信号与系统课程标准
《信号与系统》课程标准

《信号与系统》课程标准第一部分课程概述一、课程名称中文名称:《信号与系统》英文名称:《Signals and Systems》二、学时与适用对象课程总计90学时,均为理论课。
本标准适用于四年制、五年制生物医学工程专业。
三、课程性质地位《信号与系统》是生物医学工程专业开设的一门必修的专业基础课程。
它是以数学方法研究电信号与电系统的分析与求解,在现代电子类理工科的学科发展中,起着建立数学研究方法和实际工作桥梁的重要作用。
对信号与系统知识的理解和掌握,将为学员以后的实际工作打下基础。
预修课程为《高等数学》、《线性代数》、《电路原理》等,主修完本门课程后,学员将进一步学习《数字信号处理》、《医学图像处理》等后续课程。
四、课程基本理念1.准确把握本课程在人才培养方案中的作用和地位,教学内容、方法、手段的选择必须以人才培养目标和规格为依据。
2.坚持学员为主体,教员为主导的教学理念。
教学过程渗透素质教育、动手能力的培养等现代教育思想和观念。
3.在具体教学中应注意以下几个问题:(1)理论联系实际作为一门专业基础课,理论与实际的结合尤为重要。
由于这门课是利用数学工具来分析信号求解系统,所以在一开始接触时很多学员会不适应,将理论从实际中抽象出来需要一个思想转变的过程。
教学活动中,教员应该有意识地找出实际学习生活中学员可能接触到的一些例子,通过对这些实例的分析帮助学员完成这一思想转变,从而使学员开始学会使用理论工具来分析实际问题,使理论与实际通过数学这座桥梁联系到一起。
在教员的启发引导和实例教学的作用下,建立用数学方法解决实际工程问题的思维模式,培养学员分析问题、解决问题的能力。
(2)重视教与学的结合从课程的设计到评价的各个环节,在注意发挥教员教学主导作用的同时,还要特别注意学员学习的主动性,以充分发挥学员的积极性和学习潜能。
提高学习的主动性,就要求教员能够在这门看起来枯燥的理论课程教学中,能够让学员发现乐趣,形成适合自己的学习方法。
2024年度移动通信课程标准

A
B
C
D
信令流程
包括呼叫建立流程、呼叫释放流程、位置 更新流程和切换流程等,涉及多个网元和 接口之间的协同工作。
Um接口
连接MS和BSS之间的空中接口,采用无线 通信技术,实现无线信号的收发和处理。
2024/3/24
19
05
CATALOGUE
移动通信终端设备
2024/3/24
20
移动通信课程标准
2024/3/24
1
CATALOGUE
目 录
2024/3/24
• 课程概述与目标 • 移动通信基础知识 • 移动通信关键技术 • 移动通信网络架构与协议 • 移动通信终端设备 • 移动通信业务与应用 • 移动通信网络安全与隐私保护
2
2024/3/24
01
CATALOGUE
课程概述与目标
3
正交频分复用(OFDM)技术
掌握OFDM的基本原理、特点和在移动通信中的 应用,如4G/5G中的OFDM技术。
2024/3/24
15
04
CATALOGUE
移动通信网络架构与协议
2024/3/24
16
移动通信网络架构
基站子系统(BSS)
包括基站控制器(BSC)和基站收发 信台(BTS),负责无线信号的收发 和处理。
移动交换子系统(MSS)
包括移动交换中心(MSC)和访问 位置寄存器(VLR),负责呼叫建立 、保持和释放等控制功能。
2024/3/24
操作维护子系统(OSS)
提供网络管理和维护功能,包括配置 管理、故障管理、性能管理和安全管 理等。
移动台(MS)
包括移动终端(MT)和用户识别模 块(UIM),是用户使用的设备,负 责无线信号的接收和发送。
大学二年级信息工程课教案信号与系统

大学二年级信息工程课教案信号与系统【大学二年级信息工程课教案】信号与系统【引言】信号与系统作为信息工程课程中的重要组成部分,在大学二年级承担着培养学生综合应用电子与通信知识的重要任务。
本教案旨在通过系统化的教学安排和内容设计,帮助学生全面理解信号与系统的基本概念和理论,并培养学生的工程实践能力。
通过本课程的学习,学生将能够深入了解信号与系统的原理与应用,为将来在信息工程领域的研究和实践打下坚实的基础。
【教学目标】本课程的教学目标是:1. 理解信号与系统的基本概念,包括信号、系统、线性时不变系统等;2. 掌握信号与系统的数学表示方法,如离散/连续时间信号的表达和运算;3. 理解信号与系统的时域分析方法,包括冲激响应、单位阶跃响应和卷积等;4. 掌握信号与系统的频域分析方法,包括傅里叶变换和拉普拉斯变换等;5. 学习应用信号与系统的基本原理解决实际问题,如系统的稳定性分析、滤波器设计等。
【教学内容】1. 信号与系统的基本概念1.1 信号的定义与分类1.2 系统的定义与分类1.3 时变与时不变系统2. 信号的数学表示方法2.1 离散时间信号与连续时间信号的表示2.2 时域离散信号与频域连续信号的转换2.3 时域连续信号与频域离散信号的转换3. 信号的时域分析3.1 冲激响应与单位阶跃响应3.2 线性时不变系统的冲激响应与单位阶跃响应4. 信号的频域分析4.1 傅里叶变换的定义与性质4.2 频域表示与逆变换4.3 拉普拉斯变换的定义与性质4.4 频域表示与逆变换5. 应用信号与系统5.1 系统的稳定性分析5.2 信号的滤波与滤波器设计5.3 信号采样与重构【教学方法】1. 授课法:通过讲授基本概念、理论和方法,帮助学生全面掌握信号与系统的基本知识;2. 实例分析法:通过实际问题的分析与解决,培养学生应用信号与系统知识的能力;3. 实验教学法:通过实验引导学生进行实际操作,加深对信号与系统原理的理解;4. 讨论与互动:鼓励学生积极参与课堂讨论、提问与互动,促进思维碰撞与知识共享。
信号工程施工课程标准(3篇)

第1篇一、课程概述课程名称:信号工程施工适用专业:铁道通信信号专业、城市轨道交通控制专业等相关专业课程性质:专业核心课程课程目标:1. 培养学生掌握信号工程施工的基本理论、技术和方法;2. 提高学生信号工程施工的实际操作能力,使学生能够胜任信号工程施工的各项工作;3. 培养学生的创新意识和团队协作精神,提高学生的职业素养。
二、课程内容1. 信号工程施工概述- 信号工程施工的基本概念和分类- 信号工程施工的基本流程和标准- 信号工程施工的安全注意事项2. 信号工程施工设计- 信号工程施工设计的基本原则和方法- 信号工程施工图纸的识读和绘制- 信号工程施工设备的选型与配置3. 信号工程施工技术- 室外箱盒安装:站内、区间箱盒安装、方向盒安装、终端电缆盒安装、电缆箱盒配线工艺等- 变压器箱安装:用于轨道电路、列车信号机、道岔时的安装要求及注意事项- 电缆敷设:电缆敷设方式、电缆保护措施、电缆接续技术等- 信号设备安装与调试:信号设备安装方法、调试步骤及注意事项4. 信号工程施工质量控制- 信号工程施工质量标准- 施工过程中的质量控制方法- 施工质量检验与验收5. 信号工程施工安全管理- 信号工程施工安全管理制度- 施工现场安全管理措施- 事故预防与应急处理6. 信号工程施工案例分析- 信号工程施工案例分析- 施工过程中的常见问题及解决方法三、教学实施1. 教学方法:采用理论教学与实践操作相结合的教学方法,注重培养学生的实际操作能力。
2. 教学资源:利用多媒体教学手段,结合实际案例,提高学生的学习兴趣和效果。
3. 实践教学:组织学生进行现场实习,使学生熟悉信号工程施工的实际操作流程。
4. 考核方式:理论考核与实践考核相结合,全面评估学生的学习成果。
四、课程评价1. 评价内容:理论考核、实践操作、平时表现等。
2. 评价标准:根据学生的理论掌握程度、实践操作能力、团队协作精神等方面进行综合评价。
五、课程实施要求1. 教师应具备丰富的信号工程施工经验,能够指导学生进行实际操作。
电子信息工程专业公开课信号与系统分析

电子信息工程专业公开课信号与系统分析电子信息工程专业公开课信号与系统分析是该专业的一门重要课程,主要讲解信号与系统的基本概念、理论和应用。
本文将从信号与系统的基本概念、信号与系统的数学表示以及信号与系统的应用等方面进行探讨。
一、信号与系统的基本概念在电子信息工程中,信号是指携带有用信息和数据的电波或电流,它可以是数字信号或模拟信号。
系统是指处理信号的一种装置或方法。
信号与系统的基本概念涉及信号的分类、信号的特性、系统的分类以及系统的特性等。
在信号的分类中,常见的包括连续时间信号和离散时间信号。
连续时间信号是指信号在时间上是连续的,而离散时间信号是指信号在时间上是离散的。
在信号的特性中,常见的包括能量信号和功率信号。
能量信号是指信号在有限时间内的总能量有界,而功率信号是指信号的功率在无限时间内是有限的。
系统的分类主要包括线性系统和非线性系统。
线性系统是指系统的输出与输入之间存在线性关系,而非线性系统则没有线性关系。
在系统的特性中,常见的包括时不变系统和时变系统。
时不变系统是指系统的输出与输入之间不随时间变化,而时变系统则随时间变化。
二、信号与系统的数学表示为了方便分析和处理信号与系统,我们需要利用数学方法对其进行表示。
连续时间信号可以用函数表示,离散时间信号可以用数列表示。
连续时间信号的数学表示主要包括信号的幅度、相位和频率等。
离散时间信号的数学表示主要包括信号的取样、量化和编码等。
在系统的数学表示中,常见的包括系统的冲激响应、传递函数和频率响应等。
系统的冲激响应是指系统在输入为冲激函数时的输出响应,传递函数是指系统的输出与输入之间的关系,频率响应是指系统对输入信号频率的响应情况。
三、信号与系统的应用信号与系统在电子信息工程中有着广泛的应用。
在通信系统中,信号与系统分析可以用于信号的调制和解调、信号的传输和接收等方面。
在控制系统中,信号与系统分析可以用于系统的建模与仿真、系统的控制和稳定性分析等方面。
(完整版)信号与系统课程标准

《信号与系统》教学大纲第一部分:课程性质、课程目标与教学要求课程性质:《信号与系统》是电子信息工程专业本科生的专业基础主干课程,是该专业的必修课程。
在专业培养方案中安排在第二学年第二学期实施。
该课程与本科生的许多专业课(例如通信原理、数字信号处理、通信电路、图象处理、微波技术等)有很强的联系,是研究各类电子系统共性的一门技术基础课程。
它具有科学方法论的鲜明特点,研究的问题带有普遍性,对工程实践具有重要的指导意义。
它的任务是研究信号和线性非时变系统的基本理论和基本分析方法,要求掌握最基本的信号变换理论,并掌握线性非时变系统的分析方法,为学习后续课程,以及从事相关领域的工程技术和科学研究工作奠定坚实的理论基础。
课程目标:设置本课程的目的在于使学生通过本课程的学习,初步建立起有关“信号与系统” 的基本概念,掌握“信号与系统”的基本理论和基本分析方法,为进一步学习后续课程及从事通信、信息处理等方面有关研究工作打下基础。
通过本课程的学习,学生应该掌握信号与系统的基本概念、基本理论和基本分析方法,通过一定数量的习题练习加深对各种分析方法的理解与掌握。
教学要求:信号与系统是一门理论结合实践的课程,本课程旨在使学生掌握信号与线性系统的基本理论,基本分析法,为后续课的学习及从事实际的科研工作奠定必要的基础。
因此,要求学生在学习中,关注基本知识与方法的应用,积极参与信号与系统实践课程,课后要做一些相关练习和讨论。
第二部分:关于教材与学习参考书的建议本课程使用的教材是由高等教育出版社出版2006年吴大正等编著的《信号与线性系统分析》(第4版)。
该教材入选“十五”国家级重点教材,发行数万册,是高等教育出版社比较全面系统的高校信号与系统教材。
很多高校以该教材建设精品课程。
为了更好地理解和学习课程内容,建议同学可以进一步阅读以下几本重要的参考书:1郑君里:《信号与系统》,高等教育出版社2006年1月2、管致中:《信号与线性系统》,高等教育出版社,2004年1月3、刘泉主编:《信号与系统题解》,华中科技大学出版社,2003年12月4、梁虹主编:《信号与系统分析及MATLAB S现》,电子工业出版社,20025、张小虹编著:《信号与系统》,西安电子科技大学出版社,2004第三部分:课程教学内容纲要第一章信号与系统1. 基本内容:连续时间信号与离散时间信号的概念;连续时间系统和离散时间系统的概念;信号的基本运算;卷积的计算。
教案信号与系统

教案:信号与系统一、教学目标:1. 了解信号与系统的基本概念和基本理论。
2. 掌握信号的分类与性质。
3. 理解系统的概念和特点。
4. 学习信号与系统的基本运算和变换。
5. 培养分析和处理信号与系统问题的能力。
二、教学内容:1. 信号与系统的概述1.1 信号的定义和分类1.2 系统的定义和特征1.3 信号与系统的关系2. 基本信号的性质2.1 常用信号的定义和特点2.2 奇偶信号与周期信号2.3 指数信号和复指数信号3. 连续时间信号与系统3.1 连续时间信号的表示与性质3.2 连续时间系统的表示与性质3.3 连续时间信号的基本运算和变换4. 离散时间信号与系统4.1 离散时间信号的表示与性质4.2 离散时间系统的表示与性质4.3 离散时间信号的基本运算和变换5. 线性时不变系统5.1 线性系统的定义和特性5.2 时不变系统的定义和特性5.3 线性时不变系统的性质和表示6. 信号和系统的连续时间和离散时间表示关系6.1 数模转换和模数转换6.2 连续时间信号的采样与重构6.3 采样定理和抽样定理三、教学方法:1. 讲授教学法:通过讲解教师将信号与系统的基本概念和基本理论传授给学生。
2. 实践教学法:通过实际操作和实验,让学生亲自感受信号与系统的性质和运算。
3. 讨论教学法:组织学生进行讨论,促进彼此之间的思维碰撞和交流。
四、教学重点:1. 信号与系统的基本概念和分类。
2. 信号和系统的基本运算和变换。
3. 线性时不变系统的特性和表示。
五、教学评价:1. 课堂小测验:通过课堂小测验检查学生对信号与系统基本概念和基本理论的掌握情况。
2. 实验报告:通过学生完成的实验和实验报告,评价其对信号与系统的基本运算和变换的理解和掌握情况。
3. 期末考试:通过期末考试检查学生对信号与系统整体知识体系的掌握情况。
六、教学资源:1. 课本:信号与系统教材。
2. 电子实验设备:电脑、信号发生器、示波器等。
七、教学反思:信号与系统作为电子信息工程专业的一门重要基础课程,对于学生的综合能力培养具有重要意义。
《信号与系统》课程教学大纲

《信号与系统》课程教学大纲一、教师或教学团队信息(教师或教学团队中每位教师主要讲授的本科课程,课程受欢迎情况;主要研究领域和研究成果。
)二、课程基本信息课程名称(中文):信号与系统课程名称(英文):Signals and Systems课程类别:□通识必修课□通识选修课 专业必修课□专业方向课□专业拓展课□实践性环节课程性质*: 学术知识性□方法技能性□研究探索性□实践体验性课程代码:2110015周学时:3 总学时:48 学分: 3先修课程:微积分、线性代数、复变函数、电路分析基础授课对象:电气工程及其自动化三、课程简介(课程在实现专业培养目标中的作用,课程在专业知识体系中的位置,课程学习对学生专业成长具有的价值。
课程主要内容及知识结构。
)本课程大纲是根据高等教育要求,为加强学生专业课程的教学需要而制定的。
《信号与系统》课程是四年制电气工程及自动化专业的重要专业课程之一,是其它许多学科的基础,是工科学生在大学教育阶段所修课程中最有收益而又最有用处的课程之一。
通过本课程的学习,使学生掌握信号与系统的基本概念,线性时不变系统的基本特性,信号通过线性系统的基本分析方法,其主要内容包括:信号与系统概述、LTI连续时间系统的时域分析、频域分析、复频域分析。
四、课程目标(课程教学要讲授的核心知识、要训练的关键技能及须形成的综合素养的目标。
)通过本课程的学习,学生应该掌握信号分析的基本理论和方法,掌握线性时不变系统的各种描述方法,掌握线性时不变系统的时域和变换域的各种分析方法,准确理解有关系统的稳定性、频响、因果性等工程应用中的一些重要物理概念。
同时,通过这门课程的学习,学生的分析问题和利用所学的知识解决问题的能力应有所提高。
本课程的主要任务是针对线性时不变系统分析这条主线,对线性微分方程、复变函数、积分变换等数学方法进行详细的介绍。
课程中各个理论的系统性较强,数学推导比较严密,但是在内容中不苛求数学上的系统和严密。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《信号与系统》教学大纲第一部分:课程性质、课程目标与教学要求课程性质:《信号与系统》是电子信息工程专业本科生的专业基础主干课程,是该专业的必修课程。
在专业培养方案中安排在第二学年第二学期实施。
该课程与本科生的许多专业课(例如通信原理、数字信号处理、通信电路、图象处理、微波技术等)有很强的联系,是研究各类电子系统共性的一门技术基础课程。
它具有科学方法论的鲜明特点,研究的问题带有普遍性,对工程实践具有重要的指导意义。
它的任务是研究信号和线性非时变系统的基本理论和基本分析方法,要求掌握最基本的信号变换理论,并掌握线性非时变系统的分析方法,为学习后续课程,以及从事相关领域的工程技术和科学研究工作奠定坚实的理论基础。
课程目标:设置本课程的目的在于使学生通过本课程的学习,初步建立起有关“信号与系统”的基本概念,掌握“信号与系统”的基本理论和基本分析方法,为进一步学习后续课程及从事通信、信息处理等方面有关研究工作打下基础。
通过本课程的学习,学生应该掌握信号与系统的基本概念、基本理论和基本分析方法,通过一定数量的习题练习加深对各种分析方法的理解与掌握。
教学要求:信号与系统是一门理论结合实践的课程,本课程旨在使学生掌握信号与线性系统的基本理论,基本分析法,为后续课的学习及从事实际的科研工作奠定必要的基础。
因此,要求学生在学习中,关注基本知识与方法的应用,积极参与信号与系统实践课程,课后要做一些相关练习和讨论。
第二部分:关于教材与学习参考书的建议本课程使用的教材是由高等教育出版社出版2006年吴大正等编著的《信号与线性系统分析》(第4版)。
该教材入选“十五”国家级重点教材,发行数万册,是高等教育出版社比较全面系统的高校信号与系统教材。
很多高校以该教材建设精品课程。
为了更好地理解和学习课程内容,建议同学可以进一步阅读以下几本重要的参考书:1、郑君里:《信号与系统》,高等教育出版社2006年1月2、管致中:《信号与线性系统》,高等教育出版社,2004年1月3、刘泉主编:《信号与系统题解》,华中科技大学出版社,2003年12月4、梁虹主编:《信号与系统分析及MATLAB实现》,电子工业出版社,20025、张小虹编著:《信号与系统》,西安电子科技大学出版社,2004第三部分:课程教学内容纲要第一章信号与系统1.基本内容:连续时间信号与离散时间信号的概念;连续时间系统和离散时间系统的概念;信号的基本运算;卷积的计算。
2.基本要求:掌握:①连续时间信号与离散时间信号的概念;②连续时间系统和离散时间系统的概念。
理解:①信号的基本运算;②卷积的计算。
3.教学重点和难点:重点:信号和系统的基本概念。
难点:卷积的计算。
4.具体教学内容具体教学内容:①连续时间信号与离散时间信号的概念;②连续时间系统和离散时间系统的概念;③典型信号及其性质;④信号的正交分解;⑤信号的基本运算;⑥卷积的计算。
第二章连续时间系统的时域分析1.基本内容:系统的因果性、线性和时不变性;连续时间系统的卷积分析方法。
2.基本要求:掌握:①系统的因果性、线性和时不变性;②连续时间系统的卷积分析方法。
理解:卷积的物理意义。
3.教学重点和难点:重点:连续时间系统的卷积分析方法。
难点:卷积分析方法的具体应用。
4.具体教学内容具体教学内容:①系统的因果性、线性和时不变性;②连续时间系统的卷积分析方法;③卷积的物理意义;④卷积分析方法的具体应用。
第三章离散时间系统的时域分析1.基本内容:离散时间系统的数学模型;差分方程的概念;差分方程的求解方法;卷积分析法。
2.基本要求:掌握:①离散系统的数学模型;②离散时间系统的卷积分析法。
理解:①差分方程的求解方法;②卷积的计算。
3.教学重点和难点:重点:离散时间系统的数学模型;离散时间系统的卷积分析法。
难点:卷积的计算。
4.具体教学内容具体教学内容:①离散时间系统的数学模型;②差分方程及其的求解方法;③卷积分析法;④应用举例。
第四章傅立叶变换和系统的频域分析1.基本内容:连续周期信号的傅立叶级数表示;连续非周期信号的傅立叶变换及其性质;周期信号的傅立叶变换;抽样定理;信号的调制。
2.基本要求:掌握:①连续周期信号的傅立叶级数表示;②连续非周期信号的傅立叶变换;③周期信号的傅立叶变换;④抽样定理。
理解:①傅立叶变换的主要性质;②信号的调制。
3.教学重点和难点:重点:傅立叶变换及其性质;抽样定理。
难点:信号的调制。
4.具体教学内容具体教学内容:①连续周期信号的傅立叶级数表示;②连续非周期信号的傅立叶变换;③典型非周期信号的傅立叶变换;④傅立叶变换及其性质;⑤连续周期信号的傅立叶变换;⑥抽样定理;⑦信号的调制。
第五章连续系统的s域分析1.基本内容:拉普拉斯变换的定义及其收敛域;拉普拉斯变换的主要性质;拉普拉斯反变换的计算。
2.基本要求:掌握:①拉普拉斯变换的定义及其收敛域;②拉普拉斯反变换的计算。
理解:①拉普拉斯变换的主要性质;②拉普拉斯变换与傅立叶变换之间的关系。
3.教学重点和难点:重点:拉普拉斯变换及其主要性质。
难点:拉普拉斯反变换的计算。
4.具体教学内容具体教学内容:①拉普拉斯变换的定义;②拉普拉斯变换的收敛域;③拉普拉斯变换的主要性质;④拉普拉斯变换与傅立叶变换之间的关系;⑤拉普拉斯反变换的计算。
第六章离散系统的Z域分析1.基本内容:Z变换的定义及其收敛域;Z变换的主要性质;逆Z变换的计算。
2.基本要求:掌握:①Z变换的定义及其收敛域;②逆Z变换的计算。
理解:①Z变换的主要性质;②Z变换与拉普拉斯变换之间的关系。
3.教学重点和难点:重点:Z变换及其主要性质。
难点:逆Z变换的计算。
4.具体教学内容具体教学内容:①Z变换的定义;②Z变换的收敛域;③Z变换的主要性质;④Z变换与拉普拉斯变换之间的关系;⑤逆Z变换的计算。
第七章系统函数1.基本内容:系统函数H(jw)的概念;无失真传输的条件;理想低通滤波器与实际低通滤波器的逼近。
系统函数H(s)的概念;系统函数H(s)的零极点分布图;滤波器的概念;线性系统的表示方法。
系统函数H(z)的概念;离散时间系统的零极点分布图;离散时间系统的频率特性。
2.基本要求:掌握:①系统函数H(jw)、H(s)、H(z)的概念;②系统函数H(s)和离散时间系统的零极点分布图。
理解:①低通、高通、带通、带阻滤波器的概念。
②线性系统的表示方法。
3.教学重点和难点:重点:系统函数H(jw)的概念;无失真传输的条件。
系统函数H(s)的概念;系统函数H(s)的零极点分布图。
系统函数H(z)的概念;离散时间系统的频率特性。
难点:实际低通滤波器的逼近;线性系统的表示方法;离散时间系统的零极点分布图。
4.具体教学内容具体教学内容:①系统函数H(jw)的概念;②无失真传输的条件;③理想低通滤波器;④实际低通滤波器。
具体教学内容:①系统函数H(s)的概念;②系统函数H(s)的零极点分布图;③低通、高通、带通、带阻滤波器的概念;④线性系统的表示方法;⑤Mason公式。
具体教学内容:①系统函数H(z)的概念;②离散时间系统的零极点分布图;③离散时间系统的频率特性;④应用举例。
第八章系统的状态变量分析法1.基本内容:系统的状态空间描述;状态变量,状态方程与输出方程的基本概念;系统的状态方程与系统函数之间的关系。
2.基本要求:掌握:①系统的状态空间描述;②状态变量,状态方程与输出方程的基本概念。
理解:系统的状态方程与系统函数之间的关系。
3.教学重点和难点:重点:状态变量,状态方程与输出方程的基本概念。
难点:系统的状态方程与系统函数之间的关系。
4.具体教学内容具体教学内容:①系统的状态空间描述;②状态变量,状态方程与输出方程的基本概念;③系统的状态方程与系统函数之间的关系;④应用举例。
第四部分:教学方案简要说明《信号与系统》课程的教学,安排一个学期,课时计划是每周3学时到4个学时。
教师根据课时适当调整部分教学内容。
本课程教学主要采用课堂讲授与实践性教学相结合,把理论教学、实践性教学的方法直接引入课堂教学过程。
在有条件的地方,本课程可以采用多媒体技术手段辅助教学。
课程教学强调理论联系实际,要求学生对理论进行理解学习,并在课堂上进行交流或讨论。
第五部分:课程作业与考核评价的说明本课程由教师统一布置的课后习题作业每周一次。
成绩评定方式的主要构成及比例:理论部分(70%)+实验部分(20%)+平时成绩(10%)。
(1)理论部分①考试分制、形式与时间:百分制,闭卷、笔试,120分钟。
②题型:填空题,选择题,判断题,计算题。
③分值比重:占总成绩的70%,即:试卷总成绩乘以70%的权重。
(2)实验部分实验成绩评分标准为百分制,出勤占20%,操作占40%,实验报告40%,最后总成绩乘以20%的权重。
(3)平时成绩(主要为理论课出勤和平时作业)①出勤占30%,②作业占70%;③平均成绩评分标准为百分制乘以10%的权重。
本课程考试设计主要在于考查学生理解与掌握信号与系统的基本概念和解题方法的程度;考查学生分析问题和解决问题的能力。
考试设计基于教学内容,但又不局限于教学内容。
不过,考卷中有90%以上的考题内容与平时教学内容紧密关联。