垂心 B.AH 垂直平面11CB D
C.二面角111C B D C --的正切值为2 D.点H 到平面1111A B C D 的距离为34
其中真命题的代号是
.(写出所有真命题的代号)
三、解答题
9、如图,已知两个正四棱锥P -ABCD 与
Q -ABCD 的高都是2,AB =4. 证明PQ ⊥平面ABCD ;
10、在正三角形ABC 中,E 、F 、P 分别是AB 、AC 、BC 边上的点,满足AE:EB =CF:FA =CP:PB =1:2(如图1)。
将△AEF 沿EF 折起到EF A 1∆的位置,使二面角A 1-EF -B 成直二面角,连结A 1B 、A 1P (如图2)求证:A 1E ⊥平面BEP ;
11(选做)如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,∠DAB 为直角,AB ‖CD,AD =CD =24,E 、F 分别为PC 、CD 的中点. 试证:CD ⊥平面BEF;
Q
B
C
P
A
D
A
F
E
C
B
A 1
E
F
C
P B
图1
图2
答案: 1、 B 2、 C 3、 D 4、 D 5、B 6、2
7、解析:过C 作CD ⊥AB ,D 为垂足,连接C 1D ,则C 1D ⊥AB ,∠C 1DC=60°,CD=2
3
,则C 1D=3,CC 1=
2
3
,在△CC 1D 中,过C 作CE ⊥C 1D ,则CE 为点C 到平面1ABC 的距离,
334=,所以点C 到平面AB C 1的距离为43 8、 A 、B 、C
9、取AD 的中点,连结PM ,QM .因为P -ABCD 与Q -ABCD 都是正四棱锥,
所以AD ⊥PM ,AD ⊥QM . 从而AD ⊥平面PQM .又⊂PQ 平面PQM ,所以PQ ⊥AD . 同理PQ ⊥AB ,所以PQ ⊥平面ABCD . 10、不妨设正三角形ABC 的边长为3
在图1中,取BE 中点D ,连结DF. AE :EB=CF :FA=1:2∴AF=AD=2而∠A=600
, ∴△ADF 是正三角形,又AE=DE=1, ∴EF ⊥AD 在图2中,A 1E ⊥EF, BE ⊥EF, ∴∠A 1EB 为二面角A 1-EF -B 的平面角。
由题设条件知此二面角为直二面角,A 1E ⊥BE,又BE EF E =∴A 1E ⊥平面BEF,即 A 1E ⊥平面BEP 11、证:由已知//DF
AB =
且DAB ∠为直角。
故ABFD 是矩形。
从而CD BF ⊥。
又PB ⊥
底面ABCD ,CD AD ⊥,故由三垂线定理知.CD PD ⊥ D PDC 中,E 、F 分别为PC 、CD 的中点,故EF//PD,从而CD EF ⊥,由此得CD ⊥面BEF 。