地铁基坑时空效应理论挖土施工应用浅谈

合集下载

时空效应规律在软土深基坑工程中的运用

时空效应规律在软土深基坑工程中的运用

时空效应规律在软土深基坑工程中利用一、引言:因为土体各向异性、土工试验技术不足和施工原因复杂性,在基坑施工中各工况下不停改变流变参数难以测准,而支护墙体内力和位移也就难以估计。

现在中国外对此问题尚缺乏处理理论和方法。

所以在软土地域建筑物和市政公用设施密集地域,要按控制土体位移保护环境要求,进行深基坑设计和施工,就带有风险性。

为求得工程安全和环境安全,在中国外部分靠近关键建筑设施软土深基坑中,于基坑内部进行大量地基加固以改善土壤性质(如新加坡、台北等工程实例)。

从中国软土地域,尤其是上海地域近十年来在深基坑施工实践和试验研究结果中,能够认识到:在深基坑开挖及支撑过程中,每个分步开挖空间几何尺寸和支护墙体开挖部分无支撑暴露时间,和周围墙体和土体位移有一定相关性。

这里反应出基坑开挖中时空效应规律性。

实践证实:利用时空效应规律,能可靠而合理地利用土体本身在基坑开挖过程中控制土体位移潜力而达成保护环境目标,这是一条安全而经济技术路径,这已为上海近两年来完工五个深基坑工程实践所验证。

二、考虑时空效应基坑工程设计及施工技术关键点:1、首先合理选定基坑开挖及支撑施工工序和施工参数。

基坑开挖和支撑施工是决定基坑工程成败优劣关键工序。

为在基坑开挖中降低土体扰动范围,保持基坑稳定,并使地层位移和差异位移符合估计值,合理选定基坑开挖及支撑施工工序和施工参数是决定性原因。

开挖和支撑施工工序基础是按分层、分部、对称、平衡标准而制订,最关键施工参数是每层开挖中挡墙被动区土体挖除后,挡墙未支撑前自由暴露时间和暴露宽度和深度。

在大面积不规则形状高层建筑深基坑中,挡墙被动区土体往往在开挖中被保留成为土堤状,此土堤断面尺寸亦按其能抵住挡墙要求而定,亦为关键参数。

2、基坑设计中,估计考虑土体流变性围护墙体位移和对应地层位移,并采取方法使之符合保护环境要求。

从实测资料和理论分析中可知:土体流变性时软土深基坑变形影响是显著,在同一工况下基坑围护墙体随其在开挖后暴露时间延长而增加,现在通常基坑围护墙体变形计算均未计及流变原因,在基坑周围建筑设施对地基位移很敏感时,尤其在流变性较大土层时,就必需正确地采取以下计及土体流变性计算法,并采取对应处理对策。

浅析“时空效应”理论在上海地铁M8线延吉中路站土方开挖中的应用

浅析“时空效应”理论在上海地铁M8线延吉中路站土方开挖中的应用

要: 文章主要介绍基坑设计 、 按照 “ 时空效应”原理确定的基坑开挖参数及保证 措施和技术细节, 以及适合推广借鉴的工艺设计 文章编号 :0 7 7 5 2 0 0 - 0 3 0 1 0 — 3 9( 0 6) 3 0 9 - 3
Br e a y i f” pa e i fAn l sso S c -Ti e Efe t Appl a i n i r h Exc v to m f c” i to n Ea t c a ain
Ab t a tT e t e i i l n rdu e h sg , a a t r , a a t e me s  ̄sa d tc n q e d t l ffu d to i e c v t n a c r i g t h s r c : h ss ma n y i to c st e de i n p r me e h n g r n e . u n e h i u e a s o o n a n p t x a a i c o d n o t e a i i o
时立 即 跟进 混 凝 土 垫 层 的施 作



施工围护结构 , 地 基加固, 降水井施工。

第 3道 支 撑 F — 一 .
笔垒 遒塞撑
。 l -
堂旦 2个亚层 , 证每亚层 高控制在 2 保 m左右。分层 情况见下表
2 土 方 开挖施 工 方案
21 方 开 挖 施 工 工 艺 流 程 .土
sae t fc”h oyadtet h o g ad s a ibeob f rdadetn e pc-i e etter, n nl i l ei t ts ut l er e e e dd. me h e c o e g h is a t n er n x

基坑工程时空效应

基坑工程时空效应

0 0
-5
水平位移(mm)
50
100
150
200
-10
-15
深度(m)
-20
-25
-30
挖至-7.5的实测值
-35
按照原先施工参数的预测值
调整参数,不考虑注浆的预测值
调整开挖参数前后的基坑挡墙变形计算值对比
157#地块基坑周围环境示意图
157#地块基坑周围环境示意图
预留土堤宽 度10m 每小段开挖 宽度6~8m 每小段在18 小时之内开 挖并支撑
开挖第二层土时东端墙最大水平 位移增大至6mm超过了警戒值
第三层土方开挖中的变形增量减至3mm
调整施工参数控制地墙位移
三、不规则基坑工程实例
新世界商厦剖面图
新世界商厦支撑平面图
新世界平面图
香港广场
车站及其周围环境示意图二
车站及其周围环境示意图一
沉降(mm)
5
0
西
-5
西

1 0
16.1m/27线西
100 200 300 时间(天)
1.4 1.32 1.24 1.16 1.08
1 0
14m/27线东
100 200 300 时间(天)
土压力时间系数
土压力时间系数
1.12
19.8m/27线东
1.08
1.04
1
0
20
40
时间(天)
1.6 1.5 1.4 1.3 1.2 1.1
1.05
1 0 10 20 30 40 50 时间(天 )
土压力时间系数
1.3 10.5m/杨高路 1.25
1.2 1.15
1.1 1.05

时空效应法在深基坑工程中的应用

时空效应法在深基坑工程中的应用
保证 基坑 稳定 , 到控 制基 坑变形 目的 。 文 以英式 风 达 本 情 区泰 安道 一号 院基 坑 工程 为例 ,介 绍 在深 基坑 施 工
I 土层 层厚/ 重度/ 南 cka 渗透系数/ J m } /P 】 ] /
(N. - ( ) k m3 ) 。 (m・ c s) ( N・ - k m4 )
7 9 0 . ×l吨 7 3 O . ×1I 7
2 1 0 . ×1- 8 20 0 . ×l 18 O . ×1
30 0 0 45 0 0
50 0 0 50 0 0 80 0 0
7粉质粘土 O 6 .
8 1粉 质 — 粘 土 9 1 质 —粉 粘 土 9 2粉 砂 — 27 . 9
护周 围环境 。
6 结 论
经过 此 次 实 践 , 分体 会 到“ 层 、 充 分 分步 、 匀 、 均 对 称” 的时空 效应理 念在深 基坑 施工 中 的重要性 。在施 工
技术 上要 合理 布置 开挖 流程 ,充分 发挥 被动 区土 体 抵
挡 并延缓 围护 结 构— — 连排 灌注 桩 变形 的作用 。加 强
时空效应法在深基坑 工程 中的应用
口 文 / 志 强 谢 恩 杰 高 斌 宋 红 智 高 摘 要: 文章结合天津市泰安道一号院深基坑施工, 介绍 了利用时空效应理论加快施工进
度 , 制基 坑 变形 的做 法和体 会 。 控
关 键词 : 深基 坑 ; 支撑 ; 梁 ; 环 土方开挖
体进 行 合 理空 间划 分 ,以期 利用 土 体 结构 形 成 的空 间
抵抗 作 用来 减 少支 护 结构 位 移 并结 合环 梁 混凝 土 早 强 技术 和 基坑 监测 分 析 , 高基 坑稳 定 性 , 护周 边 环 境 提 保

基坑工程的时空效应与土方开挖

基坑工程的时空效应与土方开挖

基坑 工 程 的挖 土方 案 , 根据 基 坑 面积 大 小、 要 围护
结构 型式 、 开挖 深度 和工程 环境 条件 等 因素而 定 。大体
有 四种可 供选 择 : 层 开挖 、 段 开挖 、 分 分 中心 岛开 挖 、 盆 式开挖 。 ( 分层 开挖 。分层 开挖一般 适用 于基 坑较 深 , 1 ) 且不 允许 分 块分 段施 工 混凝 土 垫层 的 ,或土 质较 软 弱 的基
加固后 的纤维布 外表 面采用 粘贴 洁净砂进 行保 护 。 套粘接 树脂把 碳纤 维片材 粘贴 于混 凝土表 面 , 使碳 纤维
3 检验及验收 . 6
片材承 受拉应 力 , 并与混凝 土变 形协 调 , 同受 力 , 共 从而
本工程 采用 粘贴碳 纤维 布 的 碳纤维 片布 与基层之 间结 合是 否 良好 , 可采 用捶 击 起 到 结构加 固补强 的作用 。 施工 质量 高 , 工效 率高 , 施 并 的方 法来 判 断 是否合 格 , 合 格标 准 为 : 单 个 面积 空 加 固方 法进行 框架梁 加 固, 其 ① 在 鼓小 于 0 1m; .3 ②空 鼓 占总 面积 小于 5 : 空鼓 平均 为 且后期 使用不 需要 定期维 护 , 经过 加 固投入 使用后 情 %③ 况 良好 , 达到 预期效 果, 得推广 应用 。 ● 值 小于 1 0处 / 。 m。 当碳 纤维 布 的单个 空 鼓面 积 小于 l0 m , 采 O0m 时 可
参考 文献】 用针 管注胶 的方式进 行补 救 。 当纤维布 的单个 空鼓 面积 【 大于 l0m 宜将 该 处 纤 维布 切 除 , O0m 时, 重新 搭 接 粘 贴
同型 号的碳 纤维布 。
[] B 0 6— 0 6 1G 5 3 7 20 ,混凝土结构加 固设计规范 () 北京: s. 中国建

时空效应理论在深圳地铁5号线西丽站基坑土方开挖中的应用

时空效应理论在深圳地铁5号线西丽站基坑土方开挖中的应用

时空效应理论在深圳地铁5号线西丽站基坑土方开挖中的应用摘要:土方开挖具有显著的时空效应规律。

在具体施工中,相关单位应当充分利用这一规律进行合理施工,以实现事半功倍的目的。

西丽站土方开挖施工中利用了时空效应理论,有效地解决了基坑变形、地层位移等问题,提高了基坑的稳定性与施工效率。

关键词:时空效应;基坑土方开挖;西丽站引言土方开挖的时空效应原理,是指基坑在土方开挖时会呈现一定的空间和时间特点,土方开挖工程施工利用这些特点,使土体在一定空间、时间范围内充分发挥自身的抗变形能力,从而实现控制基坑变形的目的。

通常,土的流变规律包括蠕变性、流动性、应力松弛性、长期强度特性等。

因为具有流变特性,所以在土方开挖时,分步开挖的支护开挖部位土体、空间尺寸的暴露时间和土体的位移之间有着一定的相关。

尤其是含水量高、强度低、流变性大的软粘土,其围护结构的位移随着土方开挖时间的延长而逐步扩大。

土方开挖越深,围护结构暴露的范围也就越大,意味着流变现象会越显著。

总而言之,土方开挖中的时空效应主要表现在以下几个方面:随着时间的延长,周围地层的位移逐渐增大;随着时间的变化,围护结构的内力、变形逐渐发生变化。

因此,在具体的施工中应当根据工程所在地区的地质特点,结合在类似工程中的施工经验,根据“时空效应”理论、《地下工程施工及验收规程》的相关规定,对车站的基坑围护和开挖过程中的时空效应,认真分析土方开挖时空效应与车站的基坑围护情况,将首要目标定为保持基坑稳定,控制基坑变形,并且在土体开挖后严格控制土体无支撑暴露时间。

根据工程实际情况采用适当降水、钢支撑、基坑排水等措施增强土体的抗剪强度,严格控制基坑附近底层位移,实现安全施工,确保土方开挖施工质量。

1西丽站工程概况西丽站是深圳地铁5号线工程第10站,位于南山区西丽镇留仙大道和沙河西路十字路口处,沿留仙大道布置,呈东西走向。

西丽站范围内上覆第四系全新统人工堆积层、冲洪积层、上更新统坡积层、残积层,下伏震旦系花岗片麻岩。

深基坑支护技术在地铁施工中应用

深基坑支护技术在地铁施工中应用

深基坑支护技术在地铁施工中的应用摘要:以深圳地铁5号线五和站为例,系统的介绍复杂情况下深基坑支护技术的施工要点。

关键词:地铁站;深基坑;支护技术;监控量测中图分类号:u231+.3 文献标识码:a 文章编号:前言随着我国城市建设步伐的加快,国内一些大城市地铁工程相继开工建设,而地铁车站作为地铁的重要组成部分,其施工技术更是在不断的发展和完善。

地铁站一般均设置在人口密集的区域,施工范围狭小、城市地下条件复杂,因此深基坑支护技术的应用在地铁建设中就显得尤为重要。

本文仅就明挖地铁车站深基坑支护技术进行重点阐述。

通过深圳地铁5号线五和站深基坑支护在特殊条件下的施工事例,运用“时空效应”理论,着重介绍深基坑支护在地铁车站中的应用情况。

1、工程概况深圳地铁5号线五和站位于深圳市龙岗区,在布龙公路和五和路交叉口南侧。

车站横跨五和南路,北临布龙公路立交桥,走向与布龙公路走向一致。

车站结构全长254.4米,结构宽21.4米,最大开挖深度为25米。

2 、支护体系设计由于车站主体紧邻布龙公路,此处为布龙公路跨五和南路的跨线桥,相对高差较大,为保证车站主体施工开挖期间布龙公路的整体稳定性,确保基坑开挖安全及布龙公路行车安全,车站主体围护桩外侧设置有专门的φ1000mm钻孔桩,并配合锚索结构共同作用。

同排锚索间距按φ1000mm钻孔桩隔桩布置,其中第1排锚索单根长度为20m,2、3排锚索长度为25m。

锚索采用4孔为一束,自有段长度为5m。

同排锚索之间以钢腰梁连接,使锚固体系能够较好的承受荷载。

设计应力350kn,锁定应力270kn。

车站主体深基坑采用钢围檩与钢支撑结合组成的内支撑体系进行支护,车站一般段主体开挖深度为15.5米,设计采用四层φ600mm,壁厚t=16mm的钢管支撑。

钢管支撑第一层与地面高差约2.8米,预加应力400kn;第二层与第一层高差3.7米,预加应力600kn;第三层与第二层高差3.7米,预加应力600kn;第四层与第三层高差5.0米,预加应力600kn;基底与第四层高差越3.6米。

浅析时空效应规律在黄土深基坑工程中的运用

浅析时空效应规律在黄土深基坑工程中的运用
2 工 程 实 例 2 1 西 某深基坑工程概况 。 .陕

。 :
51




. .

毒 l一 女 粤 簪 — 等 一一_一 _ 一 -毒 _薏_ . e 啼 | z








陕 西 咸 阳 某 年 产 6 万 吨 甲 醇 项 目 , 坑 东 西 长 0 基 10 宽 5 m, 8 m, 0 挖深 一1 . m, 局部 挖深 1 .m) 属 于深 28 ( 78 , 大基 坑 , 基坑侧壁 安全 等级 为一 级。该 场地地 下水 位高 度 约 一1 .m, 5 9 支护结构形式 在 一1 .m 以上采用钢 筋土 28 钉墙 支护 , 7 8 一1. m处 卸煤 槽 以东 , 南边及输煤 栈桥的东 南 面用 锚 拉 护 坡 桩 支 护 。 ’ 2 2基坑支护设计参数 。 . 基坑 边 坡 采 用 钢 筋 土 钉 进 行 支 护 。钢 筋 直 径 为
第l 2卷
第 8期
鸡 西 大 学 学 报
J OURNA I I L OFJXIUN VER Ⅱ. S Y
Vo _ 2 No 8 l1 .
Au . 01 g2 2
21 0 2年 8月
文 章 编 号 :6 2~ 78 2 1 )8—0 5 2 17 6 5 (0 2 0 0 3—
工 图见 图 1 。实际 上 , 土工 格栅 模拟 注浆 体周 围存在 着 复杂 的三维应力 状态 。尽管二维模型不 可能精确地模 拟 应力状态 汲取与土 的相互作 用 , 但是 在假设 注浆 体相对 于土体没有相对 滑动 的情况 下 , 以在 总体 水平 上模拟 可
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

地铁基坑“时空效应”理论挖土施工应用浅谈
一、前言:从八十年代末到2000年上海分别建成了地铁一号线与地铁二号线,在工程实践中不断探索,不断总结,不断提高的过程中,老一代地铁建设者发现了软土地基深基坑开挖过程中地层位移变形的“时空效应”规律,这一规律的发现对上海地铁深基坑施工安全起到了决定性的作用。

“时空效应”顾名思义即充分利用软土基坑坑内土方开挖后,土体变形在时间和空间上的滞后特性,及时架设支撑与预加轴力平衡围护内外土压力差,从而达到控制围护变形和周边地面变形的挖土与支撑两道工序组合工况效应。

目前正值我公司在大力拓展地铁施工业务之际,将会遇到愈来愈多深基坑挖土施工与周边环境安全保护问题。

但由于基坑挖土与支撑安装工序不是工程实体结构的一部分,不存在传统意义上的质量好坏概念,所以往往会在基坑挖土上最大限度的压缩工期,这一做法很可能会产生挖土与支撑两道工序脱节、基坑开挖面过长、后续内部结构底板跟不上挖土速度等问题从而导致基坑围护结构不稳定和周边建筑物、地下管线沉降等。

希望通过我项目部基坑挖土施工的深刻教训,和几点运用“时空效应”理论顺利完成基坑挖土体会的浅述,以引起一线施工管理人员对运用“时空效应”理论进行基坑开挖土的重视。

二、深基坑施工概况
9号线一期七宝车站主体基坑端头井采用800mm厚31米深地墙围护结构,标准段采用600mm厚29米深地墙围护结构;端头井开挖深度16.8m,标准段开挖深度15m左右;端头井与标准段均设5道Φ609×16钢管支撑;坑底下3m采用旋喷桩抽条对撑加固。

基坑北侧距围护22米有一9层在建建筑,钢筋混凝土框架结构,箱形基础埋深5米,大底板下设有32米深Φ800钻孔灌注桩。

基坑南侧距围护结
构6米有两栋6层砖混结构待迁民房,片筏基础埋深约2米,基底下长期积水,两栋房屋均修建于八十年代,结构尚好。

三、基坑土方开挖施工与周边环境变形情况
(一)第一阶段土方开挖
第一阶段基坑沿深度分5层土开挖,沿纵向分为八个开挖段和以6米左右划分为若干小段(分块)开挖。

一~二层土开挖深度为相应支撑底下
20cm,三~四层土为了满足小挖机操作净空需要,均超挖至相应支撑下1米左右。

基坑开挖时西端头井盾构出洞加固尚未完成,所以先从属于两栋民房范围的第二开挖段开始挖土至第六开挖段第三层土时,西井加固完成又调头开挖第一开挖段(西井)。

基坑开挖过程中一道撑安装到位滞后围护结构悬臂受力状态下与地面结合部位均拉开1~2cm;每层土普遍存在超挖现象;二、三、四道撑安装均不及时;五道撑个别部位支撑在土方开挖完成后到支撑安装到位的时间达36h;再加上圈梁施工时破坏该开挖段北围护4个测斜点和南侧2个测斜点,因此没有监测到开挖时该段的围护变形情况,远离开挖区域的测点围护位移速率加大也因存在侥幸心理而未引起重视。

基坑开挖到第二开挖段坑底时(4#房位置),监测方发现4#房西北测点突沉5cm/24h,其余测点沉降速率亦增大,次日加密监测频率发现4#房西北测点继续沉降速率达3cm/12h,同时房屋周边地面及天井房已与房屋主体结构有明显拉裂错位现象。

通过采取加撑和加快基坑封底的措施基本稳住4#房屋突沉现象,但由于开挖施工的东移位于4#房东侧的3#房沉降速率也增大达3cm/24h。

(二)第二阶段土方开挖
出现险情后调整土方开挖方案,严格按照“时空效应”理论“分层、分段、分块、均衡、限时、限量、随挖随撑、严禁超挖”原则进行土方开挖,基坑沿深度方向分为六层土开挖,每层土均开挖到相应支撑底下20cm;
第5道支撑提高70cm,5道撑下1.4m增设第6道支撑;以每幅地墙宽度为一开挖单元(分块),每块土方开挖与支撑安装时限均控制在16h以内。

二阶段土方开挖时严格遵守“时空效应”挖土原则和增设第六道支撑后,基坑围护侧向位移与房屋沉降变形趋向于收敛。

(三)第三阶段土方开挖
顺利通过了建筑保护部位的基坑土方开挖后,为了节省成本,在第二阶段土方开挖的基础上基坑取消了第6道支撑,同时第5道支撑降底70cm,第六层土与第五层土合为一层土一起挖除,每块土方开挖与支撑安装时间控制在12h~16h之间。

由于该段没有地面建筑物的超载和严格控制每小块土方开挖的无撑暴露时间,所以该段基坑围护及周边地面变形均未超过基坑一级安全保护要求数据。

四、基坑开挖施工总结
通过七宝车站主体基坑不同工况的三个阶段的基坑开挖与支撑安装施工总结经验和体会如下:
(一)一阶段开挖围护变形大与周边建筑物沉降原因分析
1、基坑周边地面有两栋6层房屋超载较大,离基坑较近,由于给水管泄漏房屋基础下卧层土体长期泡水土体软化,抗剪能力大大降低;
2、④层淤泥质黏土层较厚,且顶板埋深较浅,该土层处于第四、第五层土超挖较深,支撑安装拖后的深度范围。

淤泥质黏土具有含水量高、孔隙比大、强度低、渗透性差、灵敏度较高的特点,受基坑开挖扰动时易产生流变现象,导致围护结构稳定性差;
3、一道撑安装拖后,开挖面过长,各开挖段基坑相对暴露时间长,累计变形大,土层受扰动大;
4、各层土均存在超挖现象,尤其第四、五层土开挖工况与设计计算工况不一至;
5、挖土与支撑工序没有衔接紧密,支撑安装时间拖后,基坑围护无
撑暴露时间长;
综上所述引起围护变形大与周边建筑物沉降原因为:浅层土泡水软化,在土体扰动产生流变现象后在地面超载作用下加上第四、五层土开挖时无撑暴露时间长,所以基坑围护稳定性差,侧向位移剧增,但由于该部位测斜点破坏没及时发现问题,愈演愈烈最后发生2栋房屋出现不同程度的突沉现象。

(二)二阶段土方开挖
二阶段严格按照“时空效应”理论挖土原则进行土方开挖,且增设了第六道支撑和把底板浇筑混凝土时间从7天缩短为3天,开挖时对土层扰动小,支撑及时所以基坑围护与周边建筑物沉降变形趋向于收敛。

(三)三阶段土方开挖
三阶段浅层土严格按照“时空效应”进行挖土,底层土工况虽然与设计计算工况不一致,但由于一~四层土开挖时围护变形小,土层基本没受到扰动,五、六层土一起挖除后支撑快速安装到位充分利用土层位移变形的“滞后“特性,及时利用支撑预加轴力来平衡坑内挖土卸载后引起的围护结构上的土压力差。

所以第三种开挖工况下基坑围护与周边地面变形值均未超出基坑一级安全保护要求,
五、结束语
通过七宝车站主体基坑土方初期开挖中由于施工失误造成基坑围护变形徐续剧增与周边建筑物突沉,和后期运用“时空效应”理论指导基坑挖土与支撑安装施工及采取“限时限量、严格控制围护无撑暴露时间、严禁超挖”等挖土措施后,基坑围护与周边环境变形均控制较理想范围内的对比证明了:软土地基深基坑开挖过程中存在地层位移变形的“时空效应”规律。

相关文档
最新文档