机器学习与SVM支持向量机

合集下载

《支持向量机SVM》课件

《支持向量机SVM》课件

多分类SVM
总结词
多类分类支持向量机可以使用不同的核函数和策略来解决多 类分类问题。
详细描述
多类分类支持向量机可以使用不同的核函数和策略来解决多 类分类问题。常用的核函数有线性核、多项式核和RBF核等 。此外,一些集成学习技术也可以与多类分类SVM结合使用 ,以提高分类性能和鲁棒性。
03
SVM的训练与优化
细描述
对于非线性数据,线性不可分SVM通 过引入核函数来解决分类问题。核函 数可以将数据映射到更高维空间,使 得数据在更高维空间中线性可分。常 用的核函数有线性核、多项式核和径 向基函数(RBF)。
通过调整惩罚参数C和核函数参数, 可以控制模型的复杂度和过拟合程度 。
详细描述
多分类支持向量机可以通过两种策略进行扩展:一对一(OAO)和一对多(OAA)。 在OAO策略中,对于n个类别的多分类问题,需要构建n(n-1)/2个二分类器,每个二分 类器处理两个类别的分类问题。在OAA策略中,对于n个类别的多分类问题,需要构建
n个二分类器,每个二分类器处理一个类别与剩余类别之间的分类问题。
鲁棒性高
SVM对噪声和异常值具有 一定的鲁棒性,这使得它 在许多实际应用中表现良 好。
SVM的缺点
计算复杂度高
对于大规模数据集,SVM的训练时间可能会很长,因为其需要解决一 个二次规划问题。
对参数敏感
SVM的性能对参数的选择非常敏感,例如惩罚因子和核函数参数等, 需要仔细调整。
对非线性问题处理有限
SVM的优点
分类效果好
SVM在许多分类任务中表 现出了优秀的性能,尤其 在处理高维数据和解决非 线性问题上。
对异常值不敏感
SVM在训练过程中会寻找 一个最优超平面,使得该 平面的两侧的类别距离最 大化,这使得SVM对异常 值的影响较小。

机器学习中的支持向量机与朴素贝叶斯算法比较

机器学习中的支持向量机与朴素贝叶斯算法比较

机器学习中的支持向量机与朴素贝叶斯算法比较支持向量机(Support Vector Machines,SVM)和朴素贝叶斯(Naive Bayes)算法都是机器学习中常用的分类算法,但它们在原理、应用领域、假设和实现方面有很大的差异。

接下来将对这两个算法进行详细的比较。

1.原理:SVM是一种监督学习模型,其基本原理是找到一个超平面来最大化不同类别之间的间隔,以达到最佳分类效果。

SVM可以通过使用不同的核函数来灵活处理不同类型的数据。

朴素贝叶斯算法则基于贝叶斯定理,利用属性之间的条件独立性假设进行分类。

它假设所有属性对于给定类别的出现都是独立的,从而简化了计算问题。

朴素贝叶斯通过计算每个类别的概率,并选择具有最高概率的类别进行分类。

2.应用领域:SVM广泛应用于文本分类、图像识别、生物信息学等领域。

它在处理高维数据和非线性数据上具有优势,可以通过核函数将低维数据映射到高维空间进行分类。

朴素贝叶斯算法在文本分类、垃圾邮件过滤、情感分析等领域有广泛的应用。

由于它的简单性和效率,朴素贝叶斯算法在处理大规模数据集时表现出色。

3.假设:SVM假设数据是线性可分的,即存在一个超平面可以完美地将不同类别的数据分开。

对于线性不可分的数据,SVM可以通过引入松弛变量来容忍一定的错误。

朴素贝叶斯算法假设所有属性之间是条件独立的。

这是一个强假设,通常在实际应用中不成立。

然而,在实践中,朴素贝叶斯算法通常能够产生良好的分类结果,尤其是在属性之间存在较弱依赖关系时。

4.实现:SVM的实现包括选择核函数、优化超参数和求解最优化问题。

常用的核函数有线性核、多项式核和高斯核。

对于大规模数据集,通常使用支持向量机进行分类。

朴素贝叶斯算法的实现相对简单,主要计算类别的概率和属性条件概率。

可以使用最大似然估计或贝叶斯估计来计算这些概率。

朴素贝叶斯算法常用于处理文本数据,特别是在大规模数据集上表现良好。

5.优缺点:SVM的优点包括能够处理高维数据、非线性数据和大规模数据集,具有较强的泛化能力。

支持向量机(SVM)原理详解

支持向量机(SVM)原理详解

支持向量机(SVM)原理详解支持向量机(Support Vector Machine, SVM)是一种机器学习算法,用于二分类和多分类问题。

它的基本思想是寻找一个超平面,能够将不同类别的数据分隔开来,并且与最近的数据点之间的间隔最大。

一、原理概述:SVM的基本原理是将原始数据映射到高维空间中,使得在该空间中的数据能够线性可分,然后在高维空间中找到一个最优的超平面。

对于线性可分的情况,SVM通过最大化分类边界与最近数据点之间的距离,并将该距离定义为间隔,从而使分类边界具有更好的泛化能力。

二、如何确定最优超平面:1.线性可分的情况下:SVM寻找一个能够将不同类别的数据分开的最优超平面。

其中,最优超平面定义为具有最大间隔(margin)的超平面。

间隔被定义为超平面到最近数据点的距离。

SVM的目标是找到一个最大化间隔的超平面,并且这个超平面能够满足所有数据点的约束条件。

这可以通过求解一个凸二次规划问题来实现。

2.线性不可分的情况下:对于线性不可分的情况,可以使用一些技巧来将数据映射到高维空间中,使其线性可分。

这种方法被称为核技巧(kernel trick)。

核技巧允许在低维空间中计算高维空间的内积,从而避免了直接在高维空间中的计算复杂性。

核函数定义了两个向量之间的相似度。

使用核函数,SVM可以在高维空间中找到最优的超平面。

三、参数的选择:SVM中的参数有两个主要的方面:正则化参数C和核函数的选择。

1.正则化参数C控制了分类边界与数据点之间的权衡。

较大的C值将导致更少的间隔违规,增加将数据点分类正确的权重,可能会导致过拟合;而较小的C值将产生更宽松的分类边界,可能导致欠拟合。

2.核函数选择是SVM中重要的一步。

根据问题的特点选择合适的核函数能够更好地处理数据,常用的核函数有线性核函数、多项式核函数和高斯核函数等。

四、优缺点:SVM有以下几个优点:1.在灵活性和高扩展性方面表现出色,尤其是在高维数据集上。

2.具有良好的泛化能力,能够很好地处理样本数量较少的情况。

基于深度学习的支持向量机特征提取方法

基于深度学习的支持向量机特征提取方法

基于深度学习的支持向量机特征提取方法深度学习和支持向量机(Support Vector Machine,SVM)是机器学习领域中两个重要的技术。

深度学习通过多层神经网络的学习和训练,能够自动地从原始数据中提取出高层次的特征表示。

而SVM则是一种用于分类和回归分析的监督学习模型,其通过寻找最优超平面来实现对数据的分类。

本文将探讨如何将深度学习与SVM相结合,以提取更有效的特征表示。

一、深度学习在特征提取中的优势深度学习通过多层神经网络的训练,能够学习到数据的非线性特征表示。

相比传统的特征提取方法,深度学习能够自动地从原始数据中提取出更具有判别性的特征。

这是因为深度学习模型具有较强的非线性拟合能力,能够通过多层次的变换将原始数据映射到更高维度的特征空间中。

这些特征能够更好地反映数据的内在结构,从而提高分类和回归任务的性能。

二、支持向量机的特征提取方法SVM在特征提取方面的优势主要体现在其对于特征选择的能力。

SVM通过寻找最优超平面,能够选择出最具有判别性的特征子集。

这是因为在SVM的优化目标中,只有支持向量才对分类决策起作用,而其他非支持向量的特征则不会对分类结果产生影响。

因此,SVM能够从原始特征中选择出最重要的特征,提高分类的准确性和泛化能力。

三、将深度学习与SVM相结合,可以充分发挥两者的优势,提取更有效的特征表示。

一种常见的方法是使用深度学习模型对原始数据进行预训练,然后将预训练得到的特征作为输入,训练SVM模型进行分类。

这种方法能够通过深度学习模型的非线性拟合能力,提取出更具有判别性的特征表示,从而提高SVM的分类性能。

另一种方法是使用深度学习模型作为特征提取器,将其最后一层隐藏层的输出作为特征输入到SVM模型中。

这种方法能够利用深度学习模型对数据的自动学习能力,提取出更具有判别性的特征表示。

同时,通过将深度学习模型的输出作为特征输入到SVM中,可以利用SVM的特征选择能力,选择出最重要的特征子集,进一步提高分类性能。

机器学习技术中的回归问题与支持向量机算法

机器学习技术中的回归问题与支持向量机算法

机器学习技术中的回归问题与支持向量机算法在机器学习领域,回归问题是一类重要而常见的问题。

回归问题的目标是建立一个函数模型,用于预测一个或多个连续的因变量。

在回归问题中,支持向量机(Support Vector Machine,SVM)算法是一种常用且有效的方法。

本文将介绍回归问题的基本概念和支持向量机算法的原理与应用。

首先,回归问题的特点是需要预测的因变量是连续的。

这与分类问题不同,分类问题需要将样本分为离散的类别。

回归问题可以分为线性回归和非线性回归两种类型。

线性回归是指因变量与自变量之间存在线性关系的情况,而非线性回归则涉及到更复杂的因变量与自变量之间的关系。

回归问题的目标是找到一条或多条曲线或者超平面,能够最好地拟合样本数据,从而实现对未知数据的预测。

支持向量机是一种非常强大的机器学习算法,被广泛用于分类和回归问题。

支持向量机的基本思想是通过在特征空间中找到一个最优的超平面,将不同类别的样本分开,实现分类或者回归的目标。

支持向量机的优势在于其对于高维空间和非线性问题的处理能力。

在支持向量机回归中,我们首先将样本数据转换到高维空间。

然后,我们希望通过选取最优的超平面,使得样本点到这个超平面的距离最小,并且预测的结果与真实值的误差最小。

超平面的选择依赖于支持向量,即与超平面最近的一些样本点。

这些支持向量决定了超平面的位置和方向,进而影响预测结果。

支持向量机通过最大化间隔来选择最佳的超平面,从而降低模型的复杂度和预测误差。

支持向量机回归的关键在于选择合适的核函数。

核函数的作用是将原始的样本数据映射到高维空间,从而使得样本在高维空间中容易分开。

常用的核函数包括线性核、多项式核、径向基函数(Radial Basis Function,RBF)等。

选择合适的核函数需要根据数据的特点和问题的需求进行调整。

支持向量机回归的一个重要应用是房价预测。

通过收集各种与房价相关的特征,如卧室数量、浴室数量、房屋面积等,可以建立一个回归模型,通过支持向量机算法预测房屋的价格。

基于机器学习的肝癌早期诊断模型研究

基于机器学习的肝癌早期诊断模型研究

基于机器学习的肝癌早期诊断模型研究一、前言肝癌是一种常见的恶性肿瘤,其高发率和危险程度使得早期发现和诊断非常重要。

目前,很多研究者通过机器学习的方法来对肝癌进行早期诊断,取得了不错的效果。

本文将对基于机器学习的肝癌早期诊断模型进行研究和探讨。

二、机器学习在肝癌早期诊断方面的应用机器学习是一种基于数据和统计学理论的人工智能方法,其可以高效地提取数据中的关键信息,帮助实现精度高、速度快的肝癌早期诊断。

在肝癌早期诊断方面,常用的机器学习算法包括支持向量机(SVM)、随机森林(Random Forest)和深度学习等。

1.支持向量机支持向量机(SVM)是一种二分类模型,其基本思想是在训练数据中找到一个最优的分离超平面,使得该超平面可以将不同类别的数据尽量分离。

对于肝癌早期诊断,SVM经常被应用于肝癌图像分析和影像学数据的分析。

2.随机森林随机森林(Random Forest)是一种集成学习算法,其通过构建多棵决策树的方式进行分类。

在肝癌早期诊断中,随机森林常用于图像特征提取和分类模型构建之中。

3.深度学习深度学习是当前最为热门的机器学习算法之一,其基于神经网络进行模型构建,在肝癌早期诊断中常用于医学影像识别和分类分析。

三、基于机器学习的肝癌早期诊断模型案例1. 基于深度学习的肝癌影像诊断深度学习在医学影像识别中的应用极为广泛。

学者们通过构建神经网络,对大量肝癌CT影像进行训练,最终得到一个可以自动识别肝癌的模型。

该模型准确度非常高,可以实现对不同类型肝癌的自动分类和定量分析。

2. 基于随机森林的肝癌图像特征提取针对肝脏磁共振图像中不规则的肿块特征,研究者通过随机森林算法,发现“边缘平滑度”、“组织密度”和“灰度共生矩阵”的特征在肝癌诊断中的准确率高于其他指标。

针对这些特征,研究者构建了一个基于手工提取特征的诊断模型,其准确度可以达到90%以上。

3. 基于SVM的肝癌筛查基于SVM算法,研究者可以通过影像特征提取和分类模型构建,实现对肝癌高、中、低风险组的自动预测。

自然语言处理技术中常用的机器学习算法介绍

自然语言处理技术中常用的机器学习算法介绍

自然语言处理技术中常用的机器学习算法介绍自然语言处理(Natural Language Processing,NLP)是人工智能领域中研究人类语言与计算机之间交互的一门学科。

在NLP领域中,机器学习算法被广泛应用于语言模型、文本分类、命名实体识别、情感分析等任务中。

本文将介绍NLP中常用的机器学习算法,包括支持向量机(Support Vector Machine,SVM)、朴素贝叶斯(Naive Bayes)、隐马尔可夫模型(Hidden Markov Model,HMM)和递归神经网络(Recurrent Neural Network,RNN)。

支持向量机(SVM)是一种常用的监督学习算法,广泛用于文本分类、情感分析等NLP任务中。

其核心思想是将数据映射到高维空间,通过构建一个最优的超平面,来实现数据的分类。

SVM在处理小样本、非线性和高维特征等问题上具有较好的性能。

朴素贝叶斯(Naive Bayes)是一种基于概率的分类算法,常用于文本分类任务。

它基于贝叶斯定理和特征间的条件独立性假设,可以在给定训练数据的条件下,通过计算后验概率来进行分类。

朴素贝叶斯算法简单、计算效率高,并且对输入数据的特征空间进行了较弱的假设,适用于处理大规模的文本分类问题。

隐马尔可夫模型(HMM)是一种统计模型,常用于语音识别、机器翻译等NLP任务中。

HMM假设系统是一个由不可观察的隐含状态和观测到的可见状态组成的过程,通过观察到的状态序列来估计最可能的隐含状态序列。

HMM广泛应用于词性标注、命名实体识别等任务中,具有较好的效果。

递归神经网络(RNN)是一种具有记忆能力的神经网络,适用于处理序列数据,如语言模型、机器翻译等NLP任务。

RNN通过引入循环结构,可以对序列中的上下文信息进行建模。

长短期记忆网络(Long Short-Term Memory,LSTM)是RNN的一种改进,通过引入门控机制解决了传统RNN存在的长期依赖问题,更适合处理长文本和复杂语义。

请简述 SVM(支持向量机)的原理以及如何处理非线性问题。

请简述 SVM(支持向量机)的原理以及如何处理非线性问题。

请简述 SVM(支持向量机)的原理以及如何处理非线性问题。

支持向量机(Support Vector Machine,SVM)是一种常用的机器学习算法,常用于分类和回归问题。

它的原理是基于统计学习理论和结构风险最小化原则,通过寻找最优超平面来实现分类。

SVM在处理非线性问题时,可以通过核函数的引入来将数据映射到高维空间,从而实现非线性分类。

一、SVM原理支持向量机是一种二分类模型,它的基本思想是在特征空间中找到一个超平面来将不同类别的样本分开。

具体而言,SVM通过寻找一个最优超平面来最大化样本间的间隔,并将样本分为两个不同类别。

1.1 线性可分情况在特征空间中,假设有两个不同类别的样本点,并且这两个类别可以被一个超平面完全分开。

这时候我们可以找到无数个满足条件的超平面,但我们要寻找具有最大间隔(Margin)的超平面。

Margin是指离超平面最近的训练样本点到该超平面之间距离之和。

我们要选择具有最大Margin值(即支持向量)对应的决策函数作为我们模型中使用。

1.2 线性不可分情况在实际问题中,很多情况下样本不是线性可分的,这时候我们需要引入松弛变量(Slack Variable)来处理这种情况。

松弛变量允许样本点处于超平面错误的一侧,通过引入惩罚项来平衡Margin和错误分类的数量。

通过引入松弛变量,我们可以将线性不可分问题转化为线性可分问题。

同时,为了防止过拟合现象的发生,我们可以在目标函数中加入正则化项。

1.3 目标函数在SVM中,目标函数是一个凸二次规划问题。

我们需要最小化目标函数,并找到最优解。

二、处理非线性问题SVM最初是用于处理线性可分或近似线性可分的数据集。

然而,在实际应用中,很多数据集是非线性的。

为了解决这个问题,SVM引入了核函数(Kernel Function)。

核函数可以将数据从低维空间映射到高维空间,在高维空间中找到一个超平面来实现非线性分类。

通过核技巧(Kernel Trick),SVM 可以在低维空间中计算高维空间中样本点之间的内积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机器学习与SVM支持向量机内容摘要:机器学习是研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是人工智能的核心,是使计算机具有智能的根本途径。

基于数据的机器学习是现代智能技术中的重要方面,研究从观测数据出发寻找规律,利用这些规律对未来数据或无法观测的数据进行预测,包括模式识别、神经网络等在内,现有机器学习方法共同的重要理论基础之一是统计学。

支持向量机是从统计学发展而来的一种新型的机器学习方法,在解决小样本、非线性和高维的机器学习问题中表现出了许多特有的优势,但是,支持向量机方法中也存在着一些亟待解决的问题,主要包括:如何用支持向量机更有效的解决多类分类问题,如何解决支持向量机二次规划过程中存在的瓶颈问题、如何确定核函数以及最优的核参数以保证算法的有效性等。

本文详细介绍机器学习的基本结构、发展过程及各种分类,系统的阐述了统计学习理论、支持向量机理论以及支持向量机的主要研究热点,包括求解支持向量机问题、多类分类问题、参数优化问题、核函数的选择问题等,并在此基础上介绍支持向量机在人脸识别中的应用,并通过仿真实验证明了算法的有效性。

关键词:机器学习、支持向量机机器学习的研究背景机器学习概念的出现学习是人类具有的一种重要智能行为,但究竟什么是学习,长期以来却众说纷纭。

社会学家、逻辑学家和心理学家都各有其不同的看法。

按照人工智能大师西蒙的观点,学习就是系统在不断重复的工作中对本身能力的增强或者改进,使得系统在下一次执行同样任务或相同类似的任务时,会比现在做得更好或效率更高。

西蒙对学习给出的定义本身,就说明了学习的重要作用。

在人类社会中,不管一个人有多深的学问,多大的本领,如果他不善于学习,我们都不必过于看重他。

因为他的能力总是停留在一个固定的水平上,不会创造出新奇的东西。

但一个人若具有很强的学习能力,则不可等闲视之了。

机器具备了学习能力,其情形完全与人类似。

什么是机器学习?迄今尚没有统一的定义,由其名字可理解为机器学习是研究如何使用机器来模拟人类学习活动的一门学科。

稍微严格的提法是机器学习是一门研究机器获取新知识和新技能,并识别现有知识的学问。

这里所说的“机器”指的就是计算机,现在是电子计算机,以后还可能是种子计算机、光子计算机或神经计算机等等。

机器能否像人类一样能具有学习能力呢?1959年美国的塞缪尔(Samuel)设计了一个下棋程序,这个程序具有学习能力,它可以在不断的对弈中改善自己棋艺。

4年后,这个程序战胜了设计者本人。

又过了3年,这个程序战胜了美国一个保持8年之久的常胜不败的冠军。

这个程序向人们展示了机器学习的能力,提出了许多令人深思的社会问题与哲学问题。

机器的能力是否能超过人的,很多持否定意见的人的一个主要论据是:机器是人造的,其性能和动作完全是由设计者规定的,因此无论如何其能力也不会超过设计者本人。

这种意见对不具备学习能力的机器来说的确是对的,可是对具备学习能力的机器就值得考虑了,因为这种机器的能力在应用中不断地提高,过一段时间之后,设计者本人也不知它的能力到了何种水平。

支持向量机的研究背景支持向量机(Support Vector Machine,SVM)方法是在统计学习理论(Statistical LearningTheory,SLT)基础上发展而来的一种机器学习方法,SVM在使用结构风险最小化原则替代经验风险最小化原则的基础上,又结合了统计学习、机器学习和神经网络等方面的技术,在解决小样本、非线性和高维的机器学习问题中表现出了许多特有的优势。

它一方面可以克服神经网络等方法所固有的过学习和欠学习问题,另一方面又有很强的非线性分类能力,通过引入核函数,将输入空间的样本映射到高维特征空间,输入空间的线性不可分问题就转化为特征空间的线性可分问题。

支持向量机被看作是对传统分类器的一个好的发展,并被证明可在保证最小化结构风险的同时,有效地提高算法的推广能力。

随着计算机技术的蓬勃发展以及人们在各个领域对模式识别技术的需求与应用,计算机模式识别技术也有了很大的发展。

模式识别就是设计一个能够对未知数据进行自动分类的方法,常用模式识别方法有统计识别方法、句法结构识别方法、模糊理论识别方法、神经网络识别方法、模板匹配识别方法和支持向量机的识别方法等。

其中基于支持向量机的模式识别方法是目前最为有效的模式识别方法之一。

V.Vapnik等人早在20世纪60年代就开始研究小样本情况下的机器学习问题,当时这方面的研究尚不十分完善,且数学上比较艰涩,大多数人难以理解和接受,直到90年代以前还没能够提出将其理论付诸实现的方法,加之当时正处在其他学习方法飞速发展的时期,因此这方面的研究一直没有得到足够的重视。

直到90年代中期,小样本情况下的机器学习理论研究逐渐成熟起来,形成了较完善的理论体系——统计学习理论(Statistical Learning Theory,SLT)[2],而同时,神经网络等新兴的机器学习方法的研究则遇到了许多困难,在这种情况下,试图从更本质上研究机器学习问题的统计学习理论逐步得到重视。

统计学习理论是建立在坚实的理论基础之上的,为解决小样本学习问题提供了统一的框架。

统计学习理论的核心是VC维理论与结构风险最小化理论,它用VC维来描述学习机器的复杂度,并以此为出发点导出了学习机器推广能力的界的理论。

该理论致力于寻找在小样本情况下学习问题的最优解,而不需要利用样本数趋于无穷大的渐进性条件,这使得统计学习理论在小样本情况下同样能得到具有推广价值的知识。

1992年至1995年,在统计学习理论的基础上发展出了一种新型的学习机器——支持向量机(Support Vector Machine简称SVM)。

支持向量机是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模犁的复杂性和学习能力之间寻求最佳折衷,以期获得最好的推广能力。

支持向量机被看作是对传统分类器的一个好的发展,在解决小样本、非线性和高维的机器学习问题中表现出了许多特有的优势。

SVM方法是由Vapnik及其合作者Boser、Guyon、Cortes 及Scholkopf在AT&T Bell实验室共同创造与发展起来的一种新方法。

近年来,许多关于SVM方法的研究,包括算法本身的改进和算法的实际应用,都陆续被提了出来,如Scholkoph等人提出了v.SVM方法、Suykens等人提出了最小二乘支持向量机(LS.SVM)、Zhang提出的类中心支持向量机(CSVM)方法、Lin等提出了模糊支持向量机方法(Fuzzy.SVM)等[4]。

其中,在理论上主要以Vapnik及其研究小组做了大量开创性及奠基性的工作。

随着支持向量机的不断发展,人们对支持向量机的研究也越来越细化,其要研究方向大致可分为:求解支持向量机问题,支持向量机多类分类问题,参数的选择和优化问题等。

支持向量机求解问题求解一个SVM问题最终都转化为解一个具有线性约束的凸规划问题或其对偶问题的二次规划问题(Quadratic Programming,QP)。

传统的方法是利用标准二次型优化技术解决对偶问题,这就导致算法的训练速度很慢,一方面是由于SVM 需要计算和存储核函数矩阵,当样本规模较大时必然导致内存需求增加;另一方面,SVM在二次寻优过程中要进行大量的矩阵运算,多数情况下,寻优算法占用了大部分的算法时间,这就使得存储空间和和计算时间成了求解二次规划问题的瓶颈。

常用的解决方法是将一个大的二次规划问题转化为若干个小的二次规划问题以提高分类效率,如块算法、分解算法、SMO算法、增式算法等等。

支持向量机分类理论是针对两类分类问题提出的,然而,现实世界的分类问题,如船舰识别、字体识别、人脸识别等,都属于多类分类的范畴。

如何将二类分类方法扩展到多类分类情况是支持向量机方法研究的重要内容之一。

目前,用SVM解决多类分类问题方法主要是通过构造或组合多个两类分类器来实现多问题的分类。

子分类器的构造和组合将两类分类扩展到多类问题,将多类分类问题逐步转化为两类分类问题。

常用的算法有“one---against---one”方法、“one--against--rest”方法、“基于决策树的方法”等。

支持向量机多类分类方法的引入拓展了支持向量机的应用范围,也加快了支持向量机方法的改进和创新,同时,支持向量机的核函数的选择以及核参数的选择也是一个重要的研究方向支持向量机核心思想支持向量机实现是通过某种事先选择的非线性映射(核函数)将输入向量映射到一个高维特征空间,在这个空间中构造最优分类超平面。

我们使用使用SVM进行数据集分类工作的过程首先是通过预先选定的一些非线性映射将输入空间映射到高维特征空间,使得在高维属性空间中有可能对训练数据实现超平面的分割,避免了在原输入空间中进行非线性曲面分割计算。

SVM数据集形成的分类函数具有这样的性质:它是一组以支持向量为参数的非线性函数的线性组合,因此分类函数的表达式仅和支持向量的数量有关,而独立于空间的维度。

在处理高维输入空间的分类时,这种方法尤其有效。

支持向量机在数据挖掘中的应用鉴于支持向量机扎实的理论基础,并且和传统的学习算法想比较(比如人工神经网络),SVM通过提高数据的维度把非线性分类问题转换成线性分类问题,较好解决了传统算法中训练集误差最小而测试集误差仍较大的问题,算法的效率和精度都比较高。

所以近年来该方法成为构造数据挖掘分类器的一项新型技术,在分类和回归模型中得到了很好的应用。

但由于支持向量机出现的时间在90年代中期,人们对支持向量机的应用主要集中在模式识别方面,对于将支持向量机应用于数据挖掘的研究刚处于起步阶段。

目前,用SVM构造数据挖掘中的分类器来处理海量数据主要面临以下两个困难:SVM算法对大规模训练样本难以实施由于SVM是借助二次规划来求解支持向量,而求解二次规划将涉及m阶矩阵的计算(m为样本的个数),当m数目很大时该矩阵的存储和计算将耗费大量的机器内存和运算时间。

针对以上问题的主要改进有有J.Platt的SMO算法、T.Joachims 的SVM 、C.J.C.Burges等的PCGC、张学工的CSVM以及O.L.Mangasarian等的SOR算法用SVM解决多分类问题存在困难经典的支持向量机算法只给出了二类分类的算法,而在数据挖掘的实际应用中,一般要解决多类的分类问题。

可以通过多个二类支持向量机的组合来解决。

主要有一对多组合模式、一对一组合模式和SVM决策树;再就是通过构造多个分类器的组合来解决。

主要原理是克服SVM固有的缺点,结合其他算法的优势,解决多类问题的分类精度。

如:与粗集理论结合,形成一种优势互补的多类问题的组合分类器支持向量机的算法实现支持向量机所涉及的数学知识对一般的工程技术人员来说是比较难的,自己编程实现该算法的难度就更大了。

相关文档
最新文档