(word完整版)高中数学导数经典习题
高中数学导数练习题附答案

高中数学导数练习题附答案一、解答题 1.已知函数()1e -=xx f x . (1)求()f x 极值点;(2)若()()4g x f x =-,证明:2x >时,()()f x g x >成立.2.已知函数()ln f x x x x =-,()2ln 1g x a x x =-+.(1)求函数()f x 的最小值;(2)若()0g x ≤在()0,∞+上恒成立,求实数a 的值; (3)证明:1111232022e 2023+++⋅⋅⋅+>,e 是自然对数的底数. 3.已知函数2()cos sin e f x x x x -=--,[]0,x π∈. (1)求()f x 的最大值;(2)证明:2e sin e e cos 1x x x x x x x -+>+-;(3)若320()2e f x ax -++≥恒成立,求实数a 的取值范围.4.已知函数()32f x x ax bx =++的图象在点(0,(0))f 处的切线斜率为4-,且2x =-时,()y f x =有极值. (1)求()f x 的解析式;(2)求()f x 在3,2上的最大值和最小值.5.已知函数()()e sin x f x rx r *=⋅∈N ,其中e 为自然对数的底数.(1)若1r =,求函数()y f x =的单调区间;(2)证明:对于任意的正实数M ,总存在大于M 的实数a ,b ,使得当[,]x a b ∈时,|()|1f x ≤.6.已知函数2()ln (2)f x x a x a =+<. (1)若2a =-,求函数()f x 的极小值点;(2)当2(]0,x ∈时,讨论函数()f x 的图象与函数(2)22y a x a =+--的图象公共点的个数,并证明你的结论.7.设函数()()2()ln 1f x x a x x =++-,其中R a ∈.(1)1a =时,求曲线()y f x =在点()()1,1f 处的切线方程; (2)讨论函数()f x 极值点的个数,并说明理由; (3)若()0,0x f x ∀>成立,求a 的取值范围. 8.已知函数21()(1)ln 2f x x ax a x =-+-,(2) 2.f '= (1)求a 的值;(2)求函数()f x 的极小值.9.已知函数e ()(1)1xf x b x a=+-+(1)当114a b ==-,时,求曲线()y f x =在点(0,f (0))处的切线方程; (2)当1a =时,()2f x ≥恒成立,求b 的值. 10.已知函数()()()2e 1,e 2.718xf x m x m R =-+∈≈.(1)选择下列两个条件之一:①12m =;②1m =,判断()f x 在区间()0,∞+上是否存在极小值点,并说明理由;(2)已知0m >,设函数()()()1ln g x f x mx mx =-+.若()g x 在区间()0,∞+上存在零点,求实数m 的取值范围.【参考答案】一、解答题1.(1)极大值点为2x =,无极小值点; (2)证明见解析. 【解析】 【分析】(1)利用导数求出函数的单调区间即得解;(2)令()()()()4e 31e exx x x F x f x g x --=-=-,利用导数求出函数()F x 的最小值即得证. (1)解:由题意,得()2e xxf x -'=, 令()0f x '>,得2x <;()0f x '<,得2x >; 列表如下:所以()f x 极大值点为2x =,无极小值点. (2)证明:()()()4e 34e x x g xf x -=-=,令()()()()4e 31e e xx x x F x f x g x --=-=-, ∴()()()()42442e e e 22e e ex xx x x x x F x +----'=-=. 当2x >时,20x -<,24x >,从而42e e 0x -<,∴()0F x '>,()F x 在()2,+∞上是增函数,∴()()221120e eF x F >=-=. ∴当2x >时,()()f x g x >成立. 2.(1)1- (2)2(3)证明见解析 【解析】 【分析】(1)求导求单调性即可求解;(2)()()220a x g x x x-'=>,分类讨论单调性得到()ln 1222max g x a a a =-+,要使()0g x ≤在()0,∞+恒成立,则()0max g x ≤,即ln 10222a a a -+≤, 又由(1)可得到ln 10222a a a -+≥,所以ln 10222a a a -+=,即可求解;(3)由(2)知()22ln 1g x x x =≤-得到22ln 1x x ≤-,所以ln 1t t ≤-,所以e 1xx ≥+,即11e >nn n+,代入证明即可. (1)()f x 的定义域为()0,∞+,()ln f x x '=,当()0,1x ∈时,()0f x '<,当(1,)x ∈+∞时,()0,f x '>故()f x 在()01,上单调递减,在(1,)+∞上单调递增. 所以()()11min f x f ==-. (2)()()2220a a x g x x x x x-'=-=>,当0a ≤时,()0g x '<,()g x 在()0,∞+上单调递减, 此时存在()00,1x ∈,使得()()010g x g >=,与题设矛盾.当0a >时,x ∈时,()0g x '>,)x ∈+∞时,()0g x '<,故()g x 在上单调递增,在)+∞上单调递减,所以()1ln 12222max a a a ag g x a ==+=-+, 要使()0g x ≤在()0,∞+恒成立,则()0max g x ≤,即ln 10222a a a -+≤又由(1)知()ln 1f x x x x =-≥-,即ln 1x x x -≥-,(当且仅当1x =时,等号成立).令2a x =有ln 10222a a a -+≥,故ln 10222a a a -+=且12a = 所以2a =. (3)证明:由(2)知()22ln 1g x x x =≤-得22ln 1x x ≤-(当且仅当1x =时等号成立),令)0x t =>,则ln 1t t ≤-(当且仅当1t =时等号成立),令e x t =,所以ln e e 1x x ≤-,即e 1x x ≥+(当且仅当0x =时等号成立),令()*10x n N n =>∈,则111e >1n n n n++=从而有11111320212022223420222023e e e ee>12320212022⋅⋅⋅⨯⨯⨯⨯⨯ 所以111112*********e2023.+++⋯++>【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用. 3.(1)2max ()e f x -=- (2)证明见解析 (3)1,6a ⎡⎫∈+∞⎪⎢⎣⎭【解析】 【分析】(1)直接利用导数判断单调性,求出最大值; (2)利用分析法,转化为证明1e x x ->f (x ). 令g (x )=1e xx-,[]0,x π∈,利用导数求出g (x )≥g (2)=-2e -,而2max ()(0)e f x f -==-,即可证明;(3)把问题转化为x cos x -sin x +2ax 3≥0恒成立,令h (x )=x cos x -sin x +2ax 3,[]0,x π∈,二次求导后,令()6sin x ax x ϕ=-,对a 分类讨论:i. a ≤-16, ii. a ≥16,iii.-16<a <16,分别利用导数计算即可求解. (1)∵2()cos sin e f x x x x -=--,[]0,x π∈,∴()cos sin cos sin 0f x x x x x x x '=--=-,∴f (x )在[0,π]上单调递减,∴2max ()(0)e f x f -==-.(2)要证2e sin e e cos 1x x x x x x x -+>+-,只要证21cos sin e e x x x x x -->--,即证1e xx ->f (x ), 令g (x )=1e x x -,[]0,x π∈,则()2e xx g x -'=,故g (x )在(0,2)上单调递减;g (x )在(2,π)上单调递增,所以g (x )≥g (2)=-2e -,又 f (x )≤-2e -,且等号不同时取到,所以2e sin e e cos 1x x x x x x x -+>+- (3)()3220f x ax -≥++e ,等价于x cos x -sin x +2ax 3≥0,令h (x )=x cos x -sin x +2ax 3,[]0,x π∈,则()2sin 66sin h x x x ax x ax x '=-+=(-),令()6sin x ax x ϕ=-,则()6cos x a x ϕ=-',i.当a ≤-16时,()0x ϕ',所以()ϕx 在[0,π]上递减,所以()(0)0x ϕϕ=, 所以()0h x '≤,所以h (x )在[0,π]上递减,所以h (x )≤h (0)=0,不合题意. ii.当a ≥16时,()0x ϕ',所以()ϕx 在[0,π]上递增,所以()(0)0x ϕϕ= 所以()0h x '≥,所以h (x )在[0,π]上递增,所以h (x )≥h (0)=0,符合题意. iii.当-16<a <16时,因为(0)610a ϕ=-<',()160a ϕπ=+>',且()x ϕ'在[0,π]上递增,所以0x ∃[]0,π∈,使得()00x ϕ'=,所以当0(0,)x x ∈时,()0x ϕ'<,此时()ϕx 在(0,x 0)上递减,所以()(0)0x ϕϕ<=,所以()0h x '<,所以h (x )在(0,x 0)上递减,所以h (x )<h (0)=0,不合题意.综上可得: 1,6a ⎡⎫∈+∞⎪⎢⎣⎭. 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用. 4.(1)32()24f x x x x =+- (2)最大值为8,最小值为4027-. 【解析】 【分析】(1)由题意可得(0)4,(2)1240,f b f a b ==-⎧⎨-=-+=''⎩从而可求出,a b ,即可求出()f x 的解析式,(2)令()0f x '=,求出x 的值,列表可得(),()f x f x '的值随x 的变化情况,从而可求出函数的最值 (1)由题意可得,2()32f x x ax b '=++. 由(0)4, (2)1240,f b f a b ==-⎧⎨-=-+=''⎩解得2,4.a b =⎧⎨=-⎩ 经检验得2x =-时,()y f x =有极大值. 所以32()24f x x x x =+-. (2)由(1)知,2()344(2)(32)f x x x x x '=+-=+-. 令()0f x '=,得12x =-,223x =,()'f x ,()f x 的值随x 的变化情况如下表:由表可知()f x 在[3,2]-上的最大值为8,最小值为27-. 5.(1)增区间为32,2,44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ 减区间为52,2,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(2)证明过程见解析. 【解析】 【分析】(1)对函数求导,利用辅助角公式合并为同名三角函数,利用单调增减区间代入公式求解即可.(2)将绝对值不等式转化为11sin e e xxrx ⎛⎫⎛⎫-≤≤ ⎪ ⎪⎝⎭⎝⎭,移向构造新函数,利用导数判定单调性,借助零点定理和隐零点证明新构造函数恒正,再结合三角函数的特有的周期特点寻找M 即可. (1)()e (sin cos )sin 4x x f x x x x π⎛⎫'=+=+ ⎪⎝⎭令22242k x k πππππ-≤+≤+,得32,244x k k ππππ⎡⎤∈-+⎢⎥⎣⎦令322242k x k ππππ+≤+≤π+,得24x k ππ⎡∈+⎢⎣,524k ππ⎤+⎥⎦当32,244x k k ππππ⎡⎤∈-+⎢⎥⎣⎦时, ()0f x '>,()f x 单调递增 当24x k ππ⎡∈+⎢⎣,524k ππ⎤+⎥⎦时, ()0,()f x f x '< 单调递減 综上() f x 单调递增区间为32,2,44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦单调递减区间为 52,2,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(2)要证|()|1f x ≤,即证e sin 1xrx ⋅≤,即证11sin =e e xx rx ⎛⎫≤ ⎪⎝⎭即证 11sin e e xxrx ⎛⎫⎛⎫-≤≤ ⎪ ⎪⎝⎭⎝⎭在[,]x a b ∈时成立即可,[,]x a b ∈时,1sin 0e 1sin 0e xxrx rx ⎧⎛⎫-≤⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩. 令1()sin e x h x rx ⎛⎫=- ⎪⎝⎭, 1()cos e xh x r rx ⎛⎫'=+ ⎪⎝⎭当222,k k x rr πππ⎛⎫+ ⎪∈⎪ ⎪⎝⎭时, cos 0,r rx > 所以1()cos 0,e xh x r rx ⎛⎫'=+> ⎪⎝⎭所以()h x 单调递增,2210,e k rk h rππ⎛⎫⎛⎫=-< ⎪ ⎪⎝⎭⎝⎭2221210(0)e k r k h k r ππππ+⎛⎫⎛⎫+ ⎪⎪=±>> ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭0(2)22,k k x rrπππ+∴∃∈ , 满足()00h x =由单调性可知02,k x x r π⎛⎫∈⎪⎝⎭, 满足()0()0h x h x <= 又因为当021,,sin 0,0,xk x x rx r e π⎛⎫⎛⎫∈>≥ ⎪ ⎪⎝⎭⎝⎭ 1sin 0xrx e ⎛⎫∴+≥ ⎪⎝⎭,所以1sin 0e 1sin 0e xxrx rx ⎧⎛⎫-≤⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩能够同时满足, 对于任意的正实数M ,总存在正整数k ,且满足2Mr k π>时, 使得 2k M r π>成立, 所以不妨取 02,,2k Mr a k b x rππ⎛⎫=>= ⎪⎝⎭则,a b M >且[,]x a b ∈时,1sin 01sin 0xxrx e rx e ⎧⎛⎫-≤⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩, 故对于任意的正实数M ,总存在大于M 的实数,a b ,使得当[,]x a b ∈ 时,|()|1f x ≤. 6.(1)详见解析; (2)详见解析; 【解析】 【分析】(1)由2a =-,得到2()2ln f x x x =-,然后求导2()2f x x x'=-求解; (2)令2()ln (2)22=+-+++g x x a x a x a ,求导()()21()--'=x a x g x x,分0a ≤,012a <<,12a =,122a<<讨论求解. (1)解:当2a =-时,2()2ln f x x x =-, 所以2()2f x x x'=-,令()0f x '=,得1x =, 当01x <<时,()0f x '<,当1x >时,()0f x '>, 所以1x =是函数()f x 的极小值点; (2)当2(]0,x ∈时,令2()ln (2)22=+-+++g x x a x a x a ,则()()2212(2)()2(2)---++'=+-+==x a x a x a x a g x x a x x x, 当0a ≤时,01x <<时,()0g x '<,12x <≤时,()0g x '>, 所以当1x =时,()g x 取得极小值,且0x →,()g x ∞→+,当()110g a =+>,即10a -<≤,函数()f x 的图象与函数(2)22y a x a =+--的图象无公共点;当()110g a =+=,即1a =-时,函数()f x 的图象与函数(2)22y a x a =+--的图象有1个公共点;当()()11022ln 20g a g a ⎧=+<⎪⎨=+≥⎪⎩,即21ln 2-≤<-a 时,函数()f x 的图象与函数(2)22y a x a =+--的图象有2个公共点;当()()11022ln 20g a g a ⎧=+<⎪⎨=+<⎪⎩,即2ln 2a <-,函数()f x 的图象与函数(2)22y a x a =+--的图象有1个公共点; 当012a <<,即02a <<时,02ax <<或1x >时,()0g x '>,12a x <<时,()0g x '<,所以当2ax =时,()g x 取得极大值,当1x =时,()g x 取得极小值,且0x →,()g x →-∞,因为()110g a =+>恒成立,所以函数()f x 的图象与函数(2)22y a x a =+--的图象只有1个公共点; 当12a =,即2a =时,()0g x '≥恒成立,所以()g x 在(0,2]上递增,所以函数()f x 的图象与函数(2)22y a x a =+--的图象有1个公共点; 当122a <<,即24a <<时,01x <<或22a x <<时,()0g x '>,12ax <<时,()0g x '<,所以当1x =时,()g x 取得极大值,当2ax =时,()g x 取得极小值,且0x →,()g x →-∞,因为()110g a =+>,()22ln 20=+<g a ,2ln 20242⎛⎫=-+++> ⎪⎝⎭a a a g a a 恒成立,所以()f x 的图象与函数(2)22y a x a =+--的图象只有1个公共点.综上: 当10a -<≤时,函数()f x 的图象与函数(2)22y a x a =+--的图象无公共点;当1a =-或 2ln 2a <-或04a <<时,()f x 的图象与函数(2)22y a x a =+--的图象只有1个公共点; 当21ln 2-≤<-a 时,函数()f x 的图象与函数(2)22y a x a =+--的图象有2个公共点.7.(1)322ln230x y -+-=(2)当0a <时,函数()f x 有一个极值点; 当809a ≤≤时,函数()f x 无极值点; 当89a >时,函数()f x 有两个极值点. (3)0,1【解析】【分析】(1)将1a =代入函数()f x 中,得出函数()f x 的解析式,进而可以求出切点坐标,再利用导数的几何意义及点斜式即可求解;(2)根据已知条件,对a 进行分类讨论,利用导数法求函数极值的步骤及函数极值的定义即可求解;(3)根据()0,0x f x ∀>成立,转化为()min 0,0x f x ∀>即可,再利用第(2)的结论即可求解.(1)当1a =时,()2()ln 1f x x x x =++-()()21ln 1111ln 2f =++-=,所以切点为()1,ln2,()()11321,12111112f x x k f x ''=+-∴==+⨯-=++, 所以曲线()y f x =在点()()1,1f 处的切线的斜率为()312k f ='=,所以曲线()y f x =在点()1,ln2处的切线的斜率切线方程为()3ln212y x -=-,即322ln230x y -+-= (2)由题意知函数()f x 的定义域为()1,-+∞,()()21212111ax ax a f x a x x x +-+=+-='++, 令()()221,1,g x ax ax a x =+-+∈-+∞,(i )当0a =时,()10f x '=>,函数()f x 在()1,-+∞单调递增,无极值点 (ii )当0a >时,()Δ98a a =-,①当809a <≤时,()()Δ0,0,0g x f x '≤≥≥,所以函数()f x 在()1,-+∞单调递增,无极值点;②当89a >时,Δ0>,设方程2210ax ax a +-+=两根1212,,x x x x == 此时12x x <()121211111,,,110,12444x x x x g x +=-∴---=>-<<∴<-> ()()121,,,x x x ∴∈-+∞时,()()0,0g x f x '>>,函数()f x 单调递增;()12,x x x ∈时,()()0,0g x f x '<<,函数()f x 单调递减.∴函数有两个极值点;③当0a <时,()Δ980a a =->,设方程2210ax ax a +-+=两根1212,,x x x x ==此时12x x >()12110,1x g x -=>∴-<<()11,x x ∴∈-时,()()0,0g x f x '>>,函数()f x 单调递增;()1,x x ∈+∞时,()()0,0g x f x '<<,函数()f x 单调递减.∴函数有一个极值点;综上所述:当0a <时,函数()f x 有一个极值点; 当809a ≤≤时,函数()f x 无极值点; 当89a >时,函数()f x 有两个极值点.(3)由()0,0x f x ∀>成立等价于()min 0,0x f x ∀>≥即可.①当809a ≤≤时,函数()f x 在()0,+∞上单调递增,()()00,0,f x =∴∈+∞时,()0f x >,符合题意; ②当819a <≤时,由()00g >,得20x ≤,∴函数()f x 在()0,+∞上单调递增, 又()()00,0,f x =∴∈+∞时,()0f x >,符合题意;③当1a >时,由()00<g ,得20x >()20,x x ∴∈时, ()f x 单调递减,()()200,0,f x x =∴∈时,()0f x <时,不合题意;④当0a <时,设()()ln 1h x x x =-+,()0,x ∈+∞,时,()()110,11x h x h x x x =-=>∴+'+在()0,+∞上单调递增. ∴当()0,x ∞∈+时,()()00h x h >=,即()ln 1x x +<,可得()()()221f x x a x x ax a x <+-=+-, 当11x a>-时,()210ax a x +-<,此时()0f x <,不合题意.综上,a 的取值范围是0,1.【点睛】解决此题的关键是第一问利用导数的几何意义及点斜式即可,第二问主要是对参数进行分类讨论,再结合利用导数法求函数的极值的步骤即可,第三问主要将恒成立问题转化为最值问题再结合第二问的结论即可求解.8.(1)1-(2)极小值32【解析】【分析】(1)求导函数,结合(2)2f '=解方程即可;(2)令()0f x '=进而分析单调性,即可求出极值.(1)由题意可得()1a f x x a x '-=-+,故()12222a f a -'=-+=, 1.a ∴=- (2)由(1)得21()2ln 2f x x x x =+-,所以()()210f x x x x '=+->,令()210f x x x '=+-=,解得1x =,因为 当(0,1)x ∈时,()0f x '<,当(1,)x ∈+∞时,()0f x '>,所以函数()y f x =在(0,1)上单调递减,在(1,)+∞上单调递增,所以当1x =时,函数()f x 取得极小值()312f =.9.(1)25y x =+(2)0b =【解析】【分析】(1)利用切点和斜率求得切线方程.(2)由()2f x ≥恒成立构造函数()()2g x f x =-,对b 进行分类讨论,结合()'g x 研究()g x 的最小值,由此求得b 的值.(1) 当114a b ==-,时,()4e 21x f x x =-+,则()4e 2x f x '=-又因为(0)5,(0)2f f '==所以曲线()y f x =在点(0,f (0))处的切线方程为()520y x -=-, 即25y x =+.(2)当1a =时,令函数()()()2e 11x g x f x b x =-=+--,则()2f x ≥恒成立等价于()0g x ≥恒成立.又()e 1,x g x b '=+-.当1b ≥时,()e 10,x g x b '=+->,g (x )在R 上单调递增,显然不合题意; 当1b <时,令()e 10,x g x b '=+-<,得ln(1)x b <-.令()e 10x g x b '=+->,得()ln 1x b >-,所以函数g (x )在(,ln(1))b -∞-上单调递减,在(ln(1),)b -+∞上单调递增, 所以当ln(1)x b =-时,函数g (x )取得最小值.又因为()00g =,所以0x =为g (x )的最小值点.所以ln(1)0b -=,解得0b =.10.(1)选择①不存在,理由见解析;选择②存在,理由见解析(2)[)1,+∞【解析】【分析】(1)若选择①,则()1x f x e x '=--,令()1x q x e x =--,由于()q x '在R 上单调递增,且()00f '=,从而可求出求出()f x '的单调区间,进而可求出()f x '的最小值非负,则()f x 无极值;若选择②,则()22x f x e x '=--,令()22x n x e x =--,由()n x '在R 上单调递增,且()ln 20n '=,可得()f x '的单调区间,从而得其最小值小于0 ,进而可判断函数的极值,(2)令()0g x =,则可得()()()1ln 1ln ln 0x x mx e x mx e x mx mx----+=--=⎡⎤⎣⎦,令()ln t x mx =-,即转化为10t e t --=有解,构造函数()1t h t e t -=-,由导数可得()1t h t e t -=-由唯一零点1t =,从而将问题转化为()1ln x mx =-在()0,∞+有解,即1ln ln m x x +=-,再构造函数()ln l x x x =-,利用导数求出函数的值域可得1ln m +的范围,从而可求出实数m 的取值范围(1)若选择①12m =,则()()2112x f x e x =-+,则()1x f x e x '=--. 令()1x q x e x =--,则()1x q x e '=-,由()q x '单调递增,且()00q '=,得()0q x '>在()0,∞+上恒成立,所以()f x '在()0,∞+上单调递增, 所以当()0,x ∈+∞时,()()00f x f ''>=,则()f x 在()0,∞+上单调递增,不存在极小值点.若选择②1m =,则()()21x f x e x =-+,则()22x f x e x '=--.令()22x n x e x =--,则()2x n x e '=-,()n x '单调递增,且()ln 20n '=,所以()f x '在()0,ln 2上单调递减,()ln 2,+∞上单调递增.又()ln 22ln 20f '=-<,()2260f e '=->,所以存在()0ln 2,2x ∈,满足()00f x '=.则()f x 在()00,x 上单调递减,在()0,x +∞上单调递增,所以()f x 存在极小值点0x .(2)令()0g x =,则()12ln 0x e mx mx mx --+=.又0mx >, 所以()()()()()11ln 1ln ln ln ln 0x x x mx mx e e x mx x mx e x mx mx e-----+=-+=--=⎡⎤⎣⎦. 令()ln t x mx =-,即可转化为10t e t --=有解.设()1t h t e t -=-,则由()110t h t e -'=-<可得1t <,则()h t 在(),1t ∈-∞上单调递减,在()1,t ∈+∞上单调递增.又()10h =,所以()1t h t e t -=-有唯一的零点1t =.若()g x 在区间()0,∞+上存在零点,则()1ln x mx =-在()0,∞+有解.整理得. 设()ln l x x x =-,由()11l x x '=-,知()l x 在()0,1x ∈上单调递减,在()1,x ∈+∞上单调递增,又当0x +→时,()l x →+∞,则()()11l x l ≥=,所以1ln 1m +≥,得1m ≥.故实数m 的取值范围是[)1,+∞.【点睛】关键点点睛:此题考查导数的应用,考查利用导数解决零点问题,解题的关键是由()0g x =可得()()ln 1ln 0x mx e x mx ----=⎡⎤⎣⎦,令()ln t x mx =-,将问题转化为10t e t --=有解,构造()1t h t e t -=-利用导数讨论其解的情况即可,考查数学转化思想和计算能力,属于较难题。
高中数学导数知识点归纳的总结及例题(word文档物超所值)

为函数
_____ _ 的图象的顶点在第四象限,则其导
o
y
x
-33
)
(x
f
y'
=
()y f x ='()f x 为( )
(安微省合肥市2010年高三第二次教学质量检测文科)函数()y f x =的图像如下右)
(x f y '=
(2010年浙江省宁波市高三“十校”联考文科)如右图所示是某
一容器的三视图,现向容器中匀速注水,容器中水面的高度h 随时间t 变化的可能图象是( )
象大致形状是( )
2009湖南卷文)若函数()y f x =的导函数在区间[,]a b 上是增函数,则函数
()x 在区间[,]a b 上的图象可能是
y
y
y
14.(2008年福建卷12)已知函数y=f(x),y=g(x)的导函数的图象如下图,那么y=f(x),
y=g(x)的图象可能是( )
15.(2008珠海一模文、理)设是函数的导函数,将和的图)('x f )(x f )(x f y =)('x f y =像画在同一个直角坐标系中,不可能正确的是( )
A .
B .
C .
D .16.(湖南省株洲市2008届高三第二次质检)已知函数
)(x f y =的导函数)(x f y '=的图像如下,则(
)
函数)(x f 有1个极大值点,1个极小值点
y。
(word完整版)导数的运算练习题

导数的运算练习一、常用的导数公式(1)'C = (C 为常数); (2)()'n x = ; (3)(sin )'x = ; (4)(cos )'x = ; (5)()'x a = ; (6)()'x e = ; (7)_____________; (8)_____________;二、导数的运算法则 1、(1) ; (2);(3)______________________________________; (4)=___________________________________;(C 为常数)2、复合函数的导数设 .三、练习1、已知()2f x x =,则()3f '等于( )A .0B .2xC .6D .9 2、()0f x =的导数是( )A .0B .1C .不存在D .不确定 3、32y x = ) A .23xB .213x C .12- D 33x4、曲线n y x =在2x =处的导数是12,则n 等于( )A .1B .2C .3D .45、若()f x =()1f '等于( )A .0B .13- C .3 D .136、2y x =的斜率等于2的切线方程是( ) A .210x y -+=B .210x y -+=或210x y --=C .210x y --=D .20x y -= 7、在曲线2y x =上的切线的倾斜角为4π的点是( ) A .()0,0 B .()2,4 C .11,416⎛⎫ ⎪⎝⎭ D .11,24⎛⎫⎪⎝⎭8、设()sin y f x =是可导函数,则x y '等于( )A .()sin f x 'B .()sin cos f x x '⋅C .()sin sin f x x '⋅D .()cos cos f x x '⋅ 9、函数()22423y x x=-+的导数是( )A .()2823x x -+B .()2216x -+ C .()()282361x x x -+-D .()()242361x x x -+-10、曲线34y x x =-在点()1,3--处的切线方程是( ) A .74y x =+B .72y x =+C .4y x =-D .2y x =-11、点P 在曲线323y x x =-+上移动,设点P 处切线的倾斜角为α,则角α的取值范围是( )A .0,2π⎡⎤⎢⎥⎣⎦B .30,,24πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭C .3,4ππ⎡⎫⎪⎢⎣⎭ D .3,24ππ⎛⎤ ⎥⎝⎦12、求函数212y x =-在点1x =处的导数。
高中数学导数经典20题附解析

导数经典20题目录导数经典20题 (1)一、【不等式恒成立-单变量】5道 (3)二、【不等式恒成立-双变量】5道 (13)三、【不等式证明】5道 (23)四、【零点问题】5道 (32)一、【不等式恒成立-单变量】【第01题】(2017•广东模拟)已知()ln a f x x x=+.(1)求()f x 的单调区间和极值;(2)若对任意0x >,均有()2ln ln x a x a −≤恒成立,求正数a 的取值范围.【分析】(1)求出函数的导数,通过讨论a 的范围求出函数的单调区间,从而求出函数的极值即可;(2)问题转化为2ln ln 1a a ≤+,求出a 的范围即可.【解答】解:(1)(0x >), ()221a x a f x x x x−′=−=(0x >), 当0a ≤时,()0f x ′>,在()0,+∞上递增,无极值;当0a >时,0x a <<时,()0f x ′<,在()0,a 上递减,x a >时,()0f x ′>,()f x 在(),a +∞上递增,()()ln 1f x f a a ==+极小值,无极大值.(2)若对任意0x >,均有恒成立,即对任意0x >,均有2ln ln a a x x≤+恒成立, 由(1)得:0a >时,()f x 的最小值是ln 1a +,故问题转化为:2ln ln 1a a ≤+,即ln 1a ≤,故0e a <≤.【点评】本题考查了函数的单调性、极值问题,考查导数的应用以及分类讨论思想,考查()ln a f x x x =+()f x ()f x ()2ln ln x a x a −≤转化思想,是一道中档题.一、【不等式恒成立-单变量】【第02题】(2019•西安一模)已知函数()()21e x f x x ax =−−(其中e 为自然对数的底数). (1)判断函数()f x 极值点的个数,并说明理由;(2)若对任意的0x >,()3e x f x x x +≥+,求a 的取值范围.【分析】(1)首先求得导函数,然后分类讨论确定函数的极值点的个数即可;(2)将原问题转化为恒成立的问题,然后分类讨论确定实数a 的取值范围即可.【解答】解:(1)()()e 2e 2x xf x x ax x a ′=−=− ,当0a ≤时,()f x 在(),0−∞上单调递减,在()0,+∞上单调递增,()f x 有1个极值点; 当102a <<时,()f x 在(),ln 2a −∞上单调递增,在()ln 2,0a 上单调递减,在()0,+∞上单调递增,()f a 有2个极值点; 当12a =时,()f x 在R 上单调递增,此时函数没有极值点; 当12a >时,()f x 在(),0−∞上单调递增,在()0,ln 2a 上单调递减,在()ln 2,a +∞上单调递增,()f a 有2个极值点. 综上,当12a =时,()f x 没有极值点;当0a ≤时,()f x 有1个极值点;当0a >且12a ≠时,()f x 有2个极值点.(2)由得32e 0x x x ax x −−−≥.当0x >时,2e 10x x ax −−−≥, 即2e 1x x a x−−≤对0x ∀>恒成立. 设()2e 1x x g x x−−=(0x >), ()3e x f x x x +≥+则()()()21e 1x x x g x x −−−′=,设()e 1x h x x =−−,则()e 1x h x ′=−,由0x >可知()0h x ′>,()h x 在()0,+∞上单调递增,()()00h x h >=,即e 1x x >+,()g x ∴在()0,1上单调递减,在()1,+∞上单调递增,()()1e 2g x g ∴≥=−,e 2a ∴≤−,故a 的取值范围是(],e 2−∞−.【点评】本题主要考查导数研究函数的极值点,导数研究不等式恒成立的方法,分类讨论的数学思想等知识,属于中等题.【第03题】(2017春•太仆寺旗校级期末)已知函数()ln f x x a x =−,()1a g x x+=−(a ∈R ). (1)若1a =,求函数()f x 的极小值;(2)设函数()()()h x f x g x =−,求函数()h x 的单调区间;(3)若在区间[]1,e 上存在一点0x ,使得()()00f x g x <成立,求a 的取值范围.【分析】(1)先求出其导函数,让其大于0求出增区间,小于0求出减区间即可得到函数的单调区间进而求出函数()f x 的极值;(2)先求出函数()h x 的导函数,分情况讨论让其大于0求出增区间,小于0求出减区间即可得到函数的单调区间;(3)先把()()00f x g x <成立转化为()00h x <,即函数()1ln a h x x a x x +=+−在[]1,e 上的最小值小于零;再结合(2)的结论分情况讨论求出其最小值即可求出a 的取值范围.【解答】解:(1)()f x 的定义域为()0,+∞,当1a =时,()ln f x x x =−,()111x f x x x −′=−=, x ()0,11 ()1,+∞ ()'f x− 0 + ()f x减 极小 增 所以()f x 在1x =处取得极小值1.(2)()1ln a h x x a x x +=+−, ()()()221111x x a a a h x x x x+−+ + ′=−−=, ①当10a +>时,即1a >−时,在()0,1a +上()0h x ′<,在()1,a ++∞上()0h x ′>, 所以()h x 在()0,1a +上单调递减,在()1,a ++∞上单调递增;②当10a +≤,即1a ≤−时,在()0,+∞上()0h x ′>,所以,函数()h x 在()0,+∞上单调递增.(3)在区间[]1,e 上存在一点0x ,使得()()00f x g x <成立,即在[]1,e 上存在一点0x ,使得()00h x <,即函数在[]1,e 上的最小值小于零. 由(2)可知,①当1e a +≥,即e 1a ≥−时,()h x 在[]1,e 上单调递减,所以()h x 的最小值为()e h ,由()1e e 0ea h a +=+−<可得2e 1e 1a +>−, 因为2e 1e 1+−e 1>−, 所以2e 1e 1a +>−; ②当11a +≤,即0a ≤时,()h x 在上单调递增,所以()h x 最小值为()1h ,由()1110h a =++<可得2a <−;③当11e a <+<,即0e 1a <<−时,可得()h x 最小值为()1h a +,因为()0ln 11a <+<,所以,()0ln 1a a a <+<,故()()12ln 12h a a a a +=+−+>,此时,()10h a +<不成立.综上可得,所求a 的范围是:或2a <−. 【点评】本题第一问考查利用导函数来研究函数的极值.在利用导函数来研究函数的极值时,分三步①求导函数,②求导函数为0的根,③判断根左右两侧的符号,若左正右负,原函数取极大值;若左负右正,原函数取极小值.()1ln a h x x a x x+=+−[]1,e 2e 1e 1a +>−【第04题】(2019•蚌埠一模)已知函数()()2ln f x a x x x =−−.(1)当1a =时,求函数()f x 的单调区间;(2)若()0f x ≥恒成立,求a 的值.【分析】(1)代入a 的值,求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)通过讨论x 的范围,问题转化为01x <<时,2ln x a x x ≤−,1x >时,2ln x a x x ≥−,令()g x =2ln x x x−,根据函数的最值求出a 的范围,取交集即可. 【解答】解:(1)1a =时,()2ln f x x x x −−,(0x >) 故()()()211121x x f x x x x+−′=−−=, 令()0f x ′>,解得:1x >,令()0f x ′<,解得:01x <<,故()f x 在()0,1递减,在()1,+∞递增.(2)若()0f x ≥恒成立,即()2ln a x x x −≥,①()0,1x ∈时,20x x −<,问题转化为2ln x a x x ≤−(()0,1x ∈),1x >时,20x x −>,问题转化为2ln x a x x ≥−(1x >), 令()g x =2ln x x x −, 则()()()22121ln x x x g x x x −−−′=−, 令()()121ln h x x x x =−−−,则()112ln h x x x ′=−+−,()2120x x xh ′=−−<′, 故()h x ′在()0,1和()1,+∞内都递减,()0,1x ∈时,()()10h x h ′′>=,故()h x 在()0,1递增,()()10h x h <=,故()0,1x ∈时,()0g x ′<,()g x 在()0,1递减,而1x →时,()1g x →,故()0,1x ∈时,()1g x >,故1a ≤,()1,x ∈+∞时,()()10h x h ′′<=,故()h x 在()0,1递减,()()10h x h <=, 故()1,x ∈+∞时,()0g x ′<,()g x 在()1,+∞递减,而1x →时,()1g x →,故()1,x ∈+∞时,()1g x >,故1a ≥,②1x =时,显然成立.综上:1a =.【点评】本题考查了函数的单调性,最值问题,考查导数的应用以及函数恒成立问题,考查转化思想,分类讨论思想,是一道综合题.【第05题】(2019•南昌一模)已知函数()()e ln x f x x x a =−++(e 为自然对数的底数,a 为常数,且1a ≤). (1)判断函数()f x 在区间()1,e 内是否存在极值点,并说明理由; (2)若当ln 2a =时,()f x k <(k ∈Z )恒成立,求整数k 的最小值. 【分析】(1)由题意结合导函数的符号考查函数是否存在极值点即可; (2)由题意结合导函数研究函数的单调性,据此讨论实数k 的最小值即可. 【解答】解:(1)()1e ln 1x f x x x a x ′=−++−,令()1ln 1g x x x a x=−++−,()1,e x ∈,则()()'e x f x g x =, ()2210x x g x x −+′=−<恒成立,所以()g x 在()1,e 上单调递减,所以()()110g x g a <=−≤,所以()'0f x =在()1,e 内无解. 所以函数()f x 在区间()1,e 内无极值点.(2)当ln 2a =时,()()e ln ln 2x f x x x =−++,定义域为()0,+∞,()1e ln ln 21x f x x x x ′=−++−,令()1ln ln 21h x x x x =−++−, 由(1)知,()h x 在()0,+∞上单调递减,又11022h => ,()1ln 210h =−<,所以存在11,12x∈,使得()10h x =,且当()10,x x ∈时,()0h x >,即()'0f x >,当()1,x x ∈+∞时,()0h x <,即()'0f x <.所以()f x 在()10,x 上单调递增,在()1,x +∞上单调递减, 所以()()()1111max e ln ln 2x f x f x x x ==−++. 由()10h x =得1111ln ln 210x x x −++−=,即1111ln ln 21x x x −+=−, 所以()1111e 1x f x x =−,11,12x∈ ,令()1e 1x r x x =− ,1,12x ∈ ,则()211e 10x r x x x′=−+> 恒成立, 所以()r x 在1,12上单调递增,所以()()1102r r x r <<= ,所以()max 0f x <,又因为1211e ln 2ln 2122f=−−+=>−,所以()max 10f x −<<,所以若()f x k <(k ∈Z )恒成立,则k 的最小值为0.【点评】本题主要考查导数研究函数的极值,导数研究函数的单调性,导数的综合运用等知识,属于中等题.二、【不等式恒成立-双变量】【第06题】(2019•广元模拟)已知函数()()ln 11xf x a x x=−++(a ∈R ),()2e mx g x x =(m ∈R ). (1)当1a =时,求函数()f x 的最大值;(2)若0a <,且对任意的1x ,[]20,2x ∈,()()121f x g x +≥恒成立,求实数m 的取值范围.【分析】(1)求出函数的导数,得到函数的单调区间,求出函数的最大值即可; (2)令()()1x f x ϕ=+,根据函数的单调性分别求出()x ϕ的最小值和()g x 的最大值,得到关于m 的不等式,解出即可.【解答】解:(1)函数()f x 的定义域为()1,−+∞, 当1a =时,()()()2211111xf x xx x −′=−=+++,∴当()1,0x ∈−时,()'0f x >,函数()f x 在()1,0−上单调递增, ∴当()0,x ∈+∞时,()'0f x <,函数()f x 在()0,+∞上单调递减, ()()max 00f x f ∴==.(2)令()()1x f x ϕ=+,因为“对任意的1x ,[]20,2x ∈,()()121f x g x +≥恒成立”, 所以对任意的1x ,[]20,2x ∈,()()min max x g x ϕ≥成立, 由于()()211ax a x x ϕ−−+′=+,当0a <时,对[]0,2x ∀∈有()'0x ϕ>,从而函数()x ϕ在[]0,2上单调递增, 所以()()min 01x ϕϕ==, ()()222e e 2e mx mx mx g x x x mmxx ′=+⋅=+,当0m =时,()2g x x =,x ∈[]0,2时,()()max 24g x g ==,显然不满足()max 1g x ≤,当0m ≠时,令()'0g x =得10x =,22x m=−, ①当22m−≥,即10m −≤≤时,在[]0,2上()0g x ′≥,所以()g x 在[]0,2上单调递增, 所以()()2max 24e m g x g ==,只需24e 1m ≤,得ln 2m ≤−,所以1ln 2m −≤≤−. ②当202m <−<,即1m <−时,在20,m − 上()0g x ′≥,()g x 单调递增,在2,2m−−上()0g x ′<,()g x 单调递减,所以()22max 24eg x g m m== , 只需2241e m ≤,得2e m ≤−,所以1m <−. ③当20m−<,即0m >时,显然在[]0,2上()0g x ′≥,()g x 单调递增, 所以()()2max 24e m g x g ==,24e 1m ≤不成立. 综上所述,m 的取值范围是(],ln 2−∞−.【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,属于难题.【第07题】(2019•濮阳一模)已知函数()ln b f x a x x =+(0a ≠). (1)当2b =时,讨论函数()f x 的单调性;(2)当0a b +=,0b >时,对任意1x ,21,e e x ∈,都有()()12e 2f x f x −≤−成立,求实数b 的取值范围.【分析】(1)通过讨论a 的范围,求出函数的单调区间即可;(2)原问题等价于()()max min e 2f x f x −≤−成立,可得()()min 11f x f ==,可得()()max e e b f x f b ==−+,即e e 10b b −−+≤,设()e e 1b b b ϕ=−−+(0b >),可得()b ϕ在()0,+∞单调递增,且()10ϕ=,即可得不等式e e 10b b −−+≤的解集.【解答】解:(1)函数()f x 的定义域为()0,+∞. 当2b =时,()2ln f x a x x =+,所以()22x a f x x+′=. ①当0a >时,()0f x ′>,所以函数()f x 在()0,+∞上单调递增.②当0a <时,令()0f x ′=,解得:x =当0x <<()0f x ′<,所以函数()f x 在 上单调递减;当x >()0f x ′>,所以函数()f x 在+∞上单调递增. 综上所述,当2b =,0a >时,函数()f x 在()0,+∞上单调递增;当2b =,0a <时,函数()f x 在 上单调递减,在 +∞上单调递增. (2) 对任意1x ,21,e e x∈,有()()12e 2f x f x −≤−成立,()()max min e 2f x f x ≤∴−−成立,0a b += ,0b >时,()ln b f x b x x =−+.()()11bb b x b f x bx x x−−′=−+=. 当01x <<时,()0f x ′<,当1x >时,()0f x ′>,()f x ∴在1,1e单调递减,在[]1,e 单调递增,()()min 11f x f ==,1e e bf b − =+ ,()e e b f b =−+, 设()()1e e e 2e b b g b f f b −=−=−−(0b >),()e e 20b b g b −′=+−>. ()g b ∴在()0,+∞递增,()()00g b g ∴>=,()1e e f f ∴>.可得()max f x =()e e b f b =−+,e 1e 2b b ∴−+−≤−,即e e 10b b −−+≤,设()e e 1b b b ϕ=−−+(0b >),()e 10b b ϕ′−>在()0,b ∈+∞恒成立.()b ϕ∴在()0,+∞单调递增,且()10ϕ=,∴不等式e e 10b b −−+≤的解集为(]0,1. ∴实数b 的取值范围为(]0,1.【点评】本题考查了导数的应用,考查了转化思想、运算能力,属于压轴题.【第08题】(2019•衡阳一模)已知()32342f x x ax x −=+(x ∈R ),且()f x 在区间[]1,1−上是增函数.(1)求实数a 的值组成的集合A ;(2)设函数()f x 的两个极值点为1x 、2x ,试问:是否存在实数m ,使得不等式21213m tm x x ++≥−对任意a A ∈及[]1,1t ∈−恒成立?若存在,求m 的取值范围;若不存在,请说明理由.【分析】(1)由()f x 在区间[]1,1−上是增函数.可得()24220f x ax x ′=+−≥在区间[]1,1−上恒成立.可得()10f ′−≥,()10f ′≥,即可得出. (2)函数()f x 的两个极值点为1x 、2x ,可得12x x a +=,122x x =−.()()1212121212322x x x x x x x x x x −−++≤−++==a A ∈,设()h a =[]1,1a ∈−,则()h a 是偶函数,且在[]0,1上单调递增,进而得出其最大值为7.()21213g t m tm x x ++≥−=对任意a A ∈及[]1,1t ∈−恒成立,可得()()1717g g −≥ ≥,解得m 范围即可得出.【解答】解:(1) ()f x 在区间[]1,1−上是增函数, ∴()24220f x ax x ′=+−≥在区间[]1,1−上恒成立.()14220f a ∴′−=−−≥,()14220f a ′=+−≥,解得11a −≤≤. []1,1A ∴=−.(2)函数()f x 的两个极值点为1x 、2x , ∴12x x a +=,122x x =−.∴()()1212121212322x x x x x x x x x x −−++≤−++==a A ∈ ,设()h a =[]1,1a ∈−,则()h a 是偶函数,且在[]0,1上单调递增.123x x ∴−的最大值为()17h =.设()2211g t m tm mt m ++=++=,[]1,1t ∈−,()123g t x x ≥−对任意a A ∈及[]1,1t ∈−恒成立,则()()1717g g −≥≥ ,解得3m ≤−或3m ≥. ∴存在实数3m ≤−或3m ≥,使得不等式21213m tm x x ++≥−对任意a A ∈及[]1,1t ∈−恒成立.【点评】本题考查了利用导数研究函数的单调性、方程与不等式的解法、转化方法、分类讨论方法,考查了推理能力与计算能力,属于难题.【第09题】(2018•呼和浩特一模)已知函数()ln f x x =,()212g x x bx =−(b 为常数). (1)当4b =时,讨论函数()()()h x f x g x =+的单调性;(2)2b ≥时,如果对于1x ∀,(]21,2x ∈,且12x x ≠,都有()()()()1212f x f x g x g x −<−成立,求实数b 的取值范围.【分析】(1)先求导,再根据导数和函数的单调性关系即可求出,(2)令()()()x f x g x ϕ=+,则问题等价于函数()x ϕ在区间(]1,2(1,2]上单调递减,即等价于()10x x b xϕ′=+−≤在区间(]1,2上恒成立,所以得1b x x ≥+,求出即可.【解答】解:(1)()21ln 2h x x x bx =+−的定义域为()0,+∞,当4b =时,()21ln 42h x x x x =+−,()2141'4x x h x x x x−+=+−=, 令()'0h x =,解得12x =−,22x =+(2x ∈时,()0h x ′<, 当(0,2x ∈或()2+∞时,()0h x ′>,所以,()h x 在(0,2和()2+∞单调递增;在(2单调递减. (2)因为()ln f x x =在区间(]1,2上单调递增, 当2b ≥时,()212g x x bx =−在区间(]1,2上单调递减, 不妨设12x x >,则()()()()1212f x f x g x g x −<−等价于()()()()1122f x g x f x g x +<+, 令()()()x f x g x ϕ=+,则问题等价于函数()x ϕ在区间(]1,2上单调递减, 即等价于()10x x b xϕ′=+−≤在区间(]1,2上恒成立, 所以得1b x x≥+在区间(]1,2上恒成立, 因为1y x x=+在(]1,2上单调递增, 所以max 15222y =+=,所以得5b≥.2【点评】本题考查了导数研究函数的单调性以及根据函数的增减性得到函数的最值,理解等价转化思想的运用,属于中档题.【第10题】(2018•邕宁区校级模拟)设函数()e xa f x x x=−,a ∈R 且0a ≠,e 为自然对数的底数. (1)求函数()f x y x=的单调区间; (2)若1ea =,当120x x <<时,不等式()()()211212m x x f x f x x x −−>恒成立,求实数m 的取值范围.【分析】(1)求出函数y 的导数y ′,利用导数判断函数y 的单调性与单调区间; (2)120x x <<时,()()()211212m x x f x f x x x −−>等价于()()1212m mf x f x x x −>−;构造函数()()mg x f x x=−,由()g x 在()0,+∞上为减函数,得出()0g x ′≤, 再利用构造函数求最值法求出m 的取值范围. 【解答】解:(1)函数()2e 1xf x a y x x==−, ()243e 2e 2e xx x a x a x x a y x x −⋅−⋅∴′==, ①当0a >时,由0y ′>得02x <<,由0y ′<得0x <或2x >; ②当0a <时,由0y ′>得0x <或2x >,由0y ′<得02x <<. 综上:①当0a >时,函数()f x y x=的增区间为()0,2,减区间为(),0−∞,()2,+∞; ②当0a <时,函数()f x y x=的增区间为(),0−∞,()2,+∞,减区间为()0,2. (2)当120x x <<时,()()()211212m x x f x f x x x −−>等价于()()1212m mf x f x x x −>−,即函数())e (e x m mg x f x x x x x=−=−−在()0,+∞上为减函数,则()()()1212221e 1e 10x x x x x m m g x x x x−−−−−+′=−+=≤, ()121e x m x x −∴≤−−;令()()121e x h x x x −=−−, 则()()11 e 2e 2x x h x x xx −−′=−=−,由()0h x ′=得ln 2e x =;当()0,ln 2e x ∈时,()0h x ′<,()h x 为减函数; 当()ln 2e,+x ∈∞时,()0h x ′>,()h x 为增函数.()h x ∴的最小值为()()()()22ln 2e 12ln 2e ln 2e 1e ln 2e 2ln 2ln 21ln 21h −=−−=−+=−−; 2ln 21m ∴≤−−,m ∴的取值范围是(22,ln 1 −−∞− .【点评】本题考查了利用导数研究函数的单调性与最值问题,也考查了不等式恒成立问题,是综合题.三、【不等式证明】【第11题】(2018新课标I)已知函数()e ln 1x f x a x =−−.(1)设2x =是()f x 的极值点,求a ,并求()f x 的单调区间; (2)证明:当1ea ≥时,()0f x ≥. 【分析】(1)推导出0x >,()1e x f x a x ′=−,由2x =是()f x 的极值点,解得212ea =,从而()21e ln 12exf x x =−−,进而()211e 2e x f x x ′=−,由此能求出()f x 的单调区间. (2)当1e a ≥时,()e ln 1e xf x x ≥−−,设()e ln 1e xg x x =−−,则()e 1e x g x x ′=−,由此利用导数性质能证明当1ea ≥时,()0f x ≥. 【解答】解:(1)∵函数()e ln 1x f x a x =−−. ∴0x >,()1e xf x a x′=−, ∵2x =是()f x 的极值点,∴()212e 02f a ′=−=,解得212ea =,∴()21e ln 12exf x x =−−,∴()211e 2e x f x x ′=−, 当02x <<时,()0f x ′<,当2x >时,()0f x ′>, ∴()f x 在()0,2单调递减,在()2,+∞单调递增.(2)证明:当1e a ≥时,()e ln 1e xf x x ≥−−,设()e ln 1e x g x x =−−,则()e 1e x g x x ′=−, 由()e 10e x g x x ′=−=,得1x =,当01x <<时,()0g x ′<, 当1x >时,()0g x ′>, ∴1x =是()g x 的最小值点,故当0x >时,()()10g x g ≥=, ∴当1ea ≥时,()0f x ≥. 【点评】本题考查函数的单调性、导数的运算及其应用,同时考查逻辑思维能力和综合应用能力,是中档题.【第12题】(2018新课标Ⅲ)已知函数()21e xax x f x +−=. (1)求曲线()y f x =在点()0,1−处的切线方程; (2)证明:当1a ≥时,()e 0f x +≥. 【分析】(1)()()()()2221e 1e e x xx ax ax x f x +−+−′=由()02f ′=,可得切线斜率2k =,即可得到切线方程. (2)可得()()()()()()2221e 1e 12ee x xxx ax ax x ax x f x +−+−+−′==−.可得()f x 在1,a−∞−,()2,+∞递减,在1,2a−递增,注意到1a ≥时,函数()21g x ax x =+−在()2,+∞单调递增,且()2410g a =+>.只需()min e f x ≥−,即可. 【解答】解:(1)()()()()()()2221e 1e 12e e x xxx ax ax x ax x f x +−+−+−′==−.∴()02f ′=,即曲线()y f x =在点()01−,处的切线斜率2k =, ∴曲线()y f x =在点()01−,处的切线方程方程为()12y x −−=. 即210x y −−=为所求.(2)证明:函数()f x 的定义域为:R , 可得()()()()()()2221e 1e 12e e x xxx ax ax x ax x f x +−+−+−′==−.令()0f x ′=,可得12x =,210x a=−<, 当1,x a∈−∞−时,()0f x ′<,当1,2x a ∈− 时,()0f x ′>,当()2,x ∈+∞时,()0f x ′<.∴()f x 在1,a−∞−,()2,+∞递减,在1,2a − 递增,注意到1a ≥时,函数()21g x ax x =+−在()2,+∞单调递增,且()2410g a =+>.函数()f x 的图象如下:∵1a ≥,∴(]10,1a∈,则11e e a f a−=−≥−, ∴()1min e e af x =−≥−, ∴当1a ≥时,()e 0f x +≥.【点评】本题考查了导数的几何意义,及利用导数求单调性、最值,考查了数形结合思想,属于中档题.【第13题】(2016新课标Ⅲ)设函数()ln 1f x x x =−+. (1)讨论()f x 的单调性; (2)证明当()1,x ∈+∞时,11ln x x x−<<; (3)设1c >,证明当()0,1x ∈时,()11x c x c +−>.【分析】(1)求出导数,由导数大于0,可得增区间;导数小于0,可得减区间,注意函数的定义域;(2)由题意可得即证ln 1ln x x x x <−<.运用(1)的单调性可得ln 1x x <−,设()ln 1F x x x x =−+,1x >,求出单调性,即可得到1ln x x x −<成立;(3)设()()11x G x c x c =+−−,求()G x 的二次导数,判断()G x ′的单调性,进而证明原不等式.【解答】解:(1)函数()ln 1f x x x =−+的导数为()11f x x′=−, 由()0f x ′>,可得01x <<;由()0f x ′<,可得1x >. 即有()f x 的增区间为()0,1;减区间为()1,+∞; (2)证明:当()1,x ∈+∞时,11ln x x x−<<,即为ln 1ln x x x x <−<. 由(1)可得()ln 1f x x x =−+在()1,+∞递减, 可得()()10f x f <=,即有ln 1x x <−;设()ln 1F x x x x =−+,1x >,()1ln 1ln F x x x ′=+−=, 当1x >时,()0F x ′>,可得()F x 递增,即有()()10F x F >=, 即有ln 1x x x >−,则原不等式成立; (3)证明:设()()11x G x c x c =+−−,则需要证明:当()0,1x ∈时,()0G x >(1c >);()1ln x G x c c c ′=−−,()()2ln 0x G x c c ′′=−<,∴()G x ′在()0,1单调递减,而()01ln G c c ′=−−,()11ln G c c c ′=−−, 由(1)中()f x 的单调性,可得()01ln 0G c c ′=−−>,由(2)可得()()11ln 1ln 10G c c c c c ′=−−=−−<,∴()0,1t ∃∈,使得0G t ′=(),即()0,x t ∈时,()0G x ′>,(),1x t ∈时,()0G x ′<; 即()G x 在()0,t 递增,在(),1t 递减; 又因为:()()010G G ==,∴()0,1x ∈时()0G x >成立,不等式得证; 即1c >,当()0,1x ∈时,()11x c x c +−>.【点评】本题考查导数的运用:求单调区间和极值、最值,考查不等式的证明,注意运用构造函数法,求出导数判断单调性,考查推理和运算能力,属于中档题.【第14题】(2015新课标I)设函数()2e ln x f x a x =−. (1)讨论()f x 的导函数()f x ′零点的个数; (2)证明:当0a >时,()22lnf x a a a≥+. 【分析】(1)先求导,在分类讨论,当0a ≤时,当0a >时,根据零点存在定理,即可求出;(2)设导函数()f x ′在()0,+∞上的唯一零点为0x ,根据函数()f x 的单调性得到函数的最小值()0f x ,只要最小值大于22ln a a a+,问题得以证明.【解答】解:(1)()2e ln x f x a x =−的定义域为()0,+∞, ∴()22e x xx af =′−. 当0a ≤时,()0f x ′>恒成立,故()f x ′没有零点, 当0a >时,∵2e x y =为单调递增,ay x=−单调递增, ∴()f x ′在()0,+∞单调递增, 又()0f a ′>,假设存在b 满足0ln2a b <<时,且14b <,()0f b ′<, 故当0a >时,导函数()f x ′存在唯一的零点;(2)由(1)知,可设导函数()f x ′在()0,+∞上的唯一零点为0x , 当()00,x x ∈时,()0f x ′<, 当()0,x x ∈+∞时,()0f x ′>,故f(x)在()00,x 单调递减,在()0,x +∞单调递增, 所欲当0x x =时,()f x 取得最小值,最小值为()0f x , 由于0202e 0x ax −=,所以()002a f x x =+02ax +2ln a a ≥2a +2ln a a. 故当0a >时,()22lnf x a a a≥+. 【点评】本题考查了导数和函数单调性的关系和最值的关系,以及函数的零点存在定理,属于中档题.【第15题】(2015安徽)设n ∗∈N ,n x 是曲线221n y x +=+在点()1,2处的切线与x 轴交点的横坐标. (1)求数列{}n x 的通项公式; (2)记2221321n n T x x x −= ,证明:14n T n≥. 【分析】(1)利用导数求切线方程求得切线直线并求得横坐标; (2)利用放缩法缩小式子的值从而达到所需要的式子成立.【解答】解:(1)2221'1'22n n y x n x ++=+=+()(),曲线221n y x +=+在点()1,2处的切线斜率为22n +,从而切线方程为()()2221y n x −=+−.令0y =,解得切线与x 轴的交点的横坐标为1111n n x n n =−=++;(2)证明:由题设和(1)中的计算结果可知:22213222211321242n n n n T x x x−− = =, 当1n =时,114T =, 当2n ≥时,因为()()()()2222212221211212212222n n n n n n n n n n n x −−−−−−−=>=== , 所以2112112234n T n n n − >××××= ;综上所述,可得对任意的n ∗∈N ,均有14n T n≥. 【点评】本题主要考查切线方程的求法和放缩法的应用,属基础题型.四、【零点问题】【第16题】(2018秋•龙岩期末)已知函数()()2ln 12f x x ax a x a =−−−+(a ∈R ). (1)讨论()f x 的单调性;(2)令函数()()()()22e 1ln 1x g x f x x a x −=+−+−−,若函数()g x 有且只有一个零点0x ,试判断0x 与3的大小,并说明理由.【分析】(1)由()222211a x x a f x x a x x +− ′−−−−(1x >),分212a +≤和212a +>两类分析函数的单调性;(2)函数()()()()()222e 1ln 1e ln 12x x g x f x x a x ax x a −−=+−+−−=−−−+,求其导函数,可得()21e 1x g x a x −′=−−−,令()()h x g x ′=,对()h x 求导,分析可得()g x ′在()1,+∞上有唯一零点1x ,结合已知可得01x x =,则()()0000g x g x ′ = = ,由此可得()()0200013e ln 1101x x x x −−−−+−=−, 令()()()213e ln 111x t x x x x −−−−+−−(1x >). 再利用导数判断其单调性,结合函数零点的判定可得03x <. 【解答】解:(1)()222211a x x a f x x a x x +− ′−−−−(1x >), 当212a +≤,即0a ≤时,()0f x ′>在()1,+∞上恒成立,()f x 在()1,+∞上单调递增; 当212a +>,即0a >时,若21,2a x + ∈ ,则()0f x ′<,若2,2a x + ∈+∞,则()0f x ′>, ∴()f x 在21,2a + 上单调递减,在2,2a ++∞上单调递增; (2)函数()()()()()222e 1ln 1e ln 12x x g x f x x a x ax x a −−=+−+−−=−−−+. 则()21e 1x g x a x −′=−−−,易知()g x ′在()1,+∞上单调递增,当1x >且1x →时,()g x ′→−∞,x →+∞,()g x ′→+∞, ∴()g x ′在()1,+∞上有唯一零点1x ,当()11,x x ∈时,()0g x ′<,当()1,x x ∈+∞时,()0g x ′>. ∴()()1min g x g x =,由已知函数()g x 有且只有一个零点0x ,则01x x =. ∴()()0000g x g x ′ = = ,即()0022001e 01e ln 120x x a x ax x a −− −−= − −−−+=, 消a 得,()000222000011e ln 1e 2e 011x x x x x x x −−−−−−−+−= −−, ()()0200013e ln 1101x x x x −−−−+−=−, 令()()()213e ln 111x t x x x x −−−−+−−(1x >). 则()()()2212e 1x t x x x −′=−+−. ∴()1,2x ∈时,()0t x ′>,()2,x ∈+∞时,()0t x ′<. ∴()t x 在()2,+∞上单调递减. ∵()210t =>,()13ln 202t =−+<, ∴()t x 在()2,3上有一个零点,在()3,+∞上无零点. 若()t x 在()1,2上有一个零点,则该零点必小于3. 综上,03x <.【点评】本题考查了利用导数研究函数的单调性,考查函数零点的判定,考查了推理能力与计算能力,属于难题.【第17题】(2019•大庆二模)已知函数()22ln f x x a x =−(a ∈R ). (1)当12a =时,点M 在函数()y f x =的图象上运动,直线2y x =−与函数()y f x =的图象不相交,求点M 到直线2y x =−距离的最小值; (2)讨论函数()f x 零点的个数,并说明理由.【分析】(1)首先写出函数的定义域,对函数求导,分析在什么情况下满足距离最小,构造等量关系式,求解,得到对应的点的坐标,之后应用点到直线的距离公式进行求解即可;(2)对函数求导,分情况讨论函数的单调性,依次得出函数零点的个数. 【解答】解:(1)()f x 的定义域为()0,+∞, 12a =时,()2ln f x x x =−,()12f x x x ′=−,令()1f x ′=,解得:1x =或12x =−,又()11f =,故图像上的点到直线20x y −−=的距离的最小值即为点()1,1M 到直线20x y −−=的距离,其距离d(2)由()0f x =,得22ln x a x =(0x >且1x ≠),设()2ln x g x x=(0x >且1x ≠),2y a =, 问题转化为讨论()y g x =的图象和2y a =的图象的交点个数问题, ()()22ln 1ln x x g x x−′=,(0x >且1x ≠),令()0g x ′=,解得x ,当01x <<或1x <<时,()0g x ′<,当x 时,()0g x ′>,故()g x 在()0,1,(递减,在)+∞递增,故()2e g x g =极小值,又01x <<时,()0g x <,当1x >时,()0g x >,故当20a <或22e a =即0a <或e a =时,直线2y a =与函数()y g x =的图象有1个交点, 当22e a >即e a >时,有2个交点, 当0e a ≤<时没有交点,故函数()f x 当0a <或e a =时1个零点,当0a <或e a =时2个零点,0e a ≤<时没有零点.【点评】该题考查的是有关应用导数研究函数的问题,涉及到的知识点有图象上的点到直线的距离的最小值的求解,导数的几何意义,应用导数研究函数的零点的问题,注意对分类讨论思想的应用,要做到不重不漏,属于较难题目.【第18题】(2018秋•周口期末)已知函数()22ln f x ax x =−(a ∈R ). (1)讨论函数()f x 的单调性; (2)当21e a =时,若函数()y f x =的两个零点分别为1x ,2x (12x x <),证明:()12ln ln 21x x +>+.【分析】(1)求函数的定义域和函数的导数,分0a ≤和0a >分类讨论函数的单调性即可;(2)欲证()12ln ln 21x x +>+,只需证122e x x +>,即证122e x x >−,只需证()()212e 0f x f x −>=,将()22e f x −表示出来化简整理并构造函数()()442ln 2ln 2e 1etg t t =−+−−,由函数()g t 的单调性即可证明. 【解答】解:(1)易知()f x 的定义域是()0,+∞,()()22122ax f x ax x x−′=−=, 当0a ≤时,()0f x ′<,()f x 在()0,+∞递减,当0a >时,令()0f x ′>,解得x >,故()f x 在 递减,在 +∞递增; (2)证明:当21ea =时,()222ln e x f x x =−,由(1)知()()min e 1f x f ==−,且()10,e x ∈,()2e,x ∈+∞,又由()2e 22ln 20f =−>知22e x <,即()2e,2e x ∈,故()22e 0,e x −∈,由()222222ln 0e x f x x =−=,得22222e ln x x =,故()()()()222222222e 42e 2ln 2e 42ln 2ln 2e eex x f x x x x −−=−−=−+−−,()2e,2e x ∈,令()()442ln 2ln 2e etg t t t =−+−−,()e,2e t ∈, 则()()()24e 0e 2e t g t t t −′=>−, 故()g t 在()e,2e 递增,故()()e 0g t g >=,即()()212e 0f x f x −>=, 又()f x 在()0,e 上单调递减,故212e x x −<,即()12ln ln 21x x +>+.【点评】本题考查了函数的单调性,极值问题,考查导数的应用以及分类讨论思想,转化思想考查不等式的证明,是一道综合题.(2018秋•咸阳期末)已知函数()221ln 2f x x a x =−(0a >). (1)讨论()f x 的单调性;(2)若()f x 在[]1,e 上没有零点,求a 的取值范围.【分析】(1)求出()f x ′,解不等式()0f x ′>,()0f x ′<,即可求出()f x 的单调区间; (2)用导数求出函数()f x 在区间[]1,e 上没有零点,只需在[]1,e 上()min 0f x >或()max 0f x <,分类讨论,根据导数和函数的最值得关系即可求出.【解答】解:(1)()222a x a f x x x x −′=−=(0x >), 令()0f x ′>,解得x a >;令()0f x ′<,解得0x a <<, ∴函数()f x 的单调增区间为(),a +∞,单调减区间为()0,a .(2)要使()f x 在[]1,e 上没有零点,只需在[]1,e 上()min 0f x >或()max 0f x <, 又()1102f =>,只需在区间[]1,e 上,()min 0f x >. ①当e a ≥时,()f x 在区间[]1,e 上单调递减,则()()22min 1e e 02f x f a ==−>,解得0a <<与e a ≥矛盾. ②当1e a <<时,()f x 在区间[)1,a 上单调递减,在区间(],e a 上单调递增, ()()()2min 112ln 02f x f a a a ==−>,解得0a <1a <③当01a <≤时,()f x 在区间[]1,e 上单调递增,()()min 10f x f =>,满足题意, 综上所述,实数a 的取值范围是:0a <<【点评】本题是导数在函数中的综合运用,考查运用导数求单调区间,求极值,求最值,考查分类讨论的思想方法,同时应注意在闭区间内只有一个极值,则一定为最值的结论的运用.(2018秋•芜湖期末)已知函数()2ln 1f x x a x =−−(a ∈R ). (1)求()f x 的极值点;(2)若函数()f x 在区间()0,1内无零点,求a 的取值范围.【分析】(1)求出函数的导数,通过讨论a 的范围,求出函数的单调区间,求出函数的极值点即可;(2)求出函数的导数,通过讨论a 的范围,求出函数的单调区间,从而确定是否存在零点,进而判断a 的范围.【解答】解:(1)()222a x a f x x x x −′=−=(0x >),当0a ≤时,()0f x ′>,()f x 在()0,+∞递增,当0a >时,令()0f x ′>,解得x >,故()f x 在 递减,在 +∞ 递增,故x =是极小值点,无极大值点; (2)()22x af x x −′=(01x <<), ∵01x <<,∴2022x <<,当0a ≤时,()0f x ′>,()f x 在()0,1递增, 故()()10f x f <=,函数无零点,符合题意; 当2a ≥时,()0f x ′<,()f x 在()0,1递减, 故()()10f x f >=,函数无零点,符合题意;当02a <<时,存在()00,1x =,使得()00f x ′=,故()f x 在 递减,在递增,又10e1a−<<,1e 0a f −> ,()10f f <=, 故()f x 在()0,1有零点,不合题意;综上,若函数()f x 在区间()0,1内无零点,则2a ≥或0a ≤.【点评】本题考查了函数的单调性,极值问题,考查导数的应用以及函数零点问题,考查分类讨论思想,转化思想,是一道综合题.。
精华习题 导数 高中数学 带答案.docx

1,已知函数 f(x)=x 1 2+2x+alnx⑴若函数f (x)在区间(0, 1)上是单调函数,求实数a 的取值范围; ⑵当t ,l 时,不等式f(2t-l)^2f(t)-3恒成立,求实数a 的取值范围。
分析:(1)山导数与单调性的关系易解(2)需构造函数来证明 证明一:构造函数 m(x)=ln( 1 + x)—x(x> — 1),求导 m *(x)=,1 I x 则m(x)在x=0时取极大值,同时也是最大值.故m(x)Wm(0). 从而ln(l+x)Wx 在x>—1上恒成立. ..t? (L I)? (L ♦ n2 河 ..咽_1 =ln(l+ 为―i)W 为―1 <(tT)③t 2 在t>l 时恒成立,而t=l 时③式取等号....In —- W (t —I)22t — 1在tNl 时恒成立.因此山②④可知实数a 取值范围:(-8,2] 这种思路技巧性太强.不容易操作. 证明二:据题意,不等式f(2t — 1)N2f(t) — 3当7 2 1恒成立即(2" 1只 + 2(2/ — 1) + a ln(2" 1) 2 2尸 + % + 2a In " 3 当 7 21 恒成立 即 41nr-ln(2/-l)]<2(/-l)2当7 = 1时,不等式恒成立,此时ae R当 /〉1 时,由于广 一(2/ — 1) = (7 —1)~ > 0, In 厂〉ln(2z — 1) 故旦M ,一(2/-1)当/ 2 1恒成立 2 一 In 户-ln(2sl)设"(x) = In x,由拉格朗日定理知,毋 (2, -1,户)使得 In t~ -ln(2/-1)e1 .. In t~ -ln(2/ -1) 1 0.-- -- ----- 七=h '(£)=一成,.故一; ----- ---- =—>2r-l>l r-(2/-l) g 尸―⑵―i) §.-.|<l.-.a<2 即实数a 取值范围:(—8,2]2,已知存在过点(1, 0)的直线与曲线y=x3和y=ax 2+3.75x-9都相切,则a 的值是多少?32解析:设y=x 3图象切点(x,x 3),则3x 2=^—解得x=0或x=-x —1 2当x=0时切线方程为x 轴Q整理ax 2—3x — —=0 ,由相切条件知A =0,即9+9a=04a =— 1 o当x=:时,切线方程为y= —(X —1)代入y=ax 2+ ——92 4 x精华贴习题(导数)1=~x 1+x3,已知函数f (x) =ln (x+1) +ax(1)当x=0时,函数f (X)取得极大值,求实数a的值(2)若存在x£【1,2】,使不等式f (x) N2,成立,其中f (x)为f (x)的导函数,求实数a的取值范围(3)求函数f (x)的单调区间解:(l)f' (x)= +。
(word完整版)高中文科数学导数练习题

专题 8:导数(文)经典例题分析考点一:求导公式。
例 1. f (x) 是 f (x) 1 x32x 1 的导函数,则 f ( 1) 的值是。
3分析: f ' x x 22,所以 f ' 1 1 23答案: 3考点二:导数的几何意义。
例 2.已知函数 y f ( x) 的图象在点 M (1, f (1)) 处的切线方程是 y 1x 2 ,则2f (1) f (1)。
分析:由于 k 1,所以25,所以 f 15,所以221f ' 1,由切线过点M (1,f (1)),可得点M的纵坐标为2f 1 f ' 13答案: 3例 3.曲线y x32x24x 2 在点 (1, 3) 处的切线方程是。
分析: y'3x24x 4 ,点 (1, 3) 处切线的斜率为k 3 4 4 5 ,所以设切线方程为 y5x b ,将点 (1, 3) 带入切线方程可得b 2 ,所以,过曲线上点(1,3)处的切线方程为:5x y 2 0答案: 5x y 20评论:以上两小题均是对导数的几何意义的考察。
考点三:导数的几何意义的应用。
例 4.已知曲线 C :y x33x 22x,直线 l : y kx ,且直线l 与曲线C相切于点x0 , y0 x00 ,求直线l的方程及切点坐标。
解析:直线过原点,则 k y0 x0 0 。
由点x0, y0在曲线 C 上,则x0y 0 x 0 3 3x 0 22x 0 , y 0x 0 23x 02。
又 y' 3x 26x2 ,在x 0x 0 , y 0处 曲 线 C 的 切 线 斜 率 为 k f ' x 03x 0 2 6x 02 ,23x 0 22 6x 02 ,整理得: 2 x 0 3x 0 0 ,解得: x 03 0x 03x 0或 x 02(舍),此时,y 03 , k 1 。
所以,直线 l 的方程为 y1x ,切点坐标是8443 , 3 。
高中导数经典例题精选全文完整版
可编辑修改精选全文完整版高中导数经典例题问题一 函数的单调性和导数的关系 例1、求下列函数的单调区间 (1)x x x f ln 23)(2-= (2)x e x x f -⋅=2)((3)xx x f 1)(+=变式1、已知31292)(23-+-=x x x x f ,试确定)(x f 的单调区间.变式2、设函数)0(19)(23<--+=a x ax x x f ,若曲线)(x f y =的斜率最小的切线与直线612=+y x 平行,求:(1)a 的值;(2)求函数)(x f 的单调区间.例2、设函数aax x e x f ++=22)(,其中a 为实数.(1)若)(x f 的定义域为R ,求a 的取值范围. (2)当)(x f 的定义域为R ,求)(x f 的单调递减区间.例3、已知函数R a x ax x x f ∈+++=,1)(23(1)讨论函数)(x f 的单调区间; (2)设函数)(x f 在区间)31,32(--内是减函数,求a 的取值范围.变式1、若函数1)1(2131)(23+-+-=x a ax x x f 在区间(1,4)内为减函数,在区间(6,+∞)上为增函数,求函数a 的取值范围.问题二 函数的单调性与导数的关系的应用例4、(1)函数),0()0,(,sin ππ⋃-∈=x xxy 的图像可能是( )(2)设函数)(x f 在定义域内可导,)(x f y =的图像如图所示,则导函数)('x f y =的图像可能为( )变式1、设)('x f 是函数)(x f 的导函数,将)(x f y =与)('x f y =的图像画在同一个直角坐标系中,其中不可能正确的是( )例5、当20π<<x ,求证:x x x 2tan sin >+.变式1、已知1>x ,证明不等式:)1ln(x x +>。
(word完整版)高中数学导数练习题(2021年整理)
(word完整版)高中数学导数练习题(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((word完整版)高中数学导数练习题(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(word完整版)高中数学导数练习题(word版可编辑修改)的全部内容。
导数练习题1. ()f x '是31()213f x x x =++的导函数,则(1)f '-的值是 。
2。
已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是122y x =+,则(1)(1)f f '+= 。
3。
曲线32242y x x x =--+在点(13)-,处的切线方程是 。
5。
已知()1323+-+=x x ax x f 在R 上是减函数,求a 的取值范围。
6。
设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值。
(1)求a 、b 的值;(2)若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围。
7. 已知a 为实数,()()()a x x x f --=42.求导数()x f ';(2)若()01'=-f ,求()x f 在区间[]2,2-上的最大值和最小值.8。
设函数3()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与直线670x y --=垂直,导函数'()f x 的最小值为12-。
(1)求a ,b ,c 的值;(2)求函数()f x 的单调递增区间,并求函数()f x 在[1,3]-上的最大值和最小值。
(完整word版)高二数学导数大题练习(详细答案)(word文档良心出品).doc
1.已知函数 f ( x) ax 3bx 2(c 3a 2b) x d 的图象如图所示.(I)求c, d的值;(II )若函数f (x)在x 2处的切线方程为3x y 11 0,求函数 f (x)的解析式;(III )在( II )的条件下,函数y f ( x) 与y 1 f (x) 5x m 的3图象有三个不同的交点,求m 的取值范围.2.已知函数 f (x) a ln x ax 3(a R) .(I)求函数f ( x)的单调区间;( II )函数 f ( x)的图象的在x 4 处切线的斜率为 3 , 若函数2g( x) 1x 3 x2 [ f '( x)m] 在区间(1,3)上不是单调函数,求m 的取值范围.3 23.已知函数 f ( x) x3 ax2 bx c 的图象经过坐标原点,且在 x 1 处取得极大值.(I)求实数a的取值范围;(II )若方程f ( x) (2a 3) 2 恰好有两个不同的根,求 f ( x) 的解析式;9(III )对于(II )中的函数f (x),对任意、R,求证:| f ( 2sin ) f ( 2sin ) | 81 .4.已知常数a0 ,e为自然对数的底数,函数 f ( x) e x x ,g(x)x 2 a ln x .(I)写出f (x)的单调递增区间,并证明e a a;(I I )讨论函数y g( x)在区间(1,e a)上零点的个数.5.已知函数 f (x)ln( x 1) k( x 1) 1.(I)当k 1时,求函数 f ( x)的最大值;(I I )若函数f ( x)没有零点,求实数k的取值范围;6.已知x 2 是函数f (x)(x2ax 2a 3)e x的一个极值点(e 2.718).(I)求实数a的值;(I I )求函数f ( x)在x [3,3]的最大值和最小值.27.已知函数 f ( x)x24x (2 a) ln x, (a R, a 0)(I)当 a=18 时,求函数 f ( x)的单调区间;(I I )求函数f (x)在区间[ e, e2]上的最小值.8.已知函数 f (x) x(x 6) a ln x在x (2, ) 上不具有单调性....(I)求实数a的取值范围;( II )若f ( x)是f (x)的导函数,设g( x) f ( x) 6 22,试证明:对任意两个不相38 x等正数 x1、x2,不等式 | g( x1 ) g ( x2 ) | | x1 x2 | 恒成立.279.已知函数 f ( x) 1 x2 ax (a 1) ln x, a 1.2(I)讨论函数 f (x)的单调性;(II )证明:若a 5, 则对任意 x1 , x2 (0, ), x1 x2 f ( x1 ) f (x2 ),有 1.x1 x210.已知函数 f (x) 1 x2 a ln x, g ( x) (a 1)x , a1.2(I)若函数f ( x), g( x)在区间[1,3]上都是单调函数且它们的单调性相同,求实数 a 的取值范围;(II )若a (1, e] ( e 2.71828 ) ,设 F (x) f (x) g (x) ,求证:当 x , x [1,a] 时,不1 2等式 | F ( x1 ) F ( x2 ) | 1 成立.11.设曲线C:f (x)ln x ex (e 2.71828), f ( x)表示 f ( x)导函数.(I )求函数f ( x)的极值;(II )对于曲线C上的不同两点A( x1, y1),B( x2, y2)x0( x1 ,x2 ) ,使直线AB的斜率等于 f ( x0 ) ., x1 x2,求证:存在唯一的12.定义F (x, y) (1 x) y , x, y ( 0, ) ,(I )令函数f (x) F (3,log2 (2 x x2 4)) ,写出函数 f ( x) 的定义域;使得(II )令函数g( x) F (1,log2 ( x3 ax2 bx 1)) 的图象为曲线,若存在实数bC曲线 C 在x0( 4 x0 1) 处有斜率为-8的切线,求实数a的取值范围;(III )当x, y N*且x y 时,求证 F ( x, y) F ( y, x) .高二数学 数部分大答案1.解:函数 f (x) 的 函数 f ' ( x) 3ax 2 2bx c 3a 2b (I )由 可知 函数 f (x) 的 象 点( 0,3),且 f ' (1)⋯⋯⋯⋯ (2 分)得d 3d 33a2b c 3a2b 0c 0(II )依 意f ' (2)3 且 f ( 2) 5⋯⋯⋯⋯ (4 分)12a 4b 3a 2b3 8a 4b 6a 4b 35解得 a 1,b 6 所以 f ( ) x 3 6 x 29 x 3 ⋯⋯⋯⋯ (8 分) x(III ) f ( x) 3x 2 12 x 9 .可 化 : x 3 6x 2 9 x 3 x 2 4x 3 5x m 有三个不等 根,即: g x x 3 7 x 2 8x m 与 x 有三个交点;g x 3x 214 x 8 3x 2 x 4 ,x,2 22,44,3 343g x+-+ g x增极大减极小增 g268 m, g 416 m .⋯⋯⋯⋯ (10 分)327当且 当 g268 m 0且g 416 m 0 ,有三个交点,327故而,16 m68所求.⋯⋯⋯⋯ (12 分)272.解:(I ) f '( x)a(1 x) ( x 0)(2 分)x当 a 0时, f ( x)的单调增区间为 0,1 , 减区间为 1,当 a 0时 , f (x)的单调增区间为 1,, 减区间为 0,1 ;当 a=1 , f ( x) 不是 函数(5 分)(II ) f ' (4) 3a3得 a 2, f ( x) 2 ln x 2x 34 2g (x)1 x3( m2) x 2 2x, g' (x) x 2 ( m 4)x 2 (6 分)3 2g (x)在区间 (1,3)上不是单调函数 , 且 g' (0) 2g' (1) 0, g' (3) 0.m 3,19, 3) (8 分)m 19 ,(10分)m (33(12 分)3.解:(I ) f (0)0 c 0, f ( x) 3x 2 2axb, f (1) 0 b 2a 3 f ( x)3x 22ax (2a 3) ( x 1)(3x 2a 3),由 f ( x)0 x1或 x2a 3,因 当 x1 取得极大 ,3所以2a 3 1a3 ,所以 a 的取值范围是 : (, 3) ;3(II )由下表:x(,1)12 a 32a 32a 3(1,)3(, )33f (x)+ 0- 0-极大极小f (x)增减增a6(2a3)2a 227依 意得:a6 ( 2a 3)2( 2a 3)2,解得: a9279所以函数 f (x) 的解析式是: f ( x) x 3 9x 2 15x(III ) 任意的 数,都有 22sin 2, 2 2 sin2,在区 [-2,2] 有:f (2)8 36 30 74, f (1) 7, f ( 2)8 36 30 2f ( x)的最大值是 f (1) 7, f ( x)的最小值是 f ( 2)8 36 3074函数 f ( x)在区间 [ 2,2] 上的最大 与最小 的差等于81,所以 | f (2 sin ) f (2sin ) | 81.4.解:(I ) f (x) e x1 0 ,得 f (x) 的 增区 是 (0, ) , ⋯⋯⋯⋯ (2 分)∵ a 0 ,∴ f (a) f (0) 1,∴ e aa 1 a ,即 e aa . ⋯⋯⋯⋯ (4 分)(II ) g (x)a2( x2a)( x 2a )2a,列表2x 2x2,由 g (x)0 ,得 xx2x( 0, 2a2a2a ))2(,22g (x)-+g( x)减极小增当 x2a,函数 yg( x) 取极小 g( 2a )22由( I ) eae 2 ae aa,∴ e aa ,∵a ,∴ e 2 aa22g (1) 1 0 , g(e a ) e 2 aa 2 (e a a)(e aa) 0a (1 ln a) ,无极大 .2 2 2a 2⋯⋯⋯⋯ (8 分)( i )当( ii )当2a 1 ,即 0 a 2 ,函数 yg( x) 在区 (1, e a ) 不存在零点22a1 ,即 a 22若 a (1 ln a) 2 2若 a (1 ln a) 2 2若a(1 ln a) 2 2上所述, y0 ,即 2 a 2e ,函数 y g (x) 在区 (1,e a ) 不存在零点0 ,即 a 2e ,函数 yg( x) 在区 (1, e a ) 存在一个零点 xe ;0 ,即 a 2e ,函数 y g( x) 在区 (1, e a ) 存在两个零点;g(x) 在 (1,e a) 上,我 有 :当 0 a 2e ,函数 f (x) 无零点; 当 a 2e ,函数 f ( x) 有一个零点;当 a 2e ,函数 f (x) 有两个零点.5.解:(I )当 k1 , f( x)2 xx 1f ( x) 定 域 ( 1,+),令 f ( x) 0, 得x2 ,∵当 x (1,2)时 , f ( x) 0 ,当 x (2, )时, f (x) 0 ,∴ f (x)在 (1,2) 内是增函数, 在(2, ) 上是减函数 ∴当 x 2 , f ( x) 取最大 f (2) 0 (II )①当 k 0时 ,函数 y ln( x 1) 象与函数 y k( x 1) 1 象有公共点,∴函数 f ( x) 有零点,不合要求;②当 k 0时 ,11 k kx k ( x 1 k )f ( x)kk⋯⋯⋯⋯⋯⋯ (6 分)1x1x令x1f ( x)0, 得xk1,∵ xk 1 时, f ( x) 0, x1,) 时, f( x) 0 ,k (1,k) (1 ∴11 k在(1,1) 内是增函数,在 [1 ) 上是减函数,f (x)k,1k∴ f ( x) 的最大 是 f (1ln k,)k∵函数 f ( x) 没有零点,∴ ln k 0 , k1 ,因此,若函数 f ( x) 没有零点, 数 k 的取 范 k(1,)6. 解:(I )由 f (x)( x 2 ax 2a 3)e x 可得f (x)(2 x a)e x (x 2 ax 2a 3)e x [ x 2 (2 a) x a3]e x ⋯⋯ (4 分)∵ x 2 是函数 f (x) 的一个极 点,∴ f (2)∴ (a 5)e 2 0 ,解得 a5,1) 增,在 ( 2,) 增,(II )由 fx( x2)( x 1) ex0 ,得 f ( x) 在 (( )由 f (x) 0 ,得 f (x) 在在 (1,2) 减∴ f (2)e 2 是f ( x) 在 x [ 3,3] 的最小 ;⋯⋯⋯⋯⋯ (8 分)e 232e 23e 23f ( 3 ) 7 , f (3)e 3∵ f (3) f (3 ) e 37 1 ( 4e e 7) 0, f (3) f (3 )242442∴ f (x) 在 x [ 3,3] 的最大 是 f (3)e 3 .27.解:(Ⅰ) f (x)x 2 4x 16 ln x ,f ' ( x) 2x 4162( x 2)( x 4)2 分x x由 f ' (x) 0 得 ( x 2)( x 4) 0 ,解得 x4 或 x2注意到 x 0,所以函数 f ( x) 的 增区 是( 4,+∞) 由 f ' (x) 0 得 ( x 2)( x 4) 0 ,解得 -2< x <4, 注意到 x 0,所以函数 f ( x) 的 减区 是 (0,4] .高二数学 数部分大上所述,函数 f ( x) 的 增区 是( 4,+∞), 减区 是 ( 0,4] 6 分(Ⅱ)在 x [e,e 2 ] , f ( x) x 2 4x (2 a) ln x 所以 f ' ( x) 2x 42 a2x 2 4x 2 a ,g ( x) 2x 2xx 4x 2 a当 a 0 ,有 △=16+4×2 ( 2 a) 8a 0 ,此 g (x) 0,所以 f ' (x) 0 , f ( x) 在[ e, e 2 ] 上 增,所以 f (x)min f (e) e 2 4e 2 a 8 分当 a 0 , △=16 4 2(2 a) 8a 0 ,令 f ' (x) 0 ,即 2x 2 4x 2 a 0 ,解得 x 令 f ' (x) 0 ,即 2x 2 4x 2 a0 , ①若 12a≥e 2,即 a ≥2( e21)2 ,2f (x) 在区 [ e, e 2 ] 减,所以 f ( x)min②若 e 12a e 2 ,即 2(e 1) 2a 2(e 2212a 或 x 1 2a ; 22解得 12a x 12a .22f (e 2 ) e 4 4e 2 4 2a .1)2 ,f (x) 在区 [ e,12a] 上 减,在区 [12a, e 2 ] 上 增,22所以 f (x)minf (12a ) a 2a3 ( 2 a) ln(12a) .222③若 12a e(e 1) 2,f ( x)在区[ e, e 2 ]增,2 ≤ ,即 0a ≤2所以 f (x)min f (e) e 2 4e 2 a上所述,当 a ≥2(e 21)2 , f ( x) mina 4 4e 2 4 2a ;当 2(e 1) 2 a 2(e 2 1) 2 , 当 ≤1)2, f ( x) min e 2a 2(e8.解:(I )f ( x)2x a 2x 26xf ( x)mina2a 3 ( 2 a) ln(12a ) ;2 24e2 a14 分6x a ,x∵ f ( x) 在 x (2,) 上不具有 性, ∴在 x (2,) 上 f ( x) 有正也有 也有0,...即二次函数 y 2x 2 6x a 在 x (2,) 上有零点 ⋯⋯⋯⋯⋯⋯ (4 分)∵ y 2x 2 6xa 是 称 是 x3,开口向上的抛物 ,∴ y 2 22 6 2 a2的 数 a 的取 范 ( ,4)(II )由( I ) g( x)2x a 22,x x方法 1: g( x)f (x)2 6 2 xa 2 ( x 0) ,x 2x x 2高二数学 数部分大∵ a 4 ,∴g ( x)2a 42442x 34x 4 ,⋯⋯⋯⋯ (8 分)x2x 3x2x 3x3h( x) 244, h ( x)8 12 4(2 x 3)x 2x 3x 3x 4x 4h( x) 在 (0, 3 ) 是减函数,在 ( 3 , ) 增函数,当 x3, h( x) 取最小382 2 227∴从而 g ( x) 38 ,∴ ( g( x) 380 ,函数 y g( x) 38x 是增函数,x)27 27 27x 1、x 2 是两个不相等正数,不妨x 1x 2 , g (x 2 )3838x 2 g ( x 1 )x 12727∴ g ( x 2 ) g (x 1 )38( x 2 x 1 ) ,∵ x 2x 10 ,∴ g ( x 1 ) g( x 2 ) 3827x 1 x 2 27∴g( x 1 ) g ( x 2 )38 ,即 | g ( x 1 )g ( x 2 ) | 38x 2 |⋯⋯⋯⋯⋯⋯ (12 分)x 1 x 227| x 127方法 2: M ( x 1 , g( x 1 )) 、 N (x 2 , g( x 2 )) 是曲 yg( x) 上任意两相异点,g ( x 1 ) g( x 2 )22( x 1 x 2 ) a ,12 21 2,x 1 x 2x 12x 22x 1 x 2x xx xa 42( x 1 x 2 )a(4a44⋯⋯⋯ (8 分)2 x 12 x 22x 1x 22x 1 x 2 )3x 1 x 22( x 1 x 2 )3 x 1x 2t1 ,t 0 ,令 k MNu(t)2 4t3 4t 2 , u (t)4t(3t2),x 1 x 2由 u (t)0,得 t2, 由 u (t) 0 得 0 t2 ,2323u( t) 在 (0, ) 上是减函数,在 ( ,) 上是增函数,33u(t) 在 t2 取极小38, u(t)38 ,∴所以 g( x 1 )g( x 2 ) 3832727x 1x 227即 | g ( x ) g( x ) |38| x x 2 |1227 1x 29. (1) f ( x) 的定 域 (0,) , f ' ( x)x a a 1 ax a 1 ( x 1)( x 1 a)xxx(i )若 a 1 1, 即 a 2 , f ' ( x)( x 1) 2 . 故 f ( x) 在 (0,) 增加.(ii )若 ax1 1,而 a 1,故1 a 2,则当 x (a 1,1)时 , f ' (x) 0.当 x (0, a 1) 及 x (1,)时 , f ' ( x)0,故 f ( x)在(a 1,1) 减少,在( 0,a-1),(1,) 增加.(iii )若 a1 1,即 a 2,同理可得 f ( x)在 (1, a 1)单调减少 ,在 (0,1), (a 1,) 增加.(II )考 函数 g( x)f ( x) x1 x2 ax (a1) ln x x.2由 g ' ( x) x ( a 1)a 1 2 x a 1(a 1) 1 ( a 1 1) 2 .x x由于 a a5,故 g' ( x) 0,即 g( x)在 (0, )单调增加 ,从而当 x 1 x 2 0 有g(x 1 ) g( x 2 )0,即 f (x 1 )f (x 2 ) x 1x 2 0,高二数学导数部分大题练习故f (x 1)f ( x 2 ) 1 ,当 0 x 1 x 2 时,有 f (x 1 ) f ( x 2 ) f (x 2 ) f ( x 1 )1x 1x 2x 1x 2x 2 x 110.解:(I ) f (x)aa 1 ,x, g ( x)x∵函数 f (x), g(x) 在区间 [1,3] 上都是单调函数且它们的单调性相同,∴当 x [1,3] 时, f (x) g ( x) ( a 1)( x 2 a) 0 恒成立,即 (a 1)( x 2a) 0 恒x成立,∴∵a 1在 x [1,3] 时恒成立,或 a 1在 x [1,3] 时恒成立,ax 2 ax 2 9 x1 ,∴ a1 或 a 9(II ) F ( x)1 x2 a ln x,(a 1)x , F (x) xa (a 1) ( x a)( x 1)2xx ∵ F ( x) 定义域是 (0, ) , a (1, e] ,即 a 1∴ F ( x) 在 (0,1) 是增函数,在 (1,a) 实际减函数,在 ( a, ) 是增函数 ∴当 x 1 时, F ( x) 取极大值 MF (1)a 1 ,2当 x a 时, F ( x) 取极小值 mF (a) aln a1 a2 a ,2∵ x , x2 [1,a] ,∴121| F ( x ) F ( x ) | | M m | M m设 G (a) M m1 a2 a ln a 1,则 G (a) a ln a 1 ,2 2∴ [G (a)]11,∵ a (1, e] ,∴ [ G (a)] 0a∴ G ( a) a ln a 1 在 a (1, e] 是增函数,∴ G ( a)G (1)∴ G(a) 1 a2a ln a1在 a (1, e] 也是增函数221)2∴ G (a) G(e) ,即 G (a) 1 e 2 e 1 (e 1,22 2而 1 e 2 e 1 (e 1)21 (3 1)2 1 1 ,∴ G (a) M m 12 2 2 2 ∴当 x 1 , x 2 [1,a] 时,不等式 | F (x 1 ) F (x 2 ) | 1 成立.11.解:(I ) f ( x) 1 e 1 ex 1x x 0 ,得 xe当 x 变化时, f (x) 与 f ( x) 变化情况如下表:x(0, 1)e1( 1, )eef ( x)+ 0-f ( x) 单调递增 极大值 单调递减 ∴当 x 1 时, f ( x) 取得极大值 f (1)2 ,没有极小值;ee(II )(方法 1)∵ f (x 0 ) k AB ,∴1e ln x 2 ln x 1e( x 2x 1),∴x 0x 2 x 1x 2x 1lnx2x 0 x 1高二数学 数部分大即 x 0 lnx2( x 2 x 1 )x 1g (x 1) x 1 lnx 2( x 2x 1∵ x 1 x 2 ,∴ g (x 1)0 , g (x) x lnx 2( x 2 x 1 )x 1/lnx2x 1) , g (x 1) x 11 0 , g (x 1) 是 x 1 的增函数,x 1g(x 2 ) x 2 lnx 2( x 2 x 2 ) 0 ;x 2g (x 2 ) x 2 lnx 2( x 2/ lnx 2 1 0 , g( x 2 ) 是 x 2 的增函数,x 1 ) ,g(x 2 ) x2x 1x 1∵ x 1x 2 ,∴ g (x 2 ) g( x 1 )x 1 lnx 1(x 1 x 1) 0 ,x 1∴函数 g ( x) x lnx 2(x 2 x 1 ) 在 ( x 1 , x 2 ) 内有零点 x 0 ,x 1又∵ x 21, ln x 2 0,函数 g(x) xln x 2( xx )在 1 2) 是增函数,x 1x 1x 121( x , x∴函数 g ( x) x 2 x 1 ln x 2在 ( x 1 ,x 2 ) 内有唯一零点 x 0 ,命 成立xx 1(方法 2)∵ f (x 0 )kAB ,∴1e ln x 2 ln x 1 e( x 2x 1),x 0x 2 x 1即 x 0 ln x 2 x 0 ln x 1 x 1 x 2 0 , x 0 ( x 1 , x 2 ) ,且 x 0 唯一g ( x) x ln x 2 x ln x 1 x 1 x 2 , g ( x 1 ) x 1 ln x 2 x 1 ln x 1 x 1 x 2 , 再 h(x) x ln x 2x ln x x x 2 , 0x x 2 ,∴ h (x) ln x 2ln x 0∴ h( x) x ln x 2 x ln x x x 2 在 0 x x 2 是增函数∴ g ( x 1 ) h( x 1 ) h(x 2 ) 0 ,同理 g (x 2 ) 0 ∴方程 x ln x 2 x ln x 1 x 1 x 2 0 在 x 0 ( x 1 , x 2 ) 有解∵一次函数在 ( x 1 , x 2 ) g( x) (ln x 2ln x 1) x x 1 x 2 是增函数∴方程 x ln x 2 x ln x 1 x 1 x 2 0 在 x 0 ( x 1 , x 2 ) 有唯一解,命 成立 ⋯⋯⋯(12 分)注: 用函数 性 明,没有去 明曲C 不存在拐点,不 分. 12.解:(I ) log 2 (2 x x 2 4) 0 ,即 2x x 2 4 1得函数 f ( x) 的定 域是 ( 1,3) , (II ) g( x) F (1,log 2 ( x 2 ax 2 bx 1)) x 3 ax 2 bx 1,曲 C 在x 0 ( 4x 01) 有斜率 - 8 的切 ,又由 log 2 (x 3ax 2bx 1)0, g ( x) 3x 22axb,3x 02 2ax 0 b8∴存在 数 b 使得①4 x 01②有解,由①得x 03ax 02bx 0 1③ 1b8 3x 02 2ax 0 , 代入③得 2x 02 ax 0 8 0 ,由 2x 02 ax 08 0 有4 x 01解, ⋯⋯⋯⋯⋯⋯⋯⋯ (8 分)高二数学数部分大方法 1:a 2( x) 8 ,因 4 x0 1 ,所以 2( x0 ) 8 [8,10) ,( x0 ) ( x0 )当 a 10 ,存在数 b ,使得曲C在x0( 4 x0 1) 有斜率-8的切方法 2:得2 ( 4)2⋯⋯⋯⋯⋯⋯(10 分)a ( 4) 8 0或 2 ( 1) 2 a ( 1) 8 0 ,a 10或a 10, a 10.方法 3:是 2 ( 4) 2 a ( 4) 8 0的集,即 a 102 ( 1)2 a ( 1) 8 0ln(1 x) , x xln(1 x)(III )令h( x)1,由h( x) 1 xx2 x又令 p( x) x ln(1 x), x 0, p ( x) 1 1 x 0 ,x (1 x) 2 1 x (1 x) 21p( x)在[ 0, )减. ⋯⋯⋯⋯⋯⋯⋯⋯(12)分当 x 0时有 p( x) p(0) 0, 当x 1时有 h ( x) 0,h( x)在[1, ) 减,1 x y时,有 ln(1 x) ln(1 y), y ln(1 x) x ln(1 y), (1 x) y (1 y)x,x y当 x, y N 且 x y时 F (x, y) F ( y, x).。
(完整word版)高二数学导数大题练习(详细答案)
高二数学导数局部大题练习1.函数f(x) ax3bx2(c 3a 2b)x d的图象如图所示.〔I〕求c,d的值;〔II〕假设函数f(x)在x2处的切线方程为3xy110,求函数f(x)的解析式;〔III〕在〔II〕的条件下,函数y f(x)与y 1f(x)5xm的3图象有三个不同的交点,求m的取值范围.2.函数f(x)alnx ax3(aR).〔I〕求函数f(x)的单调区间;〔II〕函数f(x)的图象的在x4处切线的斜率为3,假设函数2g(x)1x3x2[f'(x)m]在区间〔1,3〕上不是单调函数,求m的取值范围.323.函数f(x)x3ax2bxc的图象经过坐标原点,且在x1处取得极大值.〔I〕求实数a的取值范围;〔II〕假设方程f(x)(2a3)2恰好有两个不同的根,求f(x)的解析式;9〔III〕对于〔II〕中的函数f(x),对任意、R,求证:|f(2sin)f(2sin)|81.(4.常数a0,e为自然对数的底数,函数f(x) e x x,g(x)x2alnx.(I〕写出f(x)的单调递增区间,并证明e a a;(I I〕讨论函数yg(x)在区间(1,e a)上零点的个数.高二数学导数局部大题练习5.函数f(x) l n(x 1) k(x 1) 1.I 〕当k1时,求函数f(x)的最大值;II 〕假设函数f(x)没有零点,求实数k 的取值范围;( 6.x 2是函数f(x)(x 2 ax 2a 3)e x 的一个极值点〔e〕.(I 〕求实数a 的值;( I I 〕求函数f(x)在x[3,3]的最大值和最小值.27.函数f(x) x 2 4x (2 a)lnx,(a R,a 0) I 〕当a=18时,求函数f(x)的单调区间; II 〕求函数f(x)在区间[e,e 2]上的最小值.8.函数f(x)x(x6)alnx 在x(2,)上不具有单调性....〔I 〕求实数a 的取值范围;〔II 〕假设f(x)是f(x)的导函数,设g(x)f(x) 622,试证明:对任意两个不相38x等正数x 1、x 2,不等式|g(x 1)g(x 2)||x 1x 2|恒成立.27高二数学导数局部大题练习9.函数f(x)1x 2 ax(a1)lnx,a1.2〔I 〕讨论函数f(x)的单调性;〔II 〕证明:假设a5,那么对任意x 1,x 2(0,),x 1x 2 f(x 1)f(x 2),有1.x 1 x 210.函数f(x)1 x2 alnx,g(x)(a1)x,a1.2( I 〕假设函数f(x),g(x)在区间[1,3]上都是单调函数且它们的单调性相同,求实数a 的取值范围; 〔II 〕假设 a(1,e](e),设F(x) f(x)g(x),求证:当x,x [1,a]时,不1 2等式|F(x 1)F(x 2)|1成立.11.设曲线C :f(x) lnx ex 〔e〕,f(x)表示f(x)导函数.〔I 〕求函数f(x)的极值;〔II 〕对于曲线C 上的不同两点A(x 1,y 1),B(x 2,y 2) x 0 (x 1,x 2),使直线AB 的斜率等于 f(x 0).,x 1x 2,求证:存在唯一的12.定义F(x,y)(1x)y ,x,y(0,),〔I 〕令函数f(x)F(3,log 2(2xx 2 4)),写出函数f(x)的定义域;使得〔II 〕令函数g(x)F(1,log 2(x 3ax 2bx1))的图象为曲线,假设存在实数bC曲线C 在x 0(4 x 01)处有斜率为-8的切线,求实数a 的取值范围;〔III 〕当x,yN*且xy 时,求证F(x,y)F(y,x).高二数学导数局部大题练习 答案1.解:函数f(x)的导函数为f '(x)3ax 2 2bxc3a 2b 〔I 〕由图可知函数f(x)的图象过点〔0,3〕,且f '(1)〔2分〕得d 3d33a2b c3a 2b 0c〔II 〕依题意f '(2) 3 且f(2) 5〔4分〕12a 4b 3a 2b 38a 4b 6a 4b 35解得a 1,b 6 所以f () x 3 6 x 29 x 3 〔8分〕 x〔III 〕f(x) 3x 2 12x 9.可转化为:x 3 6x 2 9x3 x 2 4x35xm 有三个不等实根,即:gx x 3 7x 2 8x m 与x 轴有三个交点;gx3x 214x83x2x4,x,22 2,44,3343g x+-+ gx增极大值减极小值增g268 m,g4 16 m .〔10分〕327当且仅当g268 m 0且g 416 m 0时,有三个交点,327故而,16 m68为所求.〔12分〕272.解:〔I 〕f'(x)a(1 x)(x 0)〔2分〕x当a0时,f(x)的单调增区间为0,1,减区间为1, 1,,减区间为0,1;当a=1时,f(x)不是单调函数〔5分〕〔II 〕f'(4) 3a 3得a 2,f(x)2lnx2x34 2g(x)1 x 3(m2)x 2 2x, g'(x) x 2 (m4)x 2〔6分〕3 2g(x)在区间(1,3)上不是单调函数,且g'(0) 2g'(1) 0, g'(3)0.m 3, 19,3)〔8分〕m19,〔10分〕m(33〔12分〕3.解:〔I 〕 f (0)0c 0,f (x) 3x 2 2ax b,f(1)0b2a3 f(x)3x 2 2ax (2a 3) (x 1)(3x 2a 3), 由f(x)x1或x2a3,因为当 x1时取得极大值,3高二数学导数局部大题练习所以2a31a3,所以a 的取值范围是:(,3) ;3〔II 〕由下表:x(,1)1 2a32a 32a3(1,3 )3(, )3f(x)+ 0 --极大极小值f(x)递增值递减递增a6(2a3)2a227依题意得:a6(2a3)2(2a 3)2 ,解得:a927 9 所以函数f(x)的解析式是:f(x) x 3 9x 2 15x〔III 〕对任意的实数,都有22sin2,22sin2,在区间[-2,2]有:f(2) 8363074,f(1)7,f(2)836302f(x)的最大值是f(1)7, f(x)的最小值是f(2)8363074函数f(x)在区间[2,2]上的最大值与最小值的差等于81,所以|f(2sin ) f(2sin )| 81.4.解:〔I 〕f(x)e x1 0,得f(x)的单调递增区间是(0, ),〔2分〕∵a0,∴f(a) f(0) 1,∴e aa 1 a ,即e aa .〔4分〕〔II 〕g(x)a2(x2a)(x2a )2a,列表2x2x2,由g(x)0 ,得xx2x (0, 2a )2a( 2a ,)222g(x)-+g(x)单调递减极小值单调递增当x2a时,函数yg(x)取极小值g( 2a )a (1 ln a),无极大值.2222由〔I 〕e ae 2ae aa,∴e a2aa ,∵aa,∴e 2a222g(1)10,g(e a)e 2a〔i 〕当2a 1,即02〔ii 〕当2a 1,即a2假设a(1 ln a) 0 ,即2 2假设a(1 ln a) 0 ,即2 2 假设a(1 ln a)0,即22a 2 (e a a)(e a a) 0〔8分〕a2时,函数y g(x)在区间(1,e a )不存在零点时2 a2e 时,函数yg(x)在区间(1,e a )不存在零点a 2e 时,函数y g(x)在区间(1,e a )存在一个零点x e ;a 2e 时,函数y g(x)在区间(1,e a )存在两个零点;综上所述, y g(x)在(1,e a )上,我们有结论:高二数学导数局部大题练习当0a2e 时,函数f(x)无零点;当a2e 时,函数f(x)有一个零点;当a2e 时,函数f(x)有两个零点.5.解:〔I 〕当k 1时,f (x)2 xx 1f(x)定义域为〔1,+〕,令f (x)0,得x2,∵当x(1,2)时,f(x)0,当x (2, )时,f (x) 0, ∴f(x)在(1,2)内是增函数,在(2, )上是减函数 ∴当x 2时,f(x)取最大值f(2)0〔II 〕①当k 0时,函数y ln(x 1)图象与函数y k(x1) 1图象有公共点,∴函数f(x)有零点,不合要求;②当k0时,11 k kx k(x1 k ) f(x)kk〔6分〕1x1x令x1f (x)0,得xk1,∵xk1时,f (x) 0,x1, ) 时,f(x)0,k(1,k ) (1∴11k在(1,1) 内是增函数, 在[1)上是减函数,f(x)k,1k∴f(x)的最大值是f(1lnk ,)k∵函数f(x)没有零点,∴lnk 0,k 1,因此,假设函数f(x)没有零点,那么实数k 的取值范围k (1, )6.解:〔I 〕由f(x)(x 2ax 2a 3)e x 可得f (x)(2x a)e x (x 2ax2a3)e x[x 2(2a)xa3]e x 〔4分〕∵x2是函数f(x)的一个极值点,∴f(2) 0∴(a 5)e 2 0 ,解得a5〔II 〕由f () ( x 2)( x 1) e x 0,得f(x)在( ,1)递增,在(2,)递增,x由f(x)0,得f(x)在在(1,2)递减∴f(2)e 2是f(x)在x[3 ,3]的最小值;〔8分〕e 232e 23 e 23f( 3 ) 7 ,f(3)e 3∵f(3)f(3 ) e 37 1 (4ee7)0,f(3)f( 3 )2 42442∴f(x)在x[3,3]的最大值是f(3)e 3.27.解:〔Ⅰ〕f(x)x 24x16lnx ,f'(x)2x4162(x2)(x4)2分x x由f'(x) 0 得(x 2)(x 4) 0,解得x4或x 2注意到x 0,所以函数 由f'(x) 0得(x 2)(x 4) 注意到x 0,所以函数 f(x)的单调递增区间是〔 4,+∞〕 0,解得-2<x <4,f(x)的单调递减区间是 (0,4].高二数学导数局部大题练习综上所述,函数f(x)的单调增区间是〔4,+∞〕,单调减区间是(0,4] 6分〔Ⅱ〕在x [e,e 2]时,f(x) x 2 4x (2a)lnx 所以f'(x)2x42a2x 2 4x2a ,设g(x)2x 2xx 4x2a当a0时,有△=16+4×2(2 a) 8a0,此时g(x)0,所以f'(x) 0,f(x)在[e,e 2]上单调递增,所以f(x)min f(e) e 24e2 a 8分当a0时,△=16 4 2(2 a)8a0,令f'(x) 0,即2x 2 4x 2a 0,解得x 令f'(x) 0,即2x 24x2a0,①假设12a≥e 2,即a ≥2(e 2 1)2时,2f(x)在区间[e,e 2]单调递减,所以f(x)min ②假设e12a e 2,即2(e1)2a2(e 2212a 或x1 2a ;22解得12a x12a .2 2f(e 2) e 4 4e 2 4 2a .1)2时间,f(x)在区间[e,12a]上单调递减,在区间[12a,e 2]上单调递增,22所以f(x)minf(12a ) a 2a3 (2 a)ln(12a).222③假设 1 2a e(e1)2时, f(x)在区间 [e,e 2 ]单调递增,2 ≤,即0a ≤2所以f(x)min f(e)e 2 4e 2a综上所述,当a ≥2(e 2 1)2时,f(x)mina 4 4e 2 42a ;当2(e1)2a 2(e 2 1)2时, 当 ≤ 1)2时, f(x)min e 2a2(e8.解:〔I 〕 f(x)2xa 2x 26xf(x)mina 2a3(2a)ln(12a );2 24e2 a14分6x a ,x∵f(x)在x(2,)上不具有单调性,∴在x(2,)上f(x)有正也有负也有0,...即二次函数y2x 26x a 在x(2, )上有零点 〔4分〕∵y2x 2 6xa 是对称轴是x3,开口向上的抛物线,∴y22262a2的实数a 的取值范围(,4)〔II 〕由〔I 〕g(x)2x a22 ,x x方法1:g(x)f(x)2 6 2xa 2 (x 0),x 2x x 2高二数学导数局部大题练习∵a4,∴g(x)2a4 2442x 34x 4 ,〔8分〕x2x3x 2x 3x3设h(x)24 4 ,h(x)8 12 4(2x 3)x 2x3x 3x 4x 4h(x)在(0, 3 )是减函数,在( 3 , )增函数,当x3时,h(x)取最小值382 2 227∴从而g(x) 38,∴(g(x) 380 ,函数yg(x) 38x 是增函数,x)27 27 27x 1、x 2是两个不相等正数,不妨设x 1x 2,那么g(x 2)38 38 x 2g(x 1) x 12727∴g(x 2)g(x 1)38(x 2x 1),∵x 2x 1 0,∴g(x 1)g(x 2)3827x 1 x 227∴g(x 1)g(x 2)38 ,即|g(x 1)g(x 2)| 38 x 2|〔12分〕x 1x 227 |x 127方法2:M(x 1,g(x 1))、N(x 2,g(x 2))是曲线yg(x)上任意两相异点,g(x 1)g(x 2)22(x 1 x 2) a ,12212,x 1 x 2x 12x 22x 1x 2Qx xxxa42(x 1 x 2)a(4a44〔8分〕2x 12x 22x 1x 22x 1x 2)3x 1x 22(x 1x 2)3x 1x 2设t1 ,t 0,令k MNu(t)2 4t3 4t 2,u(t)4t(3t2) ,x 1x 2 由u(t)0,得t2,由u(t)得0t2,232 3u(t)在(0, )上是减函数,在( ,)上是增函数,33u(t)在t2 处取极小值38,u(t)38,∴所以g(x 1)g(x 2) 383 2727x 1x 227即|g(x)g(x)|38|xx 2 |1227 1x 29.〔1〕f(x)的定义域为(0,),f'(x)x a a1axa1 (x1)(x1a)xxx〔i 〕假设a1 1,即a2 ,那么f'(x) (x 1)2 .故f(x)在(0, )单调增加.〔ii 〕假设a x1 1,而a 1,故1 a 2,那么当x (a 1,1)时,f'(x)0.当x (0,a1)及x (1,)时,f'(x)0,故f(x)在(a 1,1)单调减少,在〔0,a-1〕,(1,)单调增加.〔iii 〕假设a1 1,即a 2,同理可得f(x)在(1,a1)单调减少,在(0,1),(a1, )单调增加.〔II 〕考虑函数g(x)f(x) x1x 2 ax(a 1)lnxx.2由g'(x)x(a1)a1 2xa1(a1)1(a11)2.x x由于a a5,故g'(x)0,即g(x)在(0,)单调增加,从而当x 1x 2 0时有g(x 1)g(x 2)0,即f(x 1)f(x 2)x 1x 20,高二数学导数局部大题练习故f(x 1)f(x 2) 1 ,当0 x 1x 2 时,有f(x 1) f(x 2) f(x 2)f(x 1) 1x 1x 2x 1x 2x 2x 110.解:〔I 〕f(x)aa1,x,g(x)x∵函数f(x),g(x)在区间[1,3]上都是单调函数且它们的单调性相同,∴当x[1,3]时,f (x) g(x) (a1)(x 2a)0恒成立,即(a 1)(x 2a)0恒x成立, ∴∵a 1在x[1,3]时恒成立,或a 1在x [1,3]时恒成立,ax 2 ax 2 9 x1,∴a1或a9〔II 〕F(x)1 x 2alnx, (a 1)x ,F(x)x a (a 1)(xa)(x1)2x x∵F(x)定义域是(0, ),a (1,e],即a 1∴F(x)在 (0,1) 是增函数,在 (1,a) 实际减函数,在(a,)是增函数 ∴当x 1 时,F(x)取极大值MF(1)a 1,2当xa 时,F(x)取极小值mF(a)alna1 a2 a ,2∵x 1,x 2[1,a],∴|F(x 1)F(x 2)||Mm| M m设G(a)Mm1a 2 alna 1,那么G(a)alna1,22∴[G(a)]11,∵a(1,e],∴[G(a)]a∴G(a) alna1在a (1,e]是增函数,∴G(a)G(1)∴G(a)1 a 2alna1在a (1,e]也是增函数221)2∴G(a)G(e),即G(a)1e 2 e 1 (e 1,2 2 2而1e 2e 1(e1)21(31)211,∴G(a)Mm1 222 2∴当x 1,x 2[1,a]时,不等式|F(x 1) F(x 2)|1 成立.11.解:〔I 〕f (x)1e 1 ex0,得x1xx e当x 变化时,f (x)与f(x)变化情况如下表:x(0,1)e1(1,)eef(x)+-f(x) 单调递增 极大值 单调递减 ∴当x1 时,f(x)取得极大值f(1)2,没有极小值;ee〔II 〕〔方法 1〕∵f(x 0)k AB ,∴1e lnx 2lnx 1e(x 2x 1),∴xx2x1ln20x0x1高二数学导数局部大题练习即x 0 lnx2(x 2x 1)x 1g(x 1)x 1lnx 2(x 2x 1∵x 1x 2,∴g(x 1)0,设g(x)xlnx 2(x 2 x 1)x 1/ln x 2x 1),g(x 1)x 110 ,g(x 1)是x 1的增函数,x 1g(x 2)x 2lnx 2(x 2 x 2)0;x 2g(x 2)x 2lnx 2(x 2/lnx 2 1 0,g(x 2)是x 2的增函数,x 1),g(x 2)x2x 1x 1∵x 1x 2,∴g(x 2)g(x 1)x 1lnx 1(x 1 x 1)0,x 1∴函数g(x)xlnx 2(x 2 x 1)在(x 1,x 2)内有零点x 0,x 1又∵x 21,lnx 2 0,函数 g(x)xln x 2(xx)在1 2)是增函数,x 1x 1x 121(x,x∴函数g(x)x 2 x 1 ln x 2在(x 1,x 2)内有唯一零点x 0,命题成立x x 1〔方法2〕∵f(x 0)kAB,∴1e lnx 2lnx 1 e(x 2x 1),x 0x 2 x 1 即x 0lnx 2x 0lnx 1 x 1 x 2 0,x 0 (x 1,x 2),且x 0唯一设g(x)xlnx 2 xlnx 1x 1 x 2,那么g(x 1)x 1lnx 2x 1lnx 1x 1x 2, 再设h(x)xlnx 2 xlnxxx 2,0xx 2,∴h(x)lnx 2 lnx0∴h(x) xlnx 2 xlnxx x 2在0xx 2 是增函数∴g(x 1)h(x 1)h(x 2) 0 ,同理g(x 2) 0∴方程xlnx 2 xlnx 1x 1 x 2 0 在x 0 (x 1,x 2)有解∵一次函数在(x 1,x 2)g(x)(lnx 2lnx 1)xx 1 x 2是增函数∴方程xlnx 2xlnx 1x 1 x 20 在x 0 (x 1,x 2)有唯一解,命题成立〔12分〕注:仅用函数单调性说明,没有去证明曲线C 不存在拐点,不给分.12.解:〔I 〕log 2(2x x 2 4) 0,即2x x 2 4 1得函数f(x)的定义域是( 1,3), 〔II 〕g(x) F(1,log 2(x 2 ax 2 bx 1)) x 3 ax 2 bx 1,设曲线C 在x 0(4 x 01)处有斜率为-8的切线,又由题设log 2(x 3ax 2bx1)0,g(x)3x 22axb,3x 02 2ax 0 b8∴存在实数b 使得①4 x 01②有解,由①得x 03ax 02bx 01③1b8 3x 02 2ax 0,代入③得2x 02 ax 08 0 ,由2x 02 ax 08 0有4 x 01解, 〔8分〕高二数学导数局部大题练习方法1:a2(x)8,因为4x01,所以2(x0)8[8,10),(x0)(x0)当a10时,存在实数b,使得曲线C在x0(4x01)处有斜率为-8的切线方法2:得2(4)2〔10分〕a(4)80或2(1)2a(1)80,a10或a10,a10.方法3:是2(4)2a(4)80的补集,即a102(1)2a(1)80ln(1x)xln(1x)〔III〕令h(x),x1,由h(x)1xx2x又令p(x)x ln(1x),x0,p(x)11x0,x(1x)21x(1x)21p(x)在[0,)单调递减.〔12〕分当x0时有p(x)p(0)0,当x1时有h(x)0,h(x)在[1,)单调递减,1x y时,有ln(1x)ln(1y),yln(1x)xln(1y),(1x)y(1y)x,x y当x,y N且x y时F(x,y)F(y,x).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数经典习题选择题:1.已知物体做自由落体运动的方程为21(),2s s t gt ==若t ∆无限趋近于0时, (1)(1)s t s t+∆-∆无限趋近于9.8/m s ,那么正确的说法是( ) A .9.8/m s 是在0~1s 这一段时间内的平均速度B .9.8/m s 是在1~(1+t ∆)s 这段时间内的速度C .9.8/m s 是物体从1s 到(1+t ∆)s 这段时间内的平均速度D .9.8/m s 是物体在1t s =这一时刻的瞬时速度.2.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是( )A .7米/秒B .6米/秒C .5米/秒D .8米/秒3. 若函数f(x)=x 2+b x +c 的图象的顶点在第四象限,则函数f /(x)的图象是( )4.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的() A .充分条件 B.必要条件C .充要条件D .必要非充分条件5.()f x 与()g x 是定义在R 上的两个可导函数,若()f x ,()g x 满足''()()f x g x =,则()f x 与()g x 满足( )A .()f x =()g xB .()f x -()g x 为常数函数C .()f x =()0g x =D .()f x +()g x 为常数函数6.. 若()sin cos f x x α=-,则'()f α等于( )A .sin αB .cos αC .sin cos αα+D .2sin α7. 已知函数1)(23--+-=x ax x x f 在),(+∞-∞上是单调函数,则实数a 的 取值范围是( )A .),3[]3,(+∞--∞YB .]3,3[-A x DC x BC .),3()3,(+∞--∞YD .)3,3(-8. 对于R 上可导的任意函数()f x ,若满足'(1)()0x f x -≥,则必有( )A . (0)(2)2(1)f f f +< B. (0)(2)2(1)f f f +≤C. (0)(2)2(1)f f f +≥D. (0)(2)2(1)f f f +>填空题:1.若2012)1(/=f ,则x f x f x ∆-∆+→∆)1()1(lim 0= ,xf x f x ∆--∆+→∆)1()1(lim 0= ,x x f f x ∆∆+-→∆4)1()1(lim 0= , xf x f x ∆-∆+→∆)1()21(lim 0= 。
2.函数y= x -e 的导数为 3. 若函数()f x 满足,321()(1),3f x x f x x '=-⋅-则(1)f '的值 4.若3'0(),()3f x x f x ==,则0x 的值为________________;5.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________;6.函数5523--+=x x x y 的单调递增区间是__________________________。
7. 已知函数11)1ln()(+-+-+=x a ax x x f , 若曲线)(x f y =在点))1(,1(f 处的切线与直线12:+-=x y l 平行,则 a 的值8. 函数3()45f x x x =++的图像在1x =处的切线在x 轴上的截距为________________。
9.若32()(0)f x ax bx cx d a =+++>在R 增函数,则,,a b c 的关系式为是 。
10. 若函数()()2f x x x c =-在2x =处有极大值,则常数c 的值为_________;11. 设函数())(0)f x ϕϕπ=+<<,若()()f x f x '+为奇函数,则ϕ=__________12. 对正整数n ,设曲线)1(x x y n -=在2x =处的切线与y 轴交点的纵坐标为n a ,则数列1n a n ⎧⎫⎨⎬+⎩⎭的前n 项和的公式是解答题1.求垂直于直线2610x y -+=并且与曲线3235y x x =+-相切的直线方程。
2.求函数()()()y x a x b x c =---的导数。
3.平面向量11),(,22a b =-=r r ,若存在不同时为0的实数k 和t ,使2(3),,x a t b y ka tb =+-=-+r r r r r r 且x y ⊥r r ,试确定函数()k f t =的单调区间。
4.求函数3(1cos 2)y x =+的导数。
参考答案选择题: 1.D 2.C 3.A 4.D 5.B 6.A 7.B 8.C6. A ''()sin ,()sin f x x f αα==7. B '2()3210f x x ax =-+-≤在),(+∞-∞恒成立,24120a a ∆=-≤⇒≤≤注意等于号)8.C 当1x ≥时,'()0f x ≥,函数()f x 在(1,)+∞上是增函数;当1x <时,'()0f x ≤,()f x 在(,1)-∞上是减函数故()f x 当1x =时取得最小值,即有(0)(1),(2)(1),f f f f ≥≥(注意大于等于号)得(0)(2)2(1)f f f +≥填空题:1. 2012,-2012,-503,4024;提示: xf x f x ∆-∆+→∆)1()1(lim 0=2012)1(/=f ; x f x f x ∆--∆+→∆)1()1(lim 0=-xf x f x ∆-∆+→∆)1()1(lim 0= -=)1(/f -2012 x x f f x ∆∆+-→∆4)1()1(lim 0=41-x f x f x ∆-∆+→∆)1()1(lim 0=41-=)1(/f -503 x f x f x ∆-∆+→∆)1()21(lim 0= 2xf x f x ∆-∆+→∆2)1()21(lim 0=2=)1(/f 4048 (∵x ∆→0,则2x ∆→0)2. -x e -3. 0 提示:(1)f '为常数,f ’ (x)=x 2-2(1)f 'x -1,令x=1则(1)f '=1-2(1)f '-1,解得(1)f '=04. 1± '2000()33,1f x x x ===±5.34π '2'1334,|1,tan 1,4x y x k y ααπ==-==-=-= 6. 5(,),(1,)3-∞-+∞ '253250,,13y x x x x =+-><->令得或 7. 3 提示:f’ (x)=-1x 1+a +2)1(+x a ,∵)(x f y =在点))1(,1(f 处的切线与 直线12:+-=x y l 平行,而直线12:+-=x y l 的斜率为-2,∴f’ (1)=-2 f’ (1)=-111+a +2)11(+a =-2,解得 a =3.8. 37- '2'3()34,(1)7,(1)10,107(1),0,7f x x f f y x y x =+==-=-==-时 (截距是实数,有正负)9. 20,3a b ac >≤且 '2()320f x ax bx c =++>恒成立,则220,0,34120a ab ac b ac >⎧><⎨∆=-<⎩且 10. 6 '22'2()34,(2)8120,2,6f x x cx c f c c c =-+=-+==或,2c =时取极小值,舍去 11. 6π''()))f x ϕϕϕ=-++=+()())f x f x πϕ'+=++ 要使()()f x f x '+ 即:,6k k Z πϕπ=+∈。
又0ϕπ<<,所以k 只能取0,从而6πϕ=。
12. 122n +- ()()/11222,:222(2)n n n x y n y n x --==-++=-+-切线方程为, 令0x =,求出切线与y 轴交点的纵坐标为()012n y n =+,所以21n n a n =+,则数列1n a n ⎧⎫⎨⎬+⎩⎭的前n 项和()12122212n n n S +-==--解答题1. 3x+y+6=0设切点为(,)P a b ,函数3235y x x =+-的导数为'236y x x =+ 切线的斜率'2|363x a k y a a ===+=-,得1a =-,代入到3235y x x =+- 得3b =-,即(1,3)P --,33(1),360y x x y +=-+++=。
2. 法一:化简在求导 Y=x^3-(a+b+c)x^2+(ab+ac+bc)x-abcY ′=3x^2-2(a+b+c)x+(ab+ac+bc)法二; ''''()()()()()()()()()y x a x b x c x a x b x c x a x b x c =---+---+---()()()()()()x b x c x a x c x a x b =--+--+--3. 解:由11),(,22a b =-=r r 得0,2,1a b a b ===r r r r g 22222[(3)]()0,(3)(3)0a t b ka tb ka ta b k t a b t t b +--+=-+--+-=r r r r r r r r r r g g g33311430,(3),()(3)44k t t k t t f t t t -+-==-=- '233()0,1,144f t t t t =-><->得或;2330,1144t t -<-<<得 所以增区间为(,1),(1,)-∞-+∞;减区间为(1,1)-。
4. 解:3236(1cos 2)(2cos )8cos y x x x =+=='5'548cos (cos )48cos (sin )y x x x x =⋅=⋅-548sin cos x x =-。
附几种常见的函数导数: 0'=C (C 为常数) x x cos )(sin '= 1')(-=n n nx x (R n ∈) x x sin )(cos '-= x x 1)(ln '= e x x a a log 1)(log '= x x e e =')( a a a x x ln )('=。