2016年宝山高三一模数学(合卷)
上海市宝山区届高考数学一模试卷Word含解析

上海市宝山区届高考数学一模试卷-Word版含解析————————————————————————————————作者:————————————————————————————————日期:2017年上海市宝山区高考数学一模试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.=.2.设全集U=R,集合A={﹣1,0,1,2,3},B={x|x≥2},则A∩∁U B=.3.不等式的解集为.4.椭圆(θ为参数)的焦距为.5.设复数z满足(i为虚数单位),则z=.6.若函数的最小正周期为aπ,则实数a的值为.7.若点(8,4)在函数f(x)=1+log a x图象上,则f(x)的反函数为.8.已知向量,,则在的方向上的投影为.9.已知一个底面置于水平面上的圆锥,其左视图是边长为6的正三角形,则该圆锥的侧面积为.10.某班级要从5名男生和2名女生中选出3人参加公益活动,则在选出的3人中男、女生均有的概率为(结果用最简分数表示)11.设常数a>0,若的二项展开式中x5的系数为144,则a=.12.如果一个数列由有限个连续的正整数组成(数列的项数大于2),且所有项之和为N,那么称该数列为N型标准数列,例如,数列2,3,4,5,6为20型标准数列,则2668型标准数列的个数为.二.选择题(本大题共4题,每题5分,共20分)13.设a∈R,则“a=1”是“复数(a﹣1)(a+2)+(a+3)i为纯虚数”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件14.某中学的高一、高二、高三共有学生1350人,其中高一500人,高三比高二少50人,为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生120人,则该样本中的高二学生人数为()A.80 B.96 C.108 D.11015.设M、N为两个随机事件,给出以下命题:(1)若M、N为互斥事件,且,,则;(2)若,,,则M、N为相互独立事件;(3)若,,,则M、N为相互独立事件;(4)若,,,则M、N为相互独立事件;(5)若,,,则M、N为相互独立事件;其中正确命题的个数为()A.1 B.2 C.3 D.416.在平面直角坐标系中,把位于直线y=k与直线y=l(k、l均为常数,且k<l)之间的点所组成区域(含直线y=k,直线y=l)称为“k⊕l型带状区域”,设f(x)为二次函数,三点(﹣2,f(﹣2)+2)、(0,f(0)+2)、(2,f(2)+2)均位于“0⊕4型带状区域”,如果点(t,t+1)位于“﹣1⊕3型带状区域”,那么,函数y=|f (t)|的最大值为()A.B.3 C.D.2三.解答题(本大题共5题,共14+14+14+16+18=76分)17.如图,已知正三棱柱ABC﹣A1B1C1的底面积为,侧面积为36;(1)求正三棱柱ABC﹣A1B1C1的体积;(2)求异面直线A1C与AB所成的角的大小.18.已知椭圆C的长轴长为,左焦点的坐标为(﹣2,0);(1)求C的标准方程;(2)设与x轴不垂直的直线l过C的右焦点,并与C交于A、B两点,且,试求直线l的倾斜角.19.设数列{x n}的前n项和为S n,且4x n﹣S n﹣3=0(n∈N*);(1)求数列{x n}的通项公式;(2)若数列{y n}满足y n+1﹣y n=x n(n∈N*),且y1=2,求满足不等式的最小正整数n的值.20.设函数f(x)=lg(x+m)(m∈R);(1)当m=2时,解不等式;(2)若f(0)=1,且在闭区间[2,3]上有实数解,求实数λ的范围;(3)如果函数f(x)的图象过点(98,2),且不等式f[cos(2n x)]<lg2对任意n ∈N均成立,求实数x的取值集合.21.设集合A、B均为实数集R的子集,记:A+B={a+b|a∈A,b∈B};(1)已知A={0,1,2},B={﹣1,3},试用列举法表示A+B;(2)设a1=,当n∈N*,且n≥2时,曲线的焦距为a n,如果A={a1,a2,…,a n},B=,设A+B中的所有元素之和为S n,对于满足m+n=3k,且m≠n的任意正整数m、n、k,不等式S m+S n﹣λS k>0恒成立,求实数λ的最大值;(3)若整数集合A1⊆A1+A1,则称A1为“自生集”,若任意一个正整数均为整数集合A2的某个非空有限子集中所有元素的和,则称A2为“N*的基底集”,问:是否存在一个整数集合既是自生集又是N*的基底集?请说明理由.2017年上海市宝山区高考数学一模试卷参考答案与试题解析一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.=2.【考点】极限及其运算.【分析】分子、分母都除以n,从而求出代数式的极限值即可.【解答】解:==2,故答案为:2.2.设全集U=R,集合A={﹣1,0,1,2,3},B={x|x≥2},则A∩∁U B={﹣1,0,1} .【考点】交、并、补集的混合运算.【分析】根据补集与交集的定义,写出∁U B与A∩∁U B即可.【解答】解析:因为全集U=R,集合B={x|x≥2},所以∁U B={x|x<2}=(﹣∞,2),且集合A={﹣1,0,1,2,3},所以A∩∁U B={﹣1,0,1}故答案为:{﹣1,0,1}.3.不等式的解集为(﹣2,﹣1).【考点】其他不等式的解法.【分析】不等式转化(x+1)(x+2)<0求解即可.【解答】解:不等式等价于(x+1)(x+2)<0,解得:﹣2<x<﹣1,∴原不等式组的解集为(﹣2,﹣1).故答案为:(﹣2,﹣1).4.椭圆(θ为参数)的焦距为6.【考点】椭圆的参数方程.【分析】求出椭圆的普通方程,即可求出椭圆的焦距.【解答】解:消去参数θ得:,所以,c==3,所以,焦距为2c=6.故答案为6.5.设复数z满足(i为虚数单位),则z=1+i.【考点】复数代数形式的混合运算.【分析】设z=x+yi,则代入,再由复数相等的充要条件,即可得到x,y的值,则答案可求.【解答】解:设z=x+yi,∴.则=x+yi+2(x﹣yi)=3﹣i,即3x﹣yi=3﹣i,∴x=1,y=1,因此,z=1+i.故答案为:1+i.6.若函数的最小正周期为aπ,则实数a的值为1.【考点】三角函数的周期性及其求法.【分析】利用行列式的计算,二倍角公式化简函数的解析式,再根据余弦函数的周期性,求得a的值.【解答】解:∵y=cos2x﹣sin2x=cos2x,T=π=aπ,所以,a=1,故答案为:1.7.若点(8,4)在函数f(x)=1+log a x图象上,则f(x)的反函数为f﹣1(x)=2x ﹣1..【考点】反函数.【分析】求出函数f(x)的解析式,用x表示y的函数,把x与y互换可得答案.【解答】解:函数f(x)=1+log a x图象过点(8,4),可得:4=1+log a8,解得:a=2.∴f(x)=y=1+log2x则:x=2y﹣1,∴反函数为y=2x﹣1.故答案为f﹣1(x)=2x﹣1.8.已知向量,,则在的方向上的投影为.【考点】平面向量数量积的运算.【分析】根据投影公式为,代值计算即可.【解答】解:由于向量,,则在的方向上的投影为=.故答案为:9.已知一个底面置于水平面上的圆锥,其左视图是边长为6的正三角形,则该圆锥的侧面积为18π.【考点】旋转体(圆柱、圆锥、圆台).【分析】由题意,得:底面直径和母线长均为6,利用侧面积公式求出该圆锥的侧面积.【解答】解:由题意,得:底面直径和母线长均为6,S侧==18π.故答案为18π.10.某班级要从5名男生和2名女生中选出3人参加公益活动,则在选出的3人中男、女生均有的概率为(结果用最简分数表示)【考点】古典概型及其概率计算公式.【分析】先求出基本事件总数n=,在选出的3人中男、女生均有的对立事件是三人均为男生或三人均为女生,由此能求出在选出的3人中男、女生均有的概率.【解答】解:某班级要从5名男生和2名女生中选出3人参加公益活动,基本事件总数n=,在选出的3人中男、女生均有的对立事件是三人均为男生或三人均为女生,∴在选出的3人中男、女生均有的概率:p==.故答案为:.11.设常数a>0,若的二项展开式中x5的系数为144,则a=2.【考点】二项式系数的性质.=(r=0,1,2,…,9).令9﹣2r=5,解得r,【分析】利用通项公式T r+1即可得出.==(r=0,1,2,…,9).【解答】解:T r+1令9﹣2r=5,解得r=2,则=144,a>0,解得a=2.故答案为:2.12.如果一个数列由有限个连续的正整数组成(数列的项数大于2),且所有项之和为N,那么称该数列为N型标准数列,例如,数列2,3,4,5,6为20型标准数列,则2668型标准数列的个数为6.【考点】排列、组合及简单计数问题.【分析】由题意,公差d=1,na1+=2668,∴n(2a1+n﹣1)=5336=23×23×29,得出满足题意的组数,即可得出结论.【解答】解:由题意,公差d=1,na1+=2668,∴n(2a1+n﹣1)=5336=23×23×29,∵n<2a1+n﹣1,且二者一奇一偶,∴(n,2a1+n﹣1)=(8,667),(23,232),(29,184)共三组;同理d=﹣1时,也有三组.综上所述,共6组.故答案为6.二.选择题(本大题共4题,每题5分,共20分)13.设a∈R,则“a=1”是“复数(a﹣1)(a+2)+(a+3)i为纯虚数”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分必要条件的定义以及纯虚数的定义判断即可.【解答】解:当a=1时,(a﹣1)(a+2)+(a+3)i=4i,为纯虚数,当(a﹣1)(a+2)+(a+3)i为纯虚数时,a=1或﹣2,故选:A.14.某中学的高一、高二、高三共有学生1350人,其中高一500人,高三比高二少50人,为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生120人,则该样本中的高二学生人数为()A.80 B.96 C.108 D.110【考点】分层抽样方法.【分析】求出高一、高二、高三的人数分别为:500,450,400,即可得出该样本中的高二学生人数.【解答】解:设高二x人,则x+x﹣50+500=1350,x=450,所以,高一、高二、高三的人数分别为:500,450,400因为=,所以,高二学生抽取人数为:=108,故选C.15.设M、N为两个随机事件,给出以下命题:(1)若M、N为互斥事件,且,,则;(2)若,,,则M、N为相互独立事件;(3)若,,,则M、N为相互独立事件;(4)若,,,则M、N为相互独立事件;(5)若,,,则M、N为相互独立事件;其中正确命题的个数为()A.1 B.2 C.3 D.4【考点】相互独立事件的概率乘法公式.【分析】在(1)中,P(M∪N)==;在(2)中,由相互独立事件乘法公式知M、N为相互独立事件;在(3)中,由对立事件概率计算公式和相互独立事件乘法公式知M、N为相互独立事件;在(4)中,当M、N为相互独立事件时,P(MN)=;(5)由对立事件概率计算公式和相互独立事件乘法公式知M、N为相互独立事件.【解答】解:在(1)中,若M、N为互斥事件,且,,则P(M∪N)==,故(1)正确;在(2)中,若,,,则由相互独立事件乘法公式知M、N为相互独立事件,故(2)正确;在(3)中,若,,,则由对立事件概率计算公式和相互独立事件乘法公式知M、N为相互独立事件,故(3)正确;在(4)中,若,,,当M、N为相互独立事件时,P(MN)=,故(4)错误;(5)若,,,则由对立事件概率计算公式和相互独立事件乘法公式知M、N为相互独立事件,故(5)正确.故选:D.16.在平面直角坐标系中,把位于直线y=k与直线y=l(k、l均为常数,且k<l)之间的点所组成区域(含直线y=k,直线y=l)称为“k⊕l型带状区域”,设f(x)为二次函数,三点(﹣2,f(﹣2)+2)、(0,f(0)+2)、(2,f(2)+2)均位于“0⊕4型带状区域”,如果点(t,t+1)位于“﹣1⊕3型带状区域”,那么,函数y=|f (t)|的最大值为()A.B.3 C.D.2【考点】函数的最值及其几何意义.【分析】设出函数f(x)的解析式,求出|t的范围,求出|f(t)|的解析式,根据不等式的性质求出其最大值即可.【解答】解:设f(x)=ax2+bx+c,则|f(﹣2)|≤2,|f(0)|≤2,|f(2)|≤2,即,即,∵t+1∈[﹣1,3],∴|t|≤2,故y=|f(t)|=|t2+t+f(0)|=|f(2)+f(﹣2)+f(0)|≤|t(t+2)|+|t(t﹣2)|+|4﹣t2|=|t|(t+2)+|t|(2﹣t)+(4﹣t2)═(|t|﹣1)2+≤,故选:C.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.如图,已知正三棱柱ABC﹣A1B1C1的底面积为,侧面积为36;(1)求正三棱柱ABC﹣A1B1C1的体积;(2)求异面直线A1C与AB所成的角的大小.【考点】棱柱、棱锥、棱台的体积;异面直线及其所成的角.【分析】(1)设正三棱柱ABC﹣A1B1C1的底面边长为a,高为h,由底面积和侧面积公式列出方程组,求出a=3,h=4,由此能求出正三棱柱ABC﹣A1B1C1的体积.(2)由AB∥A1B1,知∠B1A1C是异面直线A1C与AB所成的角(或所成角的补角),由此能求出异面直线A1C与AB所成的角.【解答】解:(1)设正三棱柱ABC﹣A1B1C1的底面边长为a,高为h,则,解得a=3,h=4,∴正三棱柱ABC﹣A1B1C1的体积V=S△ABC•h=.(2)∵正三棱柱ABC﹣A1B1C1,∴AB∥A1B1,∴∠B1A1C是异面直线A1C与AB所成的角(或所成角的补角),连结B1C,则A1C=B1C=5,在等腰△A1B1C中,cos==,∵∠A1B1C∈(0,π),∴.∴异面直线A1C与AB所成的角为arccos.18.已知椭圆C的长轴长为,左焦点的坐标为(﹣2,0);(1)求C的标准方程;(2)设与x轴不垂直的直线l过C的右焦点,并与C交于A、B两点,且,试求直线l的倾斜角.【考点】椭圆的简单性质.【分析】(1)由题意可知:设椭圆方程为:(a>b>0),则c=2,2a=2,a=,即可求得椭圆的标准方程;(2)设直线l的方程为:y=k(x﹣2),将直线方程代入椭圆方程,由韦达定理及弦长公式即可求得k的值,即可求得直线l的倾斜角.【解答】解:(1)由题意可知:椭圆的焦点在x轴上,设椭圆方程为:(a>b>0),则c=2,2a=2,a=,b==2,∴C的标准方程;(2)由题意可知:椭圆的右焦点(2,0),设直线l的方程为:y=k(x﹣2),设点A(x1,y1),B(x2,y2);整理得:(3k2+1)x2﹣12k2x+12k2﹣6=0,韦达定理可知:x1+x2=,x1x2=,丨AB丨=•=•=,由丨AB丨=,=,解得:k2=1,故k=±1,经检验,k=±1,符合题意,因此直线l的倾斜角为或.19.设数列{x n}的前n项和为S n,且4x n﹣S n﹣3=0(n∈N*);(1)求数列{x n}的通项公式;(2)若数列{y n}满足y n+1﹣y n=x n(n∈N*),且y1=2,求满足不等式的最小正整数n的值.【考点】数列与不等式的综合.【分析】(1)由4x n﹣S n﹣3=0(n∈N*),可得n=1时,4x1﹣x1﹣3=0,解得x1.n ≥2时,由S n=4x n﹣3,可得x n=S n﹣S n﹣1,利用等比数列的通项公式即可得出.(2)y n+1﹣y n=x n=,且y1=2,利用y n=y1+(y2﹣y1)+(y3﹣y2)+…+(y n﹣y n﹣1)与等比数列的求和公式即可得出y n.代入不等式,化简即可得出.【解答】解:(1)∵4x n﹣S n﹣3=0(n∈N*),∴n=1时,4x1﹣x1﹣3=0,解得x1=1.n≥2时,由S n=4x n﹣3,∴x n=S n﹣S n﹣1=4x n﹣3﹣(4x n﹣1﹣3),∴x n=,∴数列{x n},是等比数列,公比为.∴x n=.(2)y n+1﹣y n=x n=,且y1=2,∴y n=y1+(y2﹣y1)+(y3﹣y2)+…+(y n﹣y n﹣1)=2+1+++…+=2+=3×﹣1.当n=1时也满足.∴y n=3×﹣1.不等式,化为:=,∴n﹣1>3,解得n>4.∴满足不等式的最小正整数n的值为5.20.设函数f(x)=lg(x+m)(m∈R);(1)当m=2时,解不等式;(2)若f(0)=1,且在闭区间[2,3]上有实数解,求实数λ的范围;(3)如果函数f(x)的图象过点(98,2),且不等式f[cos(2n x)]<lg2对任意n ∈N均成立,求实数x的取值集合.【考点】对数函数的图象与性质.【分析】(1)根据对数的运算解不等式即可.(2)根据f(0)=1,求f(x)的解析式,根据在闭区间[2,3]上有实数解,分离λ,可得λ=lg(x+10)﹣,令F(x)=lg(x+10)﹣,求在闭区间[2,3]上的值域即为λ的范围.(3)函数f(x)的图象过点(98,2),求f(x)的解析式,可得f(x)=lg(2+x)那么:不等式f[cos(2n x)]<lg2转化为lg(2+cos(2n x))<lg2转化为,求解x,又∵2+x>0,即x>﹣2和n∈N.讨论k的范围可得答案.【解答】解:函数f(x)=lg(x+m)(m∈R);(1)当m=2时,f(x)=lg(x+2)那么:不等式;即lg(+2)>lg10,可得:,且解得:.∴不等式的解集为{x|}(2)∵f(0)=1,可得m=10.∴f(x)=lg(x+10),即lg(x+10)=在闭区间[2,3]上有实数解,可得λ=lg(x+10)﹣令F(x)=lg(x+10)﹣,求在闭区间[2,3]上的值域.根据指数和对数的性质可知:F(x)是增函数,∴F(x)在闭区间[2,3]上的值域为[lg12﹣,lg13﹣]故得实数λ的范围是[lg12﹣,lg13﹣].(3)∵函数f(x)的图象过点(98,2),则有:2=lg(98+m)∴m=2.故f(x)=lg(2+x)那么:不等式f[cos(2n x)]<lg2转化为lg(2+cos(2n x))<lg2即,∴,n∈N.解得:<x<,n∈N.又∵2+x>0,即x>﹣2,∴≥﹣2,n∈N.解得:k,∵k∈Z,∴k≥0.故得任意n∈N均成立,实数x的取值集合为(,),k∈N,n ∈N.21.设集合A、B均为实数集R的子集,记:A+B={a+b|a∈A,b∈B};(1)已知A={0,1,2},B={﹣1,3},试用列举法表示A+B;(2)设a1=,当n∈N*,且n≥2时,曲线的焦距为a n,如果A={a1,a2,…,a n},B=,设A+B中的所有元素之和为S n,对于满足m+n=3k,且m≠n的任意正整数m、n、k,不等式S m+S n﹣λS k>0恒成立,求实数λ的最大值;(3)若整数集合A1⊆A1+A1,则称A1为“自生集”,若任意一个正整数均为整数集合A2的某个非空有限子集中所有元素的和,则称A2为“N*的基底集”,问:是否存在一个整数集合既是自生集又是N*的基底集?请说明理由.【考点】双曲线的简单性质.【分析】(1)根据新定义A+B={a+b|a∈A,b∈B},结合已知中的集合A,B,可得答案;(2)曲线表示双曲线,进而可得a n=,S n=n2,则S m+S n﹣λS k >0恒成立,⇔>λ恒成立,结合m+n=3k,且m≠n,及基本不等式,可得>,进而得到答案;(3)存在一个整数集合既是自生集又是N*的基底集,结合已知中“自生集”和“N*的基底集”的定义,可证得结论;【解答】解:(1)∵A+B={a+b|a∈A,b∈B};当A={0,1,2},B={﹣1,3}时,A+B={﹣1,0,1,3,4,5};(2)曲线,即,在n≥2时表示双曲线,故a n=2=,∴a1+a2+a3+…+a n=,∵B=,∴A+B中的所有元素之和为S n=3(a1+a2+a3+…+a n)+n()=3•﹣m=n2,∴S m+S n﹣λS k>0恒成立,⇔>λ恒成立,∵m+n=3k,且m≠n,∴==>,∴,即实数λ的最大值为;(3)存在一个整数集合既是自生集又是N*的基底集,理由如下:设整数集合A={x|x=(﹣1)n•F n,n∈N*,n≥2},其中{F n}为斐波那契数列,即F1=F2=1,F n+2=F n+F n+1,n∈N*,下证:整数集合A既是自生集又是N*的基底集,①由F n=F n+2﹣F n+1得:(﹣1)n•F n=(﹣1)n+2•F n+2+(﹣1)n+1•F n+1,故A是自生集;﹣1],存在集合Ar一个有限子集②对于任意n≥2,对于任一正整数t∈[1,F2n+1{a1,a2,…,a m},使得t=a1+a2+…+a m,(|a i<F2n+1,i=1,2,…,m),当n=2时,由1=1,2=3+1﹣2,3=3,4=3+1,知结论成立;假设结论对n=k时成立,则n=k+1时,只须对任何整数m∈[F2k,F2k+3]讨论,+1,则m=F2k+2+,∈(﹣F2k+1,0),若m<F2k+2故=﹣F2k+m′,m′∈[1,F2k+1),+1的元素的和.由归纳假设,m′可以表示为集合A中有限个绝对值小于F2k+1因为m=F2k﹣F2k+1+m′=(﹣1)2k+2•F2k+2+(﹣1)2k+1•F2k+1+m′,+2所以m可以表示为集合A中有限个绝对值小于F2k的元素的和.+3若m=F2k,则结论显然成立.+2若F2k<m<F2k+3,则m=F2k+2+m′,m′∈[1,F2k+1),+2由归纳假设知,m可以表示为集合A中有限个绝对值小于F2k的元素的和.+3所以,当n=k+1时结论也成立;由于斐波那契数列是无界的,所以,任一个正整数都可以表示成集合A的一个有限子集中所有元素的和.因此集合A又是N*的基底集.。
上海市宝山区高考数学一模试卷解析版

高考数学一模试卷一、选择题(本大题共4小题,共20.0分)1.若函数在区间(1,e)上存在零点,则常数a的取值范围为()A. 0<a<1B.C.D.2.下列函数是偶函数,且在[0,+∞)上单调递增的是()A. B. f(x)=|x|-2cos xC. D. f(x)=10|lg x|3.已知平面α、β、γ两两垂直,直线a、b、c满足a⊆α,b⊆β,c⊆γ,则直线a、b、c不可能满足的是()A. 两两垂直B. 两两平行C. 两两相交D. 两两异面4.提鞋公式也叫李善兰辅助角公式,其正弦型如下:,-π<φ<π,下列判断错误的是()A. 当a>0,b>0时,辅助角B. 当a>0,b<0时,辅助角C. 当a<0,b>0时,辅助角D. 当a<0,b<0时,辅助角二、填空题(本大题共12小题,共54.0分)5.若复数z满足z(1+i)=2i(i为虚数单位),则|z|=______.6.已知,则λ=______.7.函数y=3x-1(x≤1)的反函数是______.8.2019年女排世界杯共有12支参赛球队,赛制采用12支队伍单循环,两两捉对厮杀一场定胜负,依次进行,则此次杯赛共有______场球赛.9.以抛物线y2=-6x的焦点为圆心,且与抛物线的准线相切的圆的方程是______.10.在(1-x)5(1+x3)的展开式中,x3的系数为______.(结果用数值表示)11.不等式|x-x2-2|>x2-3x-6的解集是______.12.已知方程x2-kx+2=0(k∈R)的两个虚根为x1、x2,若|x1-x2|=2,则k=______.13.已知直线l过点(-1,0)且与直线2x-y=0垂直,则圆x2+y2-4x+8y=0与直线l相交所得的弦长为______.14.有一个空心钢球,质量为142g,测得外直径为5cm,则它的内直径是______cm(钢的密度为7.9g/cm3,精确到0.1cm).15.已知{a n}、{b n}均是等差数列,c n=a n•b n,若{c n}前三项是7、9、9,则c10=______.16.已知a>b>0,那么,当代数式取最小值时,点P(a,b)的坐标为______.三、解答题(本大题共5小题,共76.0分)17.在直四棱柱ABCD-A1B1C1D1中,底面四边形ABCD是边长为2的菱形,∠BAD=60°,DD1=3,E是AB的中点.(1)求四棱锥C1-EBCD的体积;(2)求异面直线C1E和AD所成角的大小.(结果用反三角函数值表示)18.已知函数.(1)求函数f(x)的最小正周期及对称中心;(2)若f(x)=a在区间上有两个解x1、x2,求a的取值范围及x1+x2的值.19.一家污水处理厂有A、B两个相同的装满污水的处理池,通过去掉污物处理污水,A池用传统工艺成本低,每小时去掉池中剩余污物的10%,B池用创新工艺成本高,每小时去掉池中剩余污物的19%.(1)A池要用多长时间才能把污物的量减少一半;(精确到1小时)(2)如果污物减少为原来的10%便符合环保规定,处理后的污水可以排入河流,若A、B两池同时工作,问经过多少小时后把两池水混合便符合环保规定.(精确到1小时)20.已知直线l:x=t(0<t<2)与椭圆相交于A、B两点,其中A在第一象限,M是椭圆上一点.(1)记F1、F2是椭圆Γ的左右焦点,若直线AB过F2,当M到F1的距离与到直线AB的距离相等时,求点M的横坐标;(2)若点M、A关于y轴对称,当△MAB的面积最大时,求直线MB的方程;(3)设直线MA和MB与x轴分别交于P、Q,证明:|OP|•|OQ|为定值.21.已知数列{a n}满足a1=1,a2=e(e是自然对数的底数),且,令b n=ln a n(n∈N*).(1)证明:;(2)证明:是等比数列,且{b n}的通项公式是;(3)是否存在常数t,对任意自然数n∈N*均有b n+1≥tb n成立?若存在,求t的取值范围,否则,说明理由.答案和解析1.【答案】C【解析】解:函数在区间(1,e)上为增函数,∵f(1)=ln1-1+a<0,f(e)=ln e-+a>0,可得<a<1故选:C.判断函数的单调性,利用零点判断定理求解即可.本题考查函数与方程的应用,函数的零点的判断,是基本知识的考查.2.【答案】A【解析】解:由偶函数的定义,偶函数的定义域关于原点对称,故D错;A:f(-x)=log2(4-x+1)+x=log2+x=log2(4x+1)-log222x+x=log2(4x+1)-x=f(x);f(x)=log2(4x+1)-x=log2=log2(2x+)≥log22=1,当且仅当2x=,即x=0时等号成立,故A正确;B:x>0时,f(x)=x-2cos x,令f′(x)=1-2sin x>0,得x∈(0,2kπ+)∪(2kπ+,2kπ+2π)(k∈N*),故B不正确;C:x≠0时,x2+≥2,当且仅当x2=,即x=±1时,等号成立,∴不满足在[0,+∞)上单调递增,故C不正确;故选:A.由偶函数的定义,及在[0,+∞)上单调即可求解;考查偶函数的定义,函数在特定区间上的单调性,属于低档题;3.【答案】B【解析】解:平面α、β、γ两两垂直,直线a、b、c满足a⊆α,b⊆β,c⊆γ,所以直线a、b、c在三个平面内,不会是共面直线,所以:当直线两两平行时,a、b、c为共面直线.与已知条件整理出的结论不符.故选:B.直接利用直线和平面的位置关系的应用求出结果.本题考查的知识要点:直线和平面之间的关系的应用,主要考查学生的空间想象能力,属于基础题型.4.【答案】B【解析】解:因为cosφ=,sinφ=⇒tanφ=,对于A,因为a>0,b>0,则辅助角φ在第一象限⇒0<φ<,因为>0,φ=arctan>0,故A选项正确;对于B,因为a>0,b<0,则辅助角φ在第四象限⇒-<φ<0;,故φ=π-arctan(-)=π+arctan>0,故B选项错误;对于C,因为a<0,b>0,则辅助角φ在第二象限⇒⇒<φ<π;<0,故φ═π-arctan(-)=π+arctan>0,故C选项正确;对于D,因为a<0,b<0,则辅助角φ在第三象限⇒-π<φ<-,>0,故φ=arctan,又因为φ∈(-π,π],故φ=arctan-π<0,故D选项正确;故选:B.分别判断出a,b的值,对辅助角φ的影响.①a>0,b>0,则辅助角φ在第一象限;②a>0,b<0,则辅助角φ在第四象限;③a<0,b<0,则辅助角φ在第三象限;④a<0,b>0,则辅助角φ在第二象限.本题考查了三角函数的性质,考查学生的分析能力;属于中档题.5.【答案】【解析】解:∵复数z满足z(1+i)=2i,∴(1-i)z(1+i)=2i(1-i),化为2z=2(i+1),∴z=1+i.∴|z|=.故答案为:.利用复数的运算法则、模的计算公式即可得出.本题考查了复数的运算法则、模的计算公式,属于基础题.6.【答案】3【解析】解:=(λ-4)+2λ=5,解之得λ=3,故答案为:3.由行列式的公式化简求解.本题考查行列式,属于基础题.7.【答案】y=1+log3x,x∈(0,1]【解析】解:y=3x-1(x≤1),y∈(0,1],得x-1=log3y,x,y对换,得y=1+log3x,x∈(0,1],故答案为:y=1+log3x,x∈(0,1],利用反函数的求法,先反解x,再对换x,y,求出即可.本题考查了反函数的求法,属于基础题.8.【答案】66【解析】解:根据题意利用组合数得.故答案为:66.直接利用组合数的应用求出结果.本题考查的知识要点:组合数的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题.9.【答案】(x+)2+y2=9【解析】解:抛物线y2=-6x的焦点坐标为:(-,0)准线的方程为x=,所以叫点到准线的距离为3,所以以焦点为圆心且与抛物线的准线相切的圆的方程是:.故答案为:.首先求出抛物线的交点坐标和准现方程,进一步求出圆的方程.本题考查的知识要点:圆锥曲线的性质的应用,圆的方程的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.10.【答案】6【解析】解:(1-x)5•(1+x)3=(1-x)2•[(1-x)(1+x)]3=(x2-2x+1)•(1-3x2+3x4-x6)∴展开式中x3的系数为(-2)•(-3)=6.故答案为:6.把(1-x)5•(1+x)3化为(1-x)2•[(1-x)(1+x)]3,再化为(x2-2x+1)•(1-3x2+3x4-x6),由此求出展开式中x3的系数.本题考查了二项式系数的性质与应用问题,解题时应根据多项式的运算法则合理地进行等价转化,是基础题目.11.【答案】(-4,+∞)【解析】解:不等式|x-x2-2|>x2-3x-6转换为不等式|x2-x+2|>x2-3x-6,由于函数y=x2-x+2的图象在x轴上方,所以x2-x+2>0恒成立,所以x2-x+2>x2-3x-6,整理得x>-4,故不等式的解集为(-4,+∞).故答案为(-4,+∞)直接利用绝对值不等式的解法及应用求出结果.本题考查的知识要点:不等式的解法及应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.12.【答案】±2【解析】解:∵方程程x2-kx+2=0的两个虚根为x1、x2,可设x1=a+bi,x2=a-bi(a,b∈R).∴x1+x2=2a=k,x1x2=a2+b2=2,∵|x1-x2|=2,∴|2bi|=2,联立解得:b=±1,a=±1.∴k=±2.故答案为:±2.由题意设x1=a+bi,x2=a-bi(a,b∈R),利用根与系数的关系结合|x1-x2|=2求得a与b的值,则k可求.本题考查了实系数一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于基础题.13.【答案】2【解析】解:由题意可得,l的方程为x+2y+1=0,∵x2+y2-4x+8y=0可化为(x-2)2+(y+4)2=20,圆心(2,-4),半径r=2,∴圆心(2,-4)到l的距离d==,∴AB=2=2=2.故答案为:2.先求出直线l的方程,再求出圆心C与半径r,计算圆心到直线l的距离d,由垂径定理求弦长|AB|.本题考查直线与圆的方程的应用问题,考查两条直线垂直以及直线与圆相交所得弦长的计算问题,是基础题.14.【答案】4.5【解析】解:设钢球的内半径为r,所以7.9××3.14×[-]=142,解得r≈2.25.故内直径为4.5cm.故答案为:4.5.直接利用球的体积公式和物理中的关系式的应用求出结果.本题考查的知识要点:球的体积公式和相关的物理中的关系式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.15.【答案】-47【解析】解:设c n=a n•b n=an2+bn+c,则,解得∴c10=-1×102+5×10+3=-47,故答案为:-47.{a n}、{b n}均是等差数列,故{c n}为二次函数,设c n=an2+bn+c,根据前3项,求出a,b,c的值,即可得到c10.本题考查了等差数列的通项公式,考查分析和解决问题的能力和计算能力,属于基础题.16.【答案】(2,)【解析】解:因为a>b>0:∴b(a-b)≤=;所以≥a2+≥2=16.当且仅当⇒时取等号,此时P(a,b)的坐标为:(2,).故答案为:(2,).先根据基本不等式得到b(a-b)≤=;再利用一次基本不等式即可求解.本题考查的知识点:关系式的恒等变换,基本不等式的应用,属于基础题型.17.【答案】解:(1)在直四棱柱ABCD-A1B1C1D1中,∵底面四边形ABCD是边长为2的菱形,∠BAD=60°,∴B到DC边的距离为,又E是AB的中点,∴BE=1,则.∵DD1=3,∴=;(2)在直四棱柱ABCD-A1B1C1D1中,∵AD∥B1C1,∴∠B1C1E即为异面直线C1E和AD所成角,连接B1E,在△C1B1E中,B1C1=2,,=.∴cos∠B1C1E=,∴异面直线C1E和AD所成角的大小为arccos.【解析】(1)求解三角形求出底面梯形BCDE的面积,再由棱锥体积公式求解;(2)在直四棱柱ABCD-A1B1C1D1中,由题意可得AD∥B1C1,则∠B1C1E即为异面直线C1E和AD所成角,求解三角形得答案.本题考查多面体体积的求法及异面直线所成角的求法,考查空间想象能力与思维能力,是中档题.18.【答案】解:(1)函数===.所以函数的最小正周期为,令(k∈Z),解得(k∈Z),所以函数的对称中心为()(k∈Z).(2)由于,所以,在区间上有两个解x1、x2,所以函数时,函数的图象有两个交点,故a的范围为[0,).由于函数的图象在区间上关于x=对称,故.【解析】(1)直接利用三角函数关系式的恒等变换的应用,把函数的关系式变形成正弦型函数,进一步求出函数的周期和对称中心.(2)利用函数的定义域求出函数的值域,进一步求出参数a的范围和x1+x2的值.本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.19.【答案】解:(1)A池用传统工艺成本低,每小时去掉池中剩余污物的10%,剩余原来的90%,设A池要用t小时才能把污物的量减少一半,则0.9x=0.5,可得x=≈7,则A池要用7小时才能把污物的量减少一半;(2)设A、B两池同时工作,经过x小时后把两池水混合便符合环保规定,B池用创新工艺成本高,每小时去掉池中剩余污物的19%,剩余原来的81%,可得=0.1,即0.92x+0.9x-0.2=0,可得0.9x=,可得x=≈17.则A、B两池同时工作,经过17小时后把两池水混合便符合环保规定.【解析】(1)由题意可得A池每小时剩余原来的90%,设A池要用t小时才能把污物的量减少一半,则0.9x=0.5,两边取对数,计算可得所求值;(2)设A、B两池同时工作,经过x小时后把两池水混合便符合环保规定,B池每小时剩余原来的81%,可得=0.1,由二次方程的解法和两边取对数可得所求值.本题考查对数在实际问题的应用,考查方程思想和运算能力,属于基础题.20.【答案】解:(1)设M(x,y),-2≤x≤2,F1(-),F2(,0),直线AB 过F2,所以t=由题意得:=|x-|⇒y2=-4x,联立椭圆方程:+=1⇒y2=2-,解得x=-6+4,即M的横坐标是:-6+4.(2)设A(t,y1),B(t,-y1),M(-t,y1),则S△MAB=2t•|2y1|=2t•|y1|,而A在椭圆上,所以,+=1∴1≥2•⇒ty1≤,∴S△MAB≤2,当且仅当t=,即t=y1时取等号,∴t=,这时B(,-1),M(-,1),所以直线MB方程:y=-x;(3)设点A(t,y1),B(t,-y1),M(x0,y0),则直线MA:y=•(x-t)+y1,所以P的坐标(,0)同理直线MB:y=(x-t)-y1,所以Q的坐标(,0)所以|OP|•|OQ|=||,又因为A,M在椭圆上,所以y12=2-t2,y02=2-x02代入|OP|•|OQ|=||=4,恒为定值.【解析】(1)由题意可得焦点F1,F2的坐标,进而可求出A的坐标,设M的坐标,注意横坐标的范围[-2,2],在椭圆上,又M到F1的距离与到直线AB的距离相等,可求出M的横坐标;(2)M,A,B3个点的位置关系,可设一个点坐标,写出其他两点的坐标,写出面积的表达式,根据均值不等式可求出横纵坐标的关系,又在椭圆上,进而求出具体的坐标,再求直线MB的方程;(3)设M,A的坐标,得出直线MA,MB的方程,进而求出两条直线与x轴的交点坐标,用M,A的坐标表示,而M,A又在椭圆上,进而求出结果.考查直线与椭圆的综合应用,属于中难度题.21.【答案】(1)证明:由已知可得:a n>1.∴ln a n+1+ln a n≥2,∴ln≥,∵,b n=ln a n(n∈N*).∴ln a n+2≥,∴.(2)证明:设c n=b n+1-b n,∵,b n=ln a n(n∈N*).∴====-.∴是等比数列,公比为-.首项b2-b1=1.∴b n+1-b n=.∴b n=b1+(b2-b1)+(b3-b2)+……+(b n-b n-1)=0+1+++……+==.∴{b n}的通项公式是;(3)假设存在常数t,对任意自然数n∈N*均有b n+1≥tb n成立.由(2)可得:≥0.∴n=1时,1≥t•0,解得t∈R.n≥2时,t≤,∵===1-.当n=2时,取得最小值,=.∴t≤.【解析】(1)由已知可得:a n>1.利用基本不等式的性质可得:ln a n+1+ln a n ≥2,可得ln ≥,代入化简即可得出.(2)设c n=b n+1-b n ,由,b n=ln a n(n∈N*).可得==-.即可证明是等比数列,利用通项公式、累加求和方法即可得出.(3)假设存在常数t,对任意自然数n∈N*均有b n+1≥tb n成立.由(2)可得:≥0.n=1时,1≥t•0,解得t∈R.n≥2时,t ≤,利用单调性即可得出.本题考查了数列递推关系、数列的单调性、等比数列的定义通项公式求和公式,考查了推理能力与计算能力,属于难题.第11页,共11页。
2016年上海市宝山区高考一模数学试卷【解析版】

第 2 页(共 18 页)
A.1
B.2
C.4
D.16
16.(5 分)P 是△ABC 所在平面内一点,若 =λ + ,其中 λ∈R,则 P 点一
定在( )
A.△Aቤተ መጻሕፍቲ ባይዱC 内部
B.AC 边所在直线上
C.AB 边所在直线上
D.BC 边所在直线上
17.(5 分)若 a,b 是异面直线,则下列命题中的假命题为( )
第 1 页(共 18 页)
>y2>0.过 A1,A2 分别作 y 轴的垂线,交抛物线于 B1,B2 两点,直线 B1B2 与 y 轴交于点 A3(0,y3),此时就称 A1,A2 确定了 A3.依此类推,可由 A2, A3 确定 A4,….记 An(0,yn),n=1,2,3,…. 给出下列三个结论:
2016 年上海市宝山区高考数学一模试卷
参考答案与试题解析
一.填空题(本大题满分 56 分)本大题共有 14 题,只要求直接填写结果,每
①数列{yn}是递减数列; ②对∀n∈N*,yn>0;
③若 y1=4,y2=3,则
.
其中,所有正确结论的序号是
.
二.选择题(本大题满分 20 分)本大题共有 4 题,每题都给出代号为 A、B、C、 D 的四个结论,其中有且只有一个结论是正确的.必须用 2B 铅笔将正确结论 的代号涂黑,选对得 5 分,不选、选错或者选出的代号超过一个,一律得零 分.
是首项为 4,公差为 2 的等差数列.
(1)求证:数列{an}是等比数列;
(2)若 bn=an+f(an),当
时,求数列{bn}的前 n 项和 Sn 的最小值;
(3)若 cn=anlgan,问是否存在实数 k,使得{cn}是递增数列?若存在,求出 k 的范围;若不存在,说明理由.
2016届上海市长宁、青浦、宝山、嘉定高三4月(四区)联考数学(理)试卷

2016届上海市长宁、青浦、宝山、嘉定高三4月(四区)联考数学(理)试卷一、填空题1.设集合{|||2,}A x x x R =<∈,2{|430,}B x x x x R =-+≥∈,则A B = .2.已知i 为虚数单位,复数z 满足11zi z-=+,则||z = . 3.设0a >且1a ≠,若函数1()2x f x a -=+的反函数的图象经过定点P ,则点P 的坐标是 .4.计算:222lim(1)n nn P C n →∞+=+ . 5.在平面直角坐标系内,直线:220l x y +-=,将l 与两条坐标轴围成的封闭图形绕y 轴旋转一周,所得几何体的体积为 . 6.已知sin 2sin 0θθ+=,(,)2πθπ∈,则tan 2θ= .7.设定点在R 上的偶函数()y f x =,当0x ≥时,()24xf x =-,则不等式()0f x ≤的解集是 . 8.在平面直角坐标系xOy 中,有一定点(1,1)A ,若OA 的垂直平分线过抛物线2:2C y px =(0)p >的焦点,则抛物线C 的方程为 .9.直线11x y ⎧=⎪⎪⎨⎪=-+⎪⎩(t 为参数)与曲线sin cos sin cos x y θθθθ=⎧⎨=+⎩(θ为参数)的公共点的坐标为 .10.记*1(2)()n x n N x+∈展开式中第m 项系数为m b ,若342b b =,则n = . 11.从所有棱长均为2的正四棱锥的5个顶点中任取3个点,设随机变量ξA .B .C .D .表示这三个点所构成的三角形的面积,则其数学期望E ξ= . 12.已知各项均为正数的数列{}n a2*3()n n n N +=+∈ ,则12231n a a a n +++=+ . 13.甲、乙两人同时参加一次数学测试,共有10道选择题,每题均有4个选项,答对得3分,答错或不答得0分,甲和乙都解答了所有的试题,经比较,他们只有2道题的选项不同,如果甲最终的得分为54分,那么乙的所有可能的得分值组成的集合为 . 14.已知0a >,函数()([1,2])af x x x x=-∈的图象的两个端点分别为,A B ,设M 是函数()f x 图象上任意一点,过M 作垂直于x 轴的直线l ,且l 与线段AB 交于点N ,若||1MN ≤恒成立,则a 的最大值是 .二、选择题15.“sin 0α=”是“cos 1α=”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要 16.下列命题正确的是( )A .若直线1//l 平面α,直线2//l 平面α,则12//l l ;B .若直线l 上有两个点到平面α的距离相等,则//l α;C .直线l 与平面α所成角的取值范围是(0,)2π;D .若直线1l ⊥平面α,直线2l ⊥平面α,则12//l l .17.已知,a b 是平面内两个互相垂直的单位向量,若向量c 满足()()0c a c b -∙-= ,则||c的最大值是( )A .1B .2 CD18.已知函数3|log |,03()sin(),3156x x f x x x π<<⎧⎪=⎨≤≤⎪⎩,若存在实数1234,,,x x x x 满足1234()()()()f x f x f x f x ===,其中1234x x x x <<<,则1234x x x x 取值范围是( ) A .(60,96) B .(45,72) C .(30,48) D .(15,24)三、解答题19. 如图,在直三棱柱111ABC A B C -中,ABC ∆是等腰直角三角形,12AC BC AA ===,D 为侧棱1AA 的中点.(1)求证:BC ⊥平面11ACC A ;(2)求二面角11B CD C --的大小.(结果用反三角函数值表示)20.已知函数()cos()cos()133f x x x x ππωωω=+++--,(0,)x R ω>∈,且函数()f x 的最小正周期为π.(1)求函数()f x 的解析式;(2)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若()0f B =,32BA BC ∙= ,且4a c +=,试求b的值.21.定义在D 上的函数()f x ,若满足:对任意x D ∈,存在常数0M >,都有|()|f x M ≤成立,则称()f x 是D 上的有界函数,其中M 称为函数()f x 的上界. (1)设()1x f x x =+,判断()f x 在11[,]22-上是否有界函数,若是,请说明理由,并写出()f x 的所有上界的值的集合,若不是,也请说明理由;(2)若函数()124xxg x a =++∙在[0,2]x ∈上是以3为上界的有界函数,求实数a 的取值范围.22. 如图,设F 是椭圆22134x y +=的下焦点,直线4(0)y kx k =->与椭圆相交于,A B 两点,与y 轴交于点P .(1)若PA AB =,求k 的值;(2)求证:AFP BFO ∠=∠; (3)求面积ABF ∆的最大值.23.已知正项数列{},{}n n a b 满足:对任意*n N ∈,都有1,,n n n a b a +成等差数列,11,,n n n b a b ++成等比数列,且1210,15a a ==.(1)求证:数列是等差数列; (2)求数列{},{}n n a b 的通项公式; (3)设12111n n S a a a =+++ ,如果对任意*n N ∈,不等式22n n nb aS a <-恒成立,求实数a 的取值范围.2016年青浦区高考数学(理科)二模卷一、填空题【知识内容】方程与代数/集合与命题/交集,补集,并集. 【参考答案】(2,1]-【试题分析】{}{}|||2,|22A x x x x x =∈=-R <<<,{}2|430,B x x x x =-+∈R ≥{}13x x =≤或≥,所以(2,1]A B =- .故答案为(2,1]-.2.【测量目标】数学基本知识和基本技能/理解或涨掌握初等数学中有关数与运算的基本知识. 【知识内容】数与运算/复数初步/复数的四则运算. 【参考答案】1【试题分析】因为1i 1zz-=+,所以21i (1i)1(1)i i 1i (1i)(1i)z z z ---=+⇒===-++-,则||1z ==.故答案为1.3.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关函数与分析的基本知识. 【知识内容】函数与分析/指数函数与对数函数/指数函数的性质与图像、反函数. 【参考答案】(3,1)【试题分析】因为函数1()2x f x a-=+经过定点(1,3),根据互为反函数的两个函数之间的关系知,函数()f x 的反函数经过定点(3,1),故答案为(3,1). 4.【测量目标】数学基本知识和基本技能/理解或掌握初数学中有关方程与代数的基本知识. 【知识内容】方程与代数/数列与数学归纳法/数列的极限. 【参考答案】32【试题分析】2222223(1)3(1)P C3(1)32lim42(1)(1)2(1)22nn n n n n n n n n n n n n n →++++++====+++++∞,故答案为32. 5.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关图形与几何的基本知识. 【知识内容】图形与几何/简单几何体的研究/锥体. 【参考答案】23π 【试题分析】设直线220x y +-=与条坐标轴的交点分别为A ,B ,则A (1,0),B (0,2), 于是AOB △绕y 轴旋转一周,该几何体为底面半径为1,高为2的圆锥, 所以2211212333V R h π=π=⨯π⨯⨯=,故答案为23π.【知识内容】函数与分析/三角比/二倍角及半角的正弦、余弦、正切.【试题分析】由sin 2sin 0θθ+=得,2sin cos sin θθθ=-,所以1cos 2θ=-,因为(,2θπ∈π),所以sin θ=tan θ=,又22tan tan 21tan θθθ==-. 7.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关函数与分析的基本知识. 【知识内容】函数与分析/函数及其基本性质/函数的基本性质. 【参考答案】(,2][0,2]-∞-【试题分析】当0x >时,因为()240xf x =-≤,所以02x <≤,又因为()y f x =是定义在R 上的奇函数,所以(0)0,f =()y f x =在(,0)-∞上单调递增,并且(2)(2)0f f -=-=,所以()02f x x ⇒≤≤-,综上,不等式()0f x ≤的解集为(,2][0,2]-∞- ,故答案为(,2][0,2]-∞- .8.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关图形与几何的基本知识. 【知识内容】图形与几何/曲线与方程/抛物线的标准方程和几何性质. 【参考答案】24y x =【试题分析】设抛物线的焦点坐标为(,0)2p ,线段OA 的中点坐标为11(,)22,因为1OA k =,所以经过抛物线焦点的线段OA 的垂直平分线的斜率0122112p k -==-,所以2p =,则抛物线的标准方程为24y x =,故答案为24y x =.9.【测量目标】数学基本知识和基本技能/能按照一定的规则和步骤进行计算、画图和推理. 【知识内容】图形与几何/参数方程和极坐标/参数方程. 【参考答案】(0,1)【试题分析】因为2(sin cos )2sin cos 1θθθθ+-=,所以将1,1x y ⎧=⎪⎪⎨⎪=-+⎪⎩①代入 sin cos ,sin cos x y θθθθ=⋅⎧⎨=+⎩代入得2(1)2(1)1-+-=,解得t =或,将t =、代入①求得0,1x y =⎧⎨=⎩或3,22x y ⎧=⎪⎨⎪=-⎩,因为πsin cos )4y θθθ=+=+≥,所以只有0,1x y =⎧⎨=⎩符合题意,故答案为(0,1).10.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关图形与几何的基本知识. 【知识内容】数据整理与概率统计/排列、组合、二项式定理/二项式定理. 【参考答案】5【试题分析】1(2)n x x+的展开式中第m 项为的系数11C 2m n mm n b -+-=,因为342b b =,所以2233C 22C 2n n n n --=,即23C C n n =,得5n =,故答案为5.11. 【测量目标】数学基本知识和基本技能/能按照一定的规则和步骤进行计算、画图和推理. 【知识内容】图形与几何/简单集合体的研究/椎体;数据整理与概率统计/概率与统计/随机变量的分布及数字特征.【试题分析】如图,在棱长均为2的正四棱锥P ABCD -中,因为2AD PD ==,所以BD =,DO =所以PO ==,22PAD S ==△, 122PDB S ==△,12222ABD S =⨯⨯=△,从正四棱锥的5个顶点中任取3个点,可以构成的三角形的个数为35C 10=,其中顶点在侧面的三角形的有4个,在对角面的有2个,在底面的有4个,故E ξ==12.【测量目标】运算能力/能通过运算,对问题进行推理和探求. 【知识内容】方程与代数/数列与数学归纳法/简单的递推数列. 【参考答案】226n n +的等差数列,所以12+231n a a a n ++=+ (844)2n n ++226n n =+,故答案为226n n +.13.【测量目标】逻辑思维能力/具有对数学问题或资料进行观察、分析、综合、比较、抽象、概括、判断和论证的能力.【知识内容】数据整理与概率统计/概率与统计初步/随机变量的分布及数字特征. 【参考答案】{48,51,54,57,60}【试题分析】因为20道选择题每题3分,甲最终的得分为54分,所以甲答错了2道题,又因为甲和乙有两道题的选项不同,则他们最少有16道题的答案相同,设剩下的4道题正确答案为AAAA,甲的答案为BBAA,因为甲和乙有两道题的选项不同,所以乙可能的答案为BBCC,BCBA,CCAA,CAAA,AAAA 等,所以乙的所有可能的得分值组成的集合为{48,51,54,57,60},故答案为{48,51,54,57,60}.14.【测量目标】数学基本知识和基本技能/能按照一定的规则和步骤进行计算、画图和推理. 【知识内容】图形与几何/平面直线的方程/直线的一般式方程; 方程与代数/不等式/基本不等式.【参考答案】6+【试题分析】如图,设000(,)aM x x x -0(12)x ≤≤由题意得(1,1)A a -,(22)2a B -,,(1,1)2a AB =+ ,所以直线AB 的方程为1(1)112x y a a ---=+,化为一般式方程为3(1)22a y x a =+-,所以003(,(1))22a N x x a +-, 所以003||||22a aMN a x x =--3|2a -≤3=(2a ,当且仅当002a ax x =,即0[1,2]x =时取等号,因为||1MN ≤恒成立,所以3(12a ≤,6a +≤所以a的最大值为6+6+二、选择题15.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关函数与分析的基本知识. 【知识内容】函数与分析/三角比/同角三角比. 【正确选项】B【试题分析】由于22sin cos 1αα+=,且sin 0α=,得到cos 1α=±,故充分性不成立;当cos 1α=时,sin 0α=,故必要性成立.故答案为B.16.【测量目标】空间想象能力/能正确地分析图形中的基本元素和相互关系.【知识内容】图形与几何/空间图形/空间直线与平面的位置关系. 【正确选项】D【试题分析】直线1l 与2l 可能是与平面α平行的平面中的相交直线,故A 选项不正确;直线l 上的点可能是位于平面α两侧的点,故B 选项不正确;直线l 与平面α所形成的角大小可以取到0和π2,故C 选项不正确;垂直同一平面的两直线平行,故D 选项正确.故答案为D.17.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关平面与几何的基本知识. 【知识内容】平面与几何/平面向量的坐标表示/向量的度量计算. 【正确选项】C【试题分析】由于a b ⊥ 且||||1a b == ,那么||a b +=2()()||||||cos 0c a c b c c a b a b α--=-++⋅= ,即||c α= ,由于1cos 1α-≤≤,所以||c的最大.故答案为C.18.【测量目标】分析问题与解决问题的能力/能综合运用基本知识、基本技能、数学基本思想方法和适当的解题策略,解决有关数学问题.【知识内容】函数与分析/指数函数与对数函数/对数函数的性质和图像; 函数与分析/三角函数/正弦函数与余弦函数的图像. 【正确选项】B【试题分析】因为存在实数1234,,,x x x x 满足1234()()()()f x f x f x f x a ====,所以函数()f x 与直线y a =的图像有4个交点,如图,因此123403315x x x x <<<<,≤≤,因为3()|log |,03f x x x =<<,所以3132313212|log ||log |,log log ,1x x x x x x =-==,又因为π()sin(),3156f x x x =≤≤的图像关于直线9x =对称,所以3418x x +=,所以1234331(18)x x x x x x =⋅⋅-,因为339x <<,所以12344581x x x x <<,故答案为B.三、解答题19.(本题满分12分)本题共有2个小题,第1小题5分,第2小题7分. 【测量目标】(1)空间想象能力/能正确地分析图形中的基本元素和相互关系. (2)空间想象能力/能正确地分析图形中的基本元素和相互关系. 【知识内容】(1)图形与几何/空间图形/空间直线与平面的位置关系. (2)图形与几何/空间向量及其应用/距离和角.【参考答案】(1)因为底面△ABC 是等腰直角三角形,且BC AC =, 所以,BC AC ⊥,………………………………………2分因为⊥1CC 平面111A B C ,所以BC CC ⊥1, ………………………………………4分 所以,⊥BC 平面11A ACC . ……………………………………………………5分(2)以C 为原点,直线CA ,CB ,1CC 为x ,y ,z 轴,建立空间直角坐标系, 则)0,0,0(C ,)0,0,2(A ,)0,2,0(B ,)2,0,0(1C ,)2,2,0(1B ,)1,0,2(D ,由(1),(0,2,0)CB = 是平面11A ACC 的一个法向量, ………………………7分 )2,2,0(1=CB ,)1,0,2(=CD ,设平面CD B 1的一个法向量为),,(z y x n =,则有10,0,n CB n CD ⎧⋅=⎪⎨⋅=⎪⎩ 即⎩⎨⎧=+=+,02,022z x z y 令1=x ,则2-=z ,2=y , 所以)2,2,1(-=n, …………………………………………10分设CB 与n 的夹角为θ,则42cos 233||||CB n CB n θ⋅===⨯⋅, …………………11分 由图形知二面角11C CD B --的大小是锐角, 所以,二面角11C CD B --的大小为32arccos. ……………………………12分 20.(本题满分14分)本题共有2个小题,第1小题6分,第2小题8分. 【测量目标】(1)运算能力/能根据法则准确地进行运算、变形. (2)运算能力/能通过运算,对问题进行推理和探求.【知识内容】(1)函数与分析/三角函数/函数sin()y A x ωϕ=+的图像与性质.(2)函数与分析/三角比/正弦定理和余弦定理;图形与几何/平面向量的坐标表示/平面向量的数量积. 【参考答案】(1)π()cos 12sin 16f x x x x ωωω⎛⎫=+-=+- ⎪⎝⎭, ……………3分 又πT =,所以,2=ω, ………………………………………………5分 所以,π()2sin 216f x x ⎛⎫=+- ⎪⎝⎭. …………………………………………………6分 (2)π()2sin 2106f B B ⎛⎫=+-= ⎪⎝⎭,故π1sin 262B ⎛⎫+= ⎪⎝⎭,所以,ππ22π66B k +=+或π5π22π66B k +=+(Z ∈k ), 因为B 是三角形内角,所以π3B =.……9分 而3cos 2BA BC ac B ⋅=⋅= ,所以,3=ac , …………………………11分 又4=+c a ,所以,1022=+c a ,所以,7cos 2222=-+=B ac c a b , 所以,7=a . …………………………………14分21.(本题满分14分)本题共有2个小题,第1小题6分,第2小题8分.【测量目标】(1)逻辑思维能力/会进行演绎、归纳和类比推理,能合乎逻辑地、准确地阐述自己的思想和观点.(2)分析问题与解决问题的能力/能自主地学习一些新的数学知识(概念、定理、性质和方法等),并能初步应用.【知识内容】(1)函数与分析/函数及其基本性质/函数的基本性质.(2)函数与分析/函数及其基本性质/函数的基本性质.【参考答案】(1)111)(+-=x x f ,则)(x f 在⎥⎦⎤⎢⎣⎡-21,21上是增函数,故 11()22f f x f ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭≤≤,即11()3f x -≤≤, ……………………………2分 故|()|1f x ≤,所以)(x f 是有界函数. ……………………………………………4分所以,上界M 满足1M ≥,所有上界M 的集合是),1[∞+. ……………………6分(2)因为函数)(x g 在]2,0[∈x 上是以3为上界的有界函数,故|()|3g x ≤在]2,0[∈x 上恒成立,即3()3g x -≤≤,所以,31243x x a -++⋅≤≤(]2,0[∈x ), …………8分 所以41214242x x x x a ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭≤≤(]2,0[∈x ), 令x t 21=,则⎥⎦⎤⎢⎣⎡∈1,41t ,故2242t t a t t ---≤≤在⎥⎦⎤⎢⎣⎡∈1,41t 上恒成立, 所以,22max min (4)(2)t t a t t ---≤≤(⎥⎦⎤⎢⎣⎡∈1,41t ), ………………………11分 令t t t h --=24)(,则)(t h 在⎥⎦⎤⎢⎣⎡∈1,41t 时是减函数,所以2141)(max -=⎪⎭⎫ ⎝⎛=g t h ;…12分令t t t p -=22)(,则)(t p 在⎥⎦⎤⎢⎣⎡∈1,41t 时是增函数,所以8141)(min -=⎪⎭⎫ ⎝⎛=h t p .…13分 所以,实数a 的取值范围是⎥⎦⎤⎢⎣⎡--81,21. ……………………………………14分 22.(本题满分16分)本题共有3个小题,第1小题4分,第2小题6分,第3小题6分.【测量目标】(1)运算能力/能通过运算,对问题进行推理和探求.(2)逻辑思维能力/会正确而简明地表述推理过程,能合理地、符合逻辑地解释演绎推理的正确性.(3)分析问题与解决问题的能力/能综合运用基本知识、基本技能、数学思想方法和适当的解题策略,解决有关数学问题.【知识内容】(1)图形与几何/曲线与方程/椭圆的标准方程和几何性质.(2)图形与几何/平面直线的方程/直线的斜率与倾斜角.(3)图形与几何/曲线与方程/椭圆的标准方程和几何性质;方程与代数/不等式/基本不等式.【参考答案】(1)由221344x y y kx ⎧+=⎪⎨⎪=-⎩,得03624)43(22=+-+kx x k , 所以2144(4)0k ∆=->,设),(11y x A ,),(22y x B ,则4324221+=+k k x x ,4336221+=k x x , ………………2分 因为PA AB = ,所以122x x =,代入上式求得556=k . ………………………4分 (2)由图形可知,要证明BFO AFP ∠=∠,等价于证明直线AF 与直线BF 的倾斜角互补,即等价于0=+BF AF k k . …………………………………………6分21212122112211)(3211323311x x x x k x x k x kx x kx x y x y k k BF AF +-=⎪⎪⎭⎫ ⎝⎛+-=-+-=+++=+ 022433643243222=-=++⋅-=k k k k kk . …………………………………………9分 所以,BFO AFP ∠=∠. …………………………………………………10分(3)由0∆>,得042>-k ,所以1211||||322ABF PBF PAF S S S PF x x ∆∆=-=⋅-=⋅△4341822+-=k k , ………………………………………………………………13分 令42-=k t ,则0>t ,1634322+=+t k故21818163163ABF t S t t t===++△=(当且仅当t t 163=,即3162=t ,3212=k 取等号). ……15分 所以,△ABF 面积的最大值是433. ……………………………………………16分 23.(本题满分18分)本题共有3个小题,第1小题4分,第2小题6分,第3小题8分.【测量目标】(1)逻辑思维能力/会正确而简明地表述推理过程,能合理地、符合逻辑地解释演绎推理的正确性.(2)分析问题与解决问题的能力/能综合运用基本知识、基本技能、数学思想方法和适当的解题策略,解决有关数学问题.(3)分析问题与解决问题的能力/能综合运用基本知识、基本技能、数学思想方法和适当的解题策略,解决有关数学问题.【知识内容】(1)方程与代数/数列与数学归纳法/等差数列.(2)方程与代数/数列与数学归纳法/等差数列、等比数列.(3)方程与代数/数列与数学归纳法/简单的递推数列.【参考答案】(1)由已知,12++=n n n a a b ①, 121++=n n n b b a ②, ………1分 由②可得,11++=n n n b b a ③, ……………………………2分将③代入①得,对任意*N ∈n ,2n ≥,有112+-+=n n n n n b b b b b , 即112+-+=n n n b b b ,所以{}n b 是等差数列. …………………………4分 (2)设数列{}n b 的公差为d ,由101=a ,152=a ,得2251=b ,182=b ,……6分 所以2251=b ,232=b ,所以2212=-=b b d , ……………………7分 所以,)4(2222)1(225)1(1+=⋅-+=-+=n n d n b b n , ………………8分所以,2)4(2+=n b n ,2)4(2)3(2212+⋅+==-n n b b a n n n , ……………………9分 2)4)(3(++=n n a n . …………………………………………………………10分 (3)解法一:由(2),⎪⎭⎫ ⎝⎛+-+=++=41312)4)(3(21n n n n a n , ……………11分 所以,111111112245563444n S n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+⋅⋅⋅+-=- ⎪ ⎪ ⎪ ⎪⎢⎥+++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,……13分 故不等式n n n a b aS -<22化为34241414++-<⎪⎭⎫ ⎝⎛+-n n n a , 即)3()4)(2(+++<n n n n a 当*N ∈n 时恒成立, …………………………………………14分 令)3(2312131121342)3()4)(2()(+++++=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=++⋅+=+++=n n n n n n n n n n n n n n n f , 则)(n f 随着n 的增大而减小,且1)(>n f 恒成立. ………………………………17分故1a ≤,所以,实数a 的取值范围是]1,(-∞. ………………………………18分解法二:由(2),⎪⎭⎫ ⎝⎛+-+=++=41312)4)(3(21n n n n a n , ……………………11分 所以,111111112245563444n S n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+⋅⋅⋅+-=- ⎪ ⎪ ⎪ ⎪⎢⎥+++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,……13分 故不等式n n n a b aS -<22化为34241414++-<⎪⎭⎫ ⎝⎛+-n n n a , 所以,原不等式对任意*N ∈n 恒成立等价于08)2(3)1(2<--+-n a n a 对任意*N ∈n 恒成立, ……………………………………14分设8)2(3)1()(2--+-=n a n a n f ,由题意,10a -≤,当1=a 时,083)(<--=n n f 恒成立; …………………………15分当1<a 时,函数8)2(3)1()(2--+-=x a x a x f 图像的对称轴为01223<--⋅-=a a x , )(x f 在),0(∞+上单调递减,即)(n f 在*N 上单调递减,故只需0)1(<f 即可,由0154)1(<-=a f ,得415<a ,所以当1a ≤时,n n b aS <4对*N ∈n 恒成立. 综上,实数a 的取值范围是]1,(-∞. …………………………18分。
2016一模难题汇编-圆锥曲线-学生版

一、填空题1.(2016宝山一模合卷13)已知直线0)1(4)1()1(=+-++-a y a x a (其中a 为实数)过定点P , 点Q 在函数xx y 1+=的图像上,则PQ 连线的斜率的取值范围是 . ),3[+∞- 2.(2016宝山一模合卷14)如图,已知抛物线2y x =及两点11(0,)A y 和22(0,)A y ,其中120y y >>.过1A ,2A 分别作y 轴的垂线,交抛物线于1B ,2B 两点,直线12B B 与y 轴交于点33(0,)A y ,此时就称1A ,2A 确定了3A .依此类推,可由2A ,3A 确定4A ,L .记(0,)n n A y ,1,2,3,n =L . 给出下列三个结论:① 数列{}n y 是递减数列;② 对任意*n ∈N ,0n y >; ③ 若14y =,23y =,则523y =.其中,所有正确结论的序号是_____. 【答案】① ② ③3.(2016虹口一模合卷7) 如图,已知双曲线C 的右焦点为F ,过它的右顶点A 作实轴的垂线,与其一条渐近线相交于点B ;若双曲线C 的焦距为4,OFB ∆为等边三角形(O 为坐标原 点,即双曲线C 的中心),则双曲线C 的方程为 ;【答案】2213y x -=4.(2016虹口一模合卷9)已知抛物线28x y =的弦AB 的中点的纵坐标为4,则||AB 的最大值为 85.(2016黄浦一模文理13)已知点(,0)M m (0m >)和抛物线C :24y x =,过C 的焦点F 的直线与C 交于A 、B 两点,若2AF FB =u u u r u u u r ,且||||MF MA =u u u u r u u u r ,则m = .1126. (2016闵行一模文理11)若点P 、Q 均在椭圆2222:11x y a a Γ+=-(1)a >上运动,12F F 、是椭圆Γ的左、右焦点,则122PF PF PQ +-u u u r u u u u r u u u r的最大值为 .2a7. (2016普陀一模文理7)设O 为坐标原点,若直线1:02l y -=与曲线2:10x y Γ--=相交于A 、B 点,则扇形AOB 的面积为 ;3π 8. (2016普陀一模文理13)若F 是抛物线24y x =的焦点,点i P (1,2,3,...,100)i =在抛物线上,且12...PF P F ++u u u r u u u u r 1000P F +=u u u u u r r ,则12100||||...||PF P F P F +++=u u u r u u u u r u u u u u r ;2009. (2016松江一模文理12)已知抛物线2:4C y x =的准线为l ,过(1,0)M 且斜率为k 的直线与l 相交于点A ,与抛物线C 的一个交点为B .若2AM MB =u u u u r u u u r,则 k = .22±10.(2016闸北一模理8)过点0)M y 作圆22:1O x y +=的切线,切点为N ,如果6OMN π∠≥,那么0y 的取值范围是 ;[1,1]-二、解答题1. (2016宝山一模合卷22)已知椭圆2212x y +=上两个不同的点A,B 关于直线1(0)2y mx m =+≠对称. (1)若已知)21,0(C ,M 为椭圆上动点,证明:(2)求实数m 的取值范围;(3)求AOB ∆面积的最大值(O 为坐标原点). 解:(1)设),,(y x M 则2212xy +=, 于是22)21(-+=y x MC =22)21(22-+-y y = 25)21(2++-=y因11≤≤-y , 所以,当21-=y 时,210max =MC .即210≤MC -------4分(2)由题意知0m ≠,可设直线AB 的方程为1y x b m=-+. 由221,21,x y y x b m ⎧+=⎪⎪⎨⎪=-+⎪⎩消去y ,得222222102m b x x b m m +-+-=. 因为直线1y x b m =-+与椭圆2212x y +=有两个不同的交点,所以,224220b m∆=-++>, 即2221b m<+①将AB 中点2222(,)22mb m b M m m ++ 代入直线方程12y mx =+解得2222m b m +=- ②由①②得3m <-或3m > (3)令1((0,22t m =∈-U ,即23(0,)2t =,则 21232212242+++-⋅+=t t t t AB -且O 到直线AB的距离为21t d +=-----------------------------------------------12分 设AOB ∆的面积为()S t ,所以222)21(22121)(22≤+--=⋅=t d AB t S -------------14分 当且仅当212t =时,等号成立.故AOB ∆面积的最大值为2. ----------------------16分2、(2016崇明一模合卷21)已知ABC △的顶点A B ,在椭圆2234x y +=上,C 在直线2l y x =+:上,且AB l ∥. (1)当AB 边通过坐标原点O 时,求AB 的长及ABC △的面积;(2)当90ABC ∠=o,且斜边AC 的长最大时,求AB 所在直线的方程. 解.(1)因为AB l ∥,且AB 边通过点(00),,所以AB 所在直线的方程为y x =.……1分 设A B ,两点坐标分别为1122()()x y x y ,,,由2234x y y x⎧+=⎨=⎩,得1x =±所以12AB x =-=.……………………………………………………3分原点到直线l的距离h =…………………………………………………………4分所以122ABC S AB h ==g △.………………………………………………………… 5分 (2)设AB 所在直线的方程为y x m =+,…………………………………………6分由2234x y y x m⎧+=⎨=+⎩,得2246340x mx m ++-=. 因为A B ,在椭圆上,所以212640m ∆=-+>.设A B ,两点坐标分别为1122()()x y x y ,,,,则1232mx x +=-,212344m x x -=,所以12AB x =-=.…………………………………………10分又因为BC 的长等于点(0)m ,到直线l的距离,即BC =分所以22222210(1)11ACAB BC m m m =+=--+=-++.所以当1m =-时,AC 边最长,(这时12640∆=-+>) 此时AB 所在直线的方程为1y x =-.………………………………………………14分3.(2016奉贤一模合卷21)2(),x y 对应点的曲线方程是C .(1)、求C 的标准方程;(2)、直线1:0l x y m -+=与曲线C 相交于不同两点,M N ,且满足MON ∠为钝角,其中O 为 直角坐标原点,求出m 的取值范围. 解、(14= 1分所以点(),P x y 对应的曲线方程C 是椭圆 2分24,2a a =∴= . 3分1c = 4分2,1,a c b ∴===5分22143x y += 6分 (2)、联立方程组220143x y m x y-+=⎧⎪⎨+=⎪⎩消去y ,得22784120x mx m ++-= 7分()2226428412336480m m m ∆=--=-> 8分27m ∴< 9分设1122(,),(,)M x y N x y得2124127m x x -= 10分方法一可计算2123127m y y -= 11分由MON ∠为钝角,则0OM ON ⋅<u u u u r u u u r,12120x x y y +<22412312077m m --+< 12分 所以2247m<13分m << 14分4.(2016虹口一模合卷23)已知椭圆2222:1x y C a b+=(0)a b >>的左焦点为F ,短轴的两个端点分别为A 、B ,且||2AB =,△ABF 为等边三角形;(1)求椭圆C 的方程;(2)如图,点M 在椭圆C 上且位于第一象限内,它关于坐标原点O 的对称点为N ;过点M 作x 轴的垂线,垂足为H ,直线NH 与椭圆C 交于另一点J ,若12HM HN ⋅=-u u u u r u u u r ,试求以线段NJ 为直径的圆的方程;(3)已知12,l l 是过点A 的两条互相垂直的直线,直线1l 与圆22:4O x y +=相交于,P Q 两点,直线2l 与椭圆C 交于另一点R ,求△PQR 面积取最大值时,直线1l 的方程;解:(1)由题意,得22222,,,b c b c a =⎧⎪=⎨⎪+=⎩ ……(2分)2,1,a b c ⎧=⎪=⎨⎪=⎩解得 故椭圆C 的方程为22 1.4x y += ……(4分) (2)设00(,),M x y 则由条件,知000000,0,(,),(,0).x y N x y H x >>--且 从而000(0,),(,).HM y HN x y ==--u u u u r u u u r于是由20000001(0,)(,),0,2HM HN y x y y y y ⋅=⋅--=-=->=u u u u r u u u r及得 再由点M 在椭圆C上,得220001,4x y x +==求得所以),(),0);M N H ……(6分) 进而求得直线NH 的方程:40.x y -=由2240,1,4x y x y ⎧--=⎪⎨+=⎪⎩J 求得 ……(8分)进而NJ NJ ==线段的中点坐标为 因此以线段NJ为直径的圆的方程为:22153((.50x y += ……(10分)(3)当直线1l的斜率不存在时,直线2l 与椭圆C 相切于点A ,不合题意;当直线1l 的斜率为0时,可以求得PQR S ∆= ……(12分)当直线1l 的斜率存在且不为0时,设其方程为1(0),y k x k =-≠则点O 到直线1l 的距离为d =从而由几何意义,得PQ == 由于21,l l ⊥故直线2l 的方程为11,y x k=--可求得它与椭圆C 的交点R 的坐标 为22284,;44k k k k ⎛⎫--- ⎪++⎝⎭于是AR ==12PQRS PQ AR ∆⋅==故 ……(15分)u =>令则232321313PQR u u u uS ∆=≤++=当且仅当u k =>=即时,上式取等号.>故当k =时,()max PQR S ∆=此时直线1l的方程为:1.2y x =±-(也可写成220.y ++=) ……(18分)5.(2016黄浦一模理22) 已知椭圆Γ:22221x y a b+=(0a b >>),过原点的两条直线1l 和2l 分别与Γ交于点A 、B 和C 、D ,得到平行四边形ACBD . (1)当ACBD 为正方形时,求该正方形的面积S .(2)若直线1l 和2l 关于y 轴对称,Γ上任意一点P 到1l 和2l 的距离分别为1d 和2d ,当2212d d +为定值时,求此时直线1l 和2l 的斜率及该定值.(3)当ACBD 为菱形,且圆221x y +=内切于菱形ACBD 时,求a ,b 满足的关系式. [解](1)因为ACBD 为正方形,所以直线1l 和2l 的方程为y x =和y x =-.(1分)点A 、B 的坐标11(,)x y 、22(,)x y 为方程组2222,1y x x y ab =⎧⎪⎨+=⎪⎩的实数解,将y x =代入椭圆方程,解得22221222a b x x a b ==+.根据对称性,可得正方形ACBD 的面积22212244a S b a b x =+=.(4分)(2)由题设,不妨设直线1l 的方程为y kx =(0k ≠),于是直线2l 的方程为y kx =-.设00(,)P x y ,于是有2200221x y a b +=,又1d =2d =,(6分)222222200000012222()()22111kx y kx y k x y d d k k k -+++=+=+++,将2220021x y b a ⎛⎫=- ⎪⎝⎭代入上式, 得22222222000222212222212211x b k x b k x b a a d d k k ⎛⎫⎛⎫+--+ ⎪ ⎪⎝⎭⎝⎭+==++,(8分)对于任意0[,]x a a ∈-,上式为定值,必有2220b k a -=,即bk a=±,(9分)因此,直线1l 和2l 的斜率分别为b a 和b a-,此时222212222a b d d a b +=+.(10分)(3)设AC 与圆221x y +=相切的切点坐标为00(,)x y ,于是切线AC 的方程为001x x y y +=.点A 、C 的坐标11(,)x y 、22(,)x y 为方程组22220011x y x x y y ab ⎧+=+=⎪⎨⎪⎩的实数解.① 当00x =或00y =时,ACBD 均为正方形,椭圆均过点(1,1),于是有22111a b +=.(11分) ② 当00x ≠且00y ≠时,将001(1)y x x y =-代入22221x y a b+=, 整理得222222222000()2(1)0b y a x x x a x a b y +-+-=,于是222012222200(1)a b y x x b y a x -=+,(13分) 同理可得222012222200(1)b a x y y b y a x -=+.(15分)因为ACBD 为菱形,所以AO CO ⊥,得0AO CO ⋅=u u u r u u u r,即12120x x y y +=,(16分)于是22222200222222220000(1)(1)0a b y b a x b y a x b y a x --+=++,整理得22222200()a b a b x y +=+,由22001x y +=, 得2222a b a b +=,即22111a b +=.(18分)综上,a ,b满足的关系式为22111a b +=. 7(2016嘉定一模文22) 已知抛物线py x 22=,准线方程为01=+y ,直线l 过定点),0(t T (0>t )且与抛物线交于A 、B 两点,O 为坐标原点.(1)求抛物线的方程;(2)OB OA ⋅是否为定值,若是,求出这个定值;若不是,请说明理由; (3)当1=t时,设⋅=λ,记)(||λf AB =,求)(λf 的解析式.解:(1)由题意,12-=-p,2=p , ………………………………………………(2分) 故抛物线方程为y x 42=. …………………………………………………………(4分) (2)设),(11y x A ,),(22y x B ,直线t kx y l +=:,则⎩⎨⎧-==+⇒=--⇒⎩⎨⎧=+=.4,40444,212122t x x k x x t kx x yx t kx y …………………………(2分) 于是,2212122121)()1(tx x kt x x k y y x x OB OA ++++=+=⋅t t 42-=, ……(4分)因为点),0(t T 是定点,所以t 是定值,所以OB OA ⋅是定值,此定值为t t 42-.…(6分)(3))1,0(T ,设⎪⎪⎭⎫ ⎝⎛4,200x x B ,则⎪⎪⎭⎫ ⎝⎛-=14,20x x TB ,⎪⎪⎭⎫ ⎝⎛-⋅==λλλλ4,20x x TB AT ,故)41,(200x x A ⋅-+-λλλ, ………………(2分)因为点A 在抛物线y x 42=上,所以⎪⎪⎭⎫ ⎝⎛⋅-+=4142022x x λλλ,得λ420=x .……(4分) 又T 为抛物线的焦点,故24412||)(2020++⎪⎪⎭⎫ ⎝⎛⋅-+=++==x x y y AB f B A λλλ21++=λλ,即21)(++=λλλf (0>λ). ………………………………(6分)8.(2016嘉定一模理22) 在平面直角坐标系xOy 内,动点P 到定点)0,1(-F 的距离与P 到定直线4-=x 的距离之比为21. (1)求动点P 的轨迹C 的方程;(2)若轨迹C 上的动点N 到定点)0,(m M (20<<m )的距离的最小值为1,求m 的值. (3)设点A 、B 是轨迹C 上两个动点,直线OA 、OB 与轨迹C 的另一交点分别为1A 、1B ,且直线OA 、OB 的斜率之积等于43-,问四边形11B ABA 的面积S 是否为定值?请说明理由. 解(1)设),(y x P ,由题意,21|4|)1(22=+++x y x , ……………………………(2分)化简得124322=+y x , ………………(3分)所以,动点P 的轨迹C 的方程为13422=+y x . ………………………………(4分) (2)设),(y x N ,则3241413)()(||2222222++-=⎪⎪⎭⎫ ⎝⎛-+-=+-=m mx x x m x y m x MN )1(3)4(4122m m x -+-=,22≤≤-x . ………………………………(2分) ①当240≤<m ,即210≤<m 时,当m x 4=时,2||MN 取最小值1)1(32=-m , 解得322=m ,36=m ,此时2364>=x ,故舍去. …………………(4分) ②当24>m ,即221<<m 时,当2=x 时,2||MN 取最小值1442=+-m m , 解得1=m ,或3=m (舍). …………………………………………………(6分) 综上,1=m .(3)解法一:设),(11y x A ,),(22y x B ,则由43-=⋅OBOA k k ,得432121-=x x y y ,(1分)221221)()(||y y x x AB -+-=,因为点A 、B 在椭圆C 上,所以⎪⎪⎭⎫ ⎝⎛-=4132121x y ,⎪⎪⎭⎫ ⎝⎛-=4132222x y , 所以,22212221169y y x x =)4)(4(92221x x --=,化简得42221=+x x . …………(2分)①当21x x =时,则四边形11B ABA 为矩形,12y y -=,则432121=x y ,由⎪⎪⎭⎫ ⎝⎛-=4132121x y ,得⎪⎪⎭⎫ ⎝⎛-=413432121x x ,解得221=x ,2321=y , ||||4||||111y x B A AB S =⋅=34=. ……………………………………(3分)②当21x x ≠时,直线AB 的方向向量为),(1212y y x x d --=ρ,直线AB 的方程为0)()(21121212=-+---y x y x y x x x y y ,原点O 到直线AB 的距离为2122121221)()(||y y x x y x y x d -+--=所以,△AOB 的面积||21||211221y x y x d AB S AOB-=⋅⋅=∆, 根据椭圆的对称性,四边形11B ABA 的面积AOB S S ∆=4||21221y x y x -=,……(4分) 所以,)2(4)(4212221212221212212y x y y x x y x y x y x S +-=-=48)(124132341342221212222212221=+=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-++⎪⎪⎭⎫ ⎝⎛-=x x x x x x x x ,所以34=S .所以,四边形11B ABA 的面积为定值34. ……………………………………(6分) 解法二:设),(11y x A ,),(22y x B ,则),(111y x A --,),(221y x B --, 由43-=⋅OBOA k k ,得432121-=x x y y , …………………………………………(1分)因为点A 、B 在椭圆C 上,所以⎪⎪⎭⎫ ⎝⎛-=4132121x y ,⎪⎪⎭⎫ ⎝⎛-=4132222x y , 所以,22212221169y y x x =)4)(4(92221x x --=,化简得42221=+x x . …………(2分) 直线OA 的方程为011=-y x x y ,点B 到直线OA 的距离21211221||yx y x y x d+-=,△1ABA 的面积||||21122111y x y x d AA S ABA -=⋅⋅=∆, ……………………(3分) 根据椭圆的对称性,四边形11B ABA 的面积12ABA S S ∆=||21221y x y x -=,……(4分) 所以, )2(4)(4212221212221212212y x y y x x y x y x y x S +-=-=48)(124132341342221212222212221=+=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-++⎪⎪⎭⎫ ⎝⎛-=x x x x x x x x ,所以34=S .所以,四边形11B ABA 的面积为定值34. ………………………………(6分)9.(2016金山一模合卷21)在平面直角坐标系中,已知椭圆22:12412x y C +=,设点00(,)R x y 是椭圆C 上一点,从原点O 向圆2200:()()8R x x y y -+-=作两条切线,切点分别为P 、Q ; (1)若直线OP 、OQ 互相垂直,且点R 在第一象限内,求点R 的坐标; (2)若直线OP 、OQ 的斜率都存在,并记为1k 、2k ,求证:12210k k +=;解:(1)由题意得:圆R 的半径为22,因为直线OQ OP ,互相垂直,且与圆R 相切,所以四边形OPRQ 为正方形,故42==r OR ,即162020=+y x ① ………………3分10(2016静安一模理21)设P 1和P 2是双曲线22221x y a b-=上的两点,线段P 1P 2的中点为M ,直线P 1P 2不经过坐标原点O .(1)若直线P 1P 2和直线OM 的斜率都存在且分别为k 1和k 2,求证:k 1k 2=22ab ;(2)若双曲线的焦点分别为1(F、2F ,点P 1的坐标为(2,1) ,直线OM 的斜率为32,求由四点P 1、 F 1、P 2、F 2所围成四边形P 1 F 1P 2F 2的面积.(1)解法1:设不经过点O 的直线P 1P 2方程为1y k x l =+,代入双曲线22221x y a b -=方程得:22222222211()20b a k x a k lx a b a l ----=.设 P 1坐标为11(,)x y ,P 2坐标为22(,)x y ,中点坐标为M (x,y),则1212,22x x y y x y ++==,211222212a k l x x b a k +=-, 222121212121y y b a k k k x x a k +-==++,所以,2222221211a k k a k b a k =+-,k 1k 2=22b a 。
宝山区2016学年度第一学期高三数学学科教学质量监测试卷

宝山区2016学年度第一学期高三数学学科教学质量监测试卷(2016年12月)一、填空题(本大题共12题,满分54分,其中低1至第6题填对得4分,第7题至第12题填对得5分)1、23lim 1n n n →∞+=+ 。
2、设全集U R =,集合{}{}1,01,2,3,2A B x x =-=≥,则U A C B = 。
3、不等式102x x +<+ 的解集为 。
4、椭圆5cos 4sin x y θθ=⎧⎨=⎩(θ为参数)的焦距为 。
5、设复数z 满足23z z i +=-,(i 为虚数单位),则z = 。
6、若函数cos sin sin cos x x y x x=的最小正周期为a π,则实数a 的值为 。
7、若点()8,4在函数()1log a f x x =+图象上,则()f x 的反函数为 。
8、已知向量()()1,2,0,3a b == ,则b 在a 方向上的投影为 。
9、已知一个地面置于水平面上的圆锥,其左视图是边长为6的正三角形,则该圆锥的侧面积为 。
10、某班级要从5名男生和2名女生中选出3人参加公益活动,则在选出的3人中,男、女生均有的概率为 。
11、设常数0a >,若9a x x ⎛⎫+ ⎪⎝⎭的二项展开式中5x 的系数为144,则a = 。
12、如果一个数列由有限个连续的正整数组成(数列的项数大于2),且所有项之和为N ,那么称该数列为N 型标准数列,例如:2,3,4,5,6为20型标准数列。
则2668型标准数列的个数为 。
二、选择题(共4题,满分20分)13、设a R ∈,则“1a =”是“()()()123a a a i -+++为纯虚数”的( )A 、充分非必要条件B 、必要非充分条件C 、 充要条件D 、 既非充分也非必要条件14、某中学的高一、高二、高三共有学生1350人,其中高一500人,高三比高二少50人。
为了了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生120人,则该样本中高二学生人数为( )A 、80B 、96C 、 108D 、 11015、设M 、N 为两个随机事件,给出以下命题: (1)若M 、N 为互斥事件,且()()11,54P M P N ==,则()920P M N = ; (2)若()()11,23P M P N ==,()16P MN =,则M 、N 为相互独立事件;(3)若()()11,23P M P N ==, ()16P MN =,则M 、N 为相互独立事件; (4)若()()11,23P M P N ==, ()16P MN =,则M 、N 为相互独立事件; (5)若()()11,23P M P N ==, ()56P MN =,则M 、N 为相互独立事件。
上海市宝山区学年第二次高考模拟高三数学试卷含答案
宝山区2016-2017学年第二学期期中高三年级数学学科教学质量监测试卷(满分150分,时间120分钟)一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果. 1. 若集合{}0A x x =>,{}1B x x =<,则AB = .2. 已知复数z1z i ⋅=+(i 为虚数单位),则z = .3. 函数()sinx cosx f x cosxsinx=的最小正周期是 .4. 已知双曲线222181x y a -=(0a >)的一条渐近线方程为3y x =,则a = . 5. 若圆柱的侧面展开图是边长为4的正方形,则圆柱的体积为 .6. 已知x y ,满足0220x y x y x -≤⎧⎪+≤⎨⎪+≥⎩,则2z x y =+的最大值是 .7. 直线12x t y t =-⎧⎨=-⎩(t 为参数)与曲线32x cos y sin θθ=⎧⎨=⎩(θ为参数)的交点个数是 .8. 已知函数()()220()01xx f x log x x ⎧≤⎪=⎨<≤⎪⎩ 的反函数是1()f x -,则11()2f -= .9. 设多项式231(1)(1)(1)nx x x x ++++++++(*0x n N ≠∈,)的展开式中x 项的系数为n T ,则2nn T limn →∞= .10. 生产零件需要经过两道工序,在第一、第二道工序中产生废品的概率分别为0.01和p ,每道工序产生废品相互独立.若经过两道工序后得到的零件不是废品的概率是0.9603,则p = .11. 设向量m ()x y =,,n ()x y =-,,P 为曲线1m n ⋅=(0x >)上的一个动点,若点P 到直线10x y -+=的距离大于λ恒成立,则实数λ的最大值为 .12. 设1210x x x ,,,为1210,,,的一个排列,则满足对任意正整数m n ,,且110m n ≤<≤,都有m n x m x n +≤+成立的不同排列的个数为 .二、选择题(本大题共有4题,满分20分,每题5分) 每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13. 设a b R ∈,,则“4a b +>”是“1a >且3b >”的………………………( ) (A )充分而不必要条件 (B )必要而不充分条件(C )充要条件(D )既不充分又不必要条件14. 如图,P 为正方体1111ABCD A B C D -中1AC 与1BD 的交点,则PAC ∆在该正方体各 个面上的射影可能是 …………………………………………………………………( )(A )①②③④ (B )①③ (C )①④ (D )②④15. 如图,在同一平面内,点P 位于两平行直线12l l ,同侧,且P 到12l l ,的距离分别为13,.点M N ,分别在12l l ,上,8PM PN +=,则PM PN ⋅的最大值为…………………( )(A )15 (B )12 (C )10 (D )916. 若存在t R ∈与正数m ,使()()F t m F t m -=+成立,则称“函数()F x 在x t =处存在距离为2m 的对称点”.设2()x f x xλ+=(0x >),若对于任意26)t ∈,,总存在正数m ,使得“函数()f x 在x t =处存在距离为2m 的对称点”,则实数λ的取值范围是…………………………………………………………………………………………( ) (A )(]02, (B )(]12, (C )[]12, (D )[]14,三、解答题(本大题共有5题,满分76分) 解答下列各题必须在答题纸的相应位置写出 必要的步骤.17. (本题满分14分,第1小题满分8分,第2小题满分6分)如图,在正方体1111ABCD A B C D -中,E F 、分别是线段1BC CD 、的中点.(1)求异面直线EF 与1AA 所成角的大小; (2)求直线EF 与平面11AA B B 所成角的大小.18. (本题满分14分,第1小题6分,第2小题8分)已知抛物线22y px =(0p >),其准线方程为10x +=,直线l 过点(0)T t ,(0t >)且与抛物线交于A B 、两点,O 为坐标原点.(1)求抛物线方程,并证明:OB OA ⋅的值与直线l 倾斜角的大小无关; (2)若P 为抛物线上的动点,记||PT 的最小值为函数()d t ,求()d t 的解析式.19. (本题满分14分,第1小题6分,第2小题8分)对于定义域为D 的函数()y f x =,如果存在区间[]m n D ⊆,(m n <),同时满足: ①()f x 在[]m n ,内是单调函数;②当定义域是[]m n ,时,()f x 的值域也是[]m n ,.则称函数()f x 是区间[]m n ,上的“保值函数”.(1)求证:函数2()2g x x x =-不是定义域[01],上的“保值函数”; (2)已知211()2f x a a x=+-(0a R a ∈≠,)是区间[]m n ,上的“保值函数”,求a 的取值范围.20. (本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)数列{}n a 中,已知12121()n n n a a a a k a a ++===+,,对任意*n N ∈都成立,数列{}n a 的前n 项和为n S .(这里a k ,均为实数) (1)若{}n a 是等差数列,求k 的值;(2)若112a k ==-,,求n S ; (3)是否存在实数k ,使数列{}n a 是公比不为1的等比数列,且任意相邻三项12m m m a a a ++,,按某顺序排列后成等差数列?若存在,求出所有k 的值;若不存在,请说明理由.21. (本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)设T R ⊂≠,若存在常数0M >,使得对任意t T ∈,均有t M ≤,则称T 为有界集合,同时称M 为集合T 的上界.(1)设12121x x A y y x R ⎧⎫-⎪⎪==∈⎨⎬+⎪⎪⎩⎭,、212A x sinx ⎧⎫=>⎨⎬⎩⎭,试判断1A 、2A 是否为有界集合,并说明理由;(2)已知2()f x x u =+,记11()()()(())n n f x f x f x f f x -==,(23n =,,).若m R ∈,1[)4u ∈+∞,,且{}()n B f m n N *=∈为有界集合,求u 的值及m 的取值范围;(3)设a b c 、、均为正数,将222()()()a b b c c a ---、、中的最小数记为d .是否存在正数(01)λ∈,,使得λ为有界集合222{|dC y y a b c==++,a b c 、、均为正数}的上界,若存在,试求λ的最小值;若不存在,请说明理由.1宝山区2016-2017学年第二学期期中高三数学教学质量监测试参考答案及评分标准一、填空题(本大题共有12题,满分54分) 1、()0,1 2、1 3、π 4、3 5、16π6、37、28、1-9、1210、0.03 11 12、512 二、选择题(本大题共有4题,满分20分) 13、B 14、C 15、A 16、A三、解答题(本大题共有5题,满分76分)17. 解:(1)方法一:设正方体棱长为2,以D 为原点,直线DA ,DC ,1DD 为x ,y ,z 轴,建立空间直角坐标系,则(000)D ,,,(220)B ,,,(020)C ,,,1(002)D ,,,故(120)E ,,,(011)F ,,,()111EF =--,,,()1002AA =,,, …………………4/设异面直线EF 与1AA 所成角的大小为α,向量EF 与1AA所成角为β,则11EF AA cos cos EF AA αβ⋅==⋅…… 6/3==,……7/注意到02πα⎛⎤∈ ⎥⎝⎦,,故α=,即异面直线EF 与1AA 所成角的大小为3arccos.…………………8/ (2)由(1)可知,平面11AA B B 的一个法向量是(100)n =,,,…………………10/ 设直线EF 与平面11AA B B 所成角的大小是θ,向量EF 与n所成角为γ,则EF n sin cos EF nθγ⋅==⋅………12/ =13/ 又02πθ⎡⎤∈⎢⎥⎣⎦,,3arcsin θ∴=,即直线EF 与平面11AA B B 所成角的大小为3.………………14/方法二:设正方体棱长为2.(1)在面11CC D D 内,作FHCD ⊥于H ,联结HE .因为正方体1111ABCD A B C D -,所以1AA ∥1DD ;在面11CC D D 内,有FH ∥1DD ,故异面直线EF 与1AA 所成的角就是EFH ∠(或其补角).………………………4/由已知及作图可知,H 为CD 的中点,于是,在Rt EFH ∆中,易得1FH =,HE =HE tan EFH FH∠=, ………………………………………… 6/1== 7/ 又(0)2EFH π∠∈,,所以EFH∠=EF 与1AA所成角的大小为8/(2)因为正方体1111ABCD A B C D -,所以平面11AA B B ∥平面11CC D D ,故直线EF 与平面11AA B B 所成角的大小就是直线EF 与平面11CC D D 所成角.注意到BC ⊥平面11CC D D ,即EC ⊥平面11CC D D ,所以直线EF 与平面11AA B B 所成角的大小即为EFC ∠. ………………………………10/在Rt EFC ∆中,易得1EC FC ==,ECtan EFC FC ∠=……………………12/2==,………………13/ 又(0)2EFC π∠∈,,故EFC ∠=EF 与平面11AA B B所成角的大小为2arctan. ……14/18.解:(1)方法一:由题意,2=p ,所以抛物线的方程为x y 42=. ……………2/当直线l 的斜率不存在时,直线l 的方程为t x =,则(A t,(B t -,,t t 42-=⋅.…………3/当直线l 的斜率k 存在时,则0≠k ,设l 的方程为)(t x k y -=,11()A x y ,,22()B x y ,,由24()y x y k x t ⎧=⎨=-⎩消去x ,得0442=--kt y ky ,故121244y y k y y t⎧+=⎪⎨⎪=-⎩,所以,t t y y y y y y x x OB OA 41622122212121-=+=+=⋅.…………………………………………5/综上,OB OA ⋅的值与直线l 倾斜角的大小无关. …………………………………………6/方法二:由题意,2=p ,所以抛物线的方程为x y 42=. ………………………………2/依题意,可设直线l 的方程为x my t =+(m R ∈),11()A x y ,,22()B x y ,,由24y xx my t⎧=⎨=+⎩得2440y my t --=, 故121244y y m y y t+=⎧⎨=-⎩,所以,12121212()()OA OB x x y y my t my t y y ⋅=+=+++221212(1)()m y y mt y y t =++++ …………………………5/22(1)(4)4m t mt m t =+-+⋅+ 24t t =-综上,OB OA ⋅的值与直线l 倾斜角的大小无关. …………………………6/(2)设00()P x y ,,则0204x y =,||PT ==, ……………………………8/注意到00≥x ,所以,若20t -≥,即2t ≥,则当02x t =-时,||PT 取得最小值,即()2)d t t =≥;………10/若20t -<,即有02t <<,则当00x =时,||PT 取得最小值,即()(02)d t t t =<<;………12/综上所述,()()2()02t d t tt ⎧≥⎪=⎨<<⎪⎩…………………………………………………14/19.解:(1)函数2()2g x x x =-在[01]x ∈,时的值域为[10]-,,…………………………4/不满足“保值函数”的定义,因此函数2()2g x x x =-不是定义域[01],上的“保值函数”.………………………6/(2)因x a a x f 2112)(-+=在[]m n ,内是单调增函数,故()()f m m f n n ==,,……8/ 这说明m n ,是方程x xa a =-+2112的两个不相等的实根, ………………………………10/其等价于方程01)2(222=++-x a a x a 有两个不相等的实根,……………………………11/由222(2)40a a a ∆=+->解得23-<a 或21>a . ………………………………………13/故a 的取值范围为3122⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭,,. ………………………………………………14/20.解:(1)若{}n a 是等差数列,则对任意*n N ∈,有122n n n a a a ++=+,………………2/即121()2n n n a a a ++=+,………………………………………………………………………3/ 故12k =.………………………………………………………………………………………4/ (2)当12k =-时,121()2n n n a a a ++=-+,即122n n n a a a ++=--,211()n n n n a a a a ++++=-+,故32211()n n n n n n a a a a a a ++++++=-+=+. …………………………………………5/ 所以,当n 是偶数时,1234112()(11)22n n n n nS a a a a a a a a n -=++++++=+=+=;……………………7/ 当n 是奇数时,2312()2a a a a +=-+=-,12341n n n S a a a a a a -=++++++ 123451()()()n n a a a a a a a -=+++++++11(2)22n n -=+⨯-=-. ……………9/ 综上,()()2212n nn k S nn k -=-⎧⎪=⎨=⎪⎩(*k N ∈).…………………………………………10/(3)若}{n a 是等比数列 ,则公比a a a q ==12,由题意1≠a ,故1-=m m a a ,m m a a =+1,12++=m m a a .……11/① 若1m a +为等差中项,则122m m m a a a ++=+,即112m m m a a a -+=+ ⇔221a a =+,解得1=a (舍去);……12/② 若m a 为等差中项,则122m m m a a a ++=+,即112m m m a a a -+=+⇔22a a =+,因1≠a ,故解得,2a =-,11122215m m m m m m a a a k a a a a a +-++====-+++; ……………………………14/ ③ 若2m a +为等差中项,则212m m m a a a ++=+,即112221m m m aa a a a +-=+⇔=+, 因为1≠a ,解得212215a a k a =-==-+,. …………………………………………15/ 综上,存在实数k 满足题意,25k =-.…………………………………………………16/21.解:(1)对于1A ,由2121x x y -=+得1201x y y+=>-,解得11y -<<,………………2/ 1A ∴为有界集合; …………………………………………3/显然252266A x k x k k Z ππππ⎧⎫=+<<+∈⎨⎬⎭⎩,不是有界集合. ………………………4/(2)记()n n a f m =,则21n n a a u +=+.若14u =,则21()4f m m =+,22111()42n n n n n a a a a a +=+=-+≥,即1n n a a +≥,且211111()()2422n n n n a a a a +-=-=-+,从而1111222n n n a a a +-=-⋅+.(ⅰ)当12m =时,1()2n n f m a ==,所以1{}2B =,从而B 为有界集合.…………5/ (ⅱ)当12m <时,由2114n n a a +=+,2111()()4a f m f m m ===+,显然,此时0n a >,利用数学归纳法可得12n a <,故B 为有界集合.…………………………………………6/(ⅲ)当12m >时,211111()()42n n a a a f m f m m m +≥≥≥===+≥>,2114n n n n a a a a +-=-+21()2n a =-211()2a ≥-,即2111()2n n a a a +-≥-,由累加法得2111(1)()2n a a n a ≥+--→+∞,故B不是有界集合.因此,当14u =,且12m ≤时,B 为有界集合;当14u =,且12m >时,B 不是有界集合;若14u >,则211()()a f m f m m u u ===+≥,即114a u ≥>,又2114n n a a u u +=+>>(n N *∈), 即14n a >(n N *∈). 于是,对任意n N *∈,均有221111()244n n n n n a a a a u a u u +-=-+=-+-≥-,即114n n a a u +-≥-(n N *∈),再由累加法得11(1)()4n a a n u ≥+--→+∞,故B 不是有界集合.………8/综上,当14u =,且12m ≤时,B 为有界集合;当14u =,且12m >时,B 不是有界集合;当14u >(m R ∈)时,B 不是有界集合. 故,满足题设的实数u 的值为14,且实数m 的取值范围是11[]22-,.………………10/(3)存在.………………………………………………………………………11/ 不妨设a b c ≥≥.若2a c b +≤,则2a b c ≥-,且2()d b c =-.故22222225()5()()d a b c b c a b c -++=--++22225()[(2)]b c b c b c ≤---++3(2)0c c b =-<,即22222215()05d d a b c a b c -++<⇔<++;…………13/若2a cb +>,则2a a c b <+<,即220a b a b <⇔-<, 又2a cb bc a b +>⇔->-,故2()d a b =-,又22222225()5()()d a b c a b a b c -++=--++22(2)(2)0a b a b c =---<,即 2225()0d a b c -++<22215d a b c ⇔<++,因此,15是有界集合C 的一个上界.…………………………15/ 下证:上界15λ<不可能出现.假设正数15λ<出现,取2a c b +=,1()05c a λ=->,则22a c d -⎛⎫= ⎪⎝⎭,此时, d 22222213()()()55a b c a b c ac λλ=+++-++-22221()()5a b c a acλλ>+++--222()a b c λ=++(*)…17/ 由式(*)可得222222()dd a b c a b c λλ>++⇔>++,与λ是C 的一个上界矛盾!. 综上所述,满足题设的最小正数λ的值为15. …………………………………………18/。
上海市宝山区行知中学2016届高三上学期第一次月考数学试卷Word版含解析
2015-2016学年上海市宝山区行知中学高三(上)第一次月考数学试卷一、填空题(每小题4分)1.已知集合A={x||x﹣1|<2},B={x|x2<4},则A∩B=.2.函数f(x)=﹣x2+4x+1(x∈[﹣1,1])的最大值等于.3.复数z满足=1+i,则复数z的模等于.4.函数y=sin2x+cos2x的最小正周期为.5.一组数据8,9,x,11,12的平均数是10,则这组数据的方差是.6.已知函数y=f(x)是函数y=a x(a>0且a≠1)的反函数,其图象过点(a2,a),则f(x)=.7.方程(θ为参数)所表示曲线的准线方程是.8.已知(1﹣2x)n关于x的展开式中,只有第4项的二项式系数最大,则展开式的系数之和为.9.若变量x,y满足约束条件,且z=2x+y的最小值为﹣6,则k=.10.若正三棱锥的正视图与俯视图如图所示(单位:cm),则它的侧视图的面积为cm2.11.已知a、b、c为集合A={1,2,3,4,5}中三个不同的数,通过如图所示算法框图给出的一个算法输出一个整数a,则输出的数a=5的概率是.12.在△ABC中,=+m•,向量的终点M在△ABC的内部(不含边界),则实数m的取值范围是.13.已知数列{a n}的前n项和S n,对任意n∈N*,S n=(﹣1)n a n++n﹣3且(a n﹣p)(a n+1﹣p)<0恒成立,则实数p的取值范围是.14.设函数y=f (x)的定义域为D,如果存在非零常数T,对于任意x∈D,都有f(x+T)=T•f (x),则称函数y=f(x)是“似周期函数”,非零常数T为函数y=f(x)的“似周期”.现有下面四个关于“似周期函数”的命题:①如果“似周期函数”y=f(x)的“似周期”为﹣1,那么它是周期为2的周期函数;②函数f(x)=x是“似周期函数”;③函数f(x)=2x是“似周期函数”;④如果函数f(x)=cosωx是“似周期函数”,那么“ω=kπ,k∈Z”.其中是真命题的序号是.(写出所有满足条件的命题序号)二、选择题(每小题5分)15.若函数f(x)=ax+1在区间(﹣1,1)上存在一个零点,则实数a的取值范围是()A.a>1 B.a<1 C.a<﹣1或a>1 D.﹣1<a<116.已知空间直线l不在平面α内,则“直线l上有两个点到平面α的距离相等”是“l∥α”的()A.充分非必要条件B.必要非充分条件C.充要条件 D.非充分非必要条件17.双曲线(a2>λ>b2)的焦点坐标为()A.B.C.D.18.函数f(x)=sinx在区间(0,10π)上可找到n个不同数x1,x2,…,x n,使得==…=,则n的最大值等于()A.8 B.9 C.10 D.11三、解答题19.(理)已知直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AC=BC=2,AA1=4,D是棱AA1的中点.如图所示.(1)求证:DC1⊥平面BCD;(2)求二面角A﹣BD﹣C的大小.20.如图,2012年春节,摄影爱好者S在某公园A处,发现正前方B处有一立柱,测得立柱顶端O的仰角和立柱底部B的俯角均为30°,已知S的身高约为米(将眼睛距地面的距离按米处理)(1)求摄影者到立柱的水平距离和立柱的高度;(2)立柱的顶端有一长2米的彩杆MN绕中点O在S与立柱所在的平面内旋转.摄影者有一视角范围为60°的镜头,在彩杆转动的任意时刻,摄影者是否都可以将彩杆全部摄入画面?说明理由.21.在平面直角坐标系中,已知椭圆C:=1,设R(x0,y0)是椭圆C上任一点,从原点O向圆R:(x﹣x0)2+(y﹣y0)2=8作两条切线,切点分别为P,Q.(1)若直线OP,OQ互相垂直,且R在第一象限,求圆R的方程;(2)若直线OP,OQ的斜率都存在,并记为k1,k2,求证:2k1k2+1=0.22.已知函数y=f(x)是单调递增函数,其反函数是y=f﹣1(x).(1)若y=x2﹣1(x>),求y=f﹣1(x)并写出定义域M;(2)对于(1)的y=f﹣1(x)和M,设任意x1∈M,x2∈M,x1≠x2,求证:|f﹣1(x1)﹣f ﹣1(x2)|<|x1﹣x2|;(3)求证:若y=f(x)和y=f﹣1(x)有交点,那么交点一定在y=x上.23.对于实数a,将满足“0≤y<1且x﹣y为整数”的实数y称为实数x的小数部分,用记号=其||x||表示,对于实数a,无穷数列{a n}满足如下条件:a1=|a,a n+1中n=1,2,3,…(1)若a=,求数列{a n};(2)当a时,对任意的n∈N*,都有a n=a,求符合要求的实数a构成的集合A.(3)若a是有理数,设a=(p 是整数,q是正整数,p、q互质),问对于大于q的任意正整数n,是否都有a n=0成立,并证明你的结论.2015-2016学年上海市宝山区行知中学高三(上)第一次月考数学试卷参考答案与试题解析一、填空题(每小题4分)1.已知集合A={x||x﹣1|<2},B={x|x2<4},则A∩B=(﹣1,2).【考点】交集及其运算.【分析】解绝对值不等式求得A,解一元二次不等式求得B,再根据两个集合的交集的定义求得A∩B.【解答】解:集合A={x||x﹣1|<2}={x|﹣2<x﹣1<2}={x|﹣1<x<3},B={x|x2<4}={x|﹣2<x<2},则A∩B={x|﹣1<x<2},故答案为:(﹣1,2).2.函数f(x)=﹣x2+4x+1(x∈[﹣1,1])的最大值等于4.【考点】二次函数在闭区间上的最值.【分析】根据f(x)=﹣(x﹣2)2+5,(x∈[﹣1,1]),可得函数在[﹣1,1]上是增函数,从而求得函数取得最大值.【解答】解:∵函数f(x)=﹣x2+4x+1=﹣(x2﹣4x﹣1)=﹣(x﹣2)2+5,(x∈[﹣1,1])∴函数在[﹣1,1]上是增函数,故当x=1时,函数取得最大值为4,故答案为:4.3.复数z满足=1+i,则复数z的模等于.【考点】复数求模;二阶矩阵.【分析】由条件求得z==2﹣i,再根据复数的模的定义求得|z|.【解答】解:∵复数z满足=zi﹣i=1+i,∴z===2﹣i,∴|z|==,故答案为:.4.函数y=sin2x+cos2x的最小正周期为π.【考点】二倍角的余弦;两角和与差的正弦函数;三角函数的周期性及其求法.【分析】利用两角和的正弦公式、二倍角的余弦公式化简函数的解析式为f(x)=sin(2x+),从而求得函数的最小正周期【解答】解:∵函数y=sin2x+cos2x=sin2x+=sin(2x+)+,故函数的最小正周期的最小正周期为=π,故答案为:π.5.一组数据8,9,x,11,12的平均数是10,则这组数据的方差是2.【考点】极差、方差与标准差;众数、中位数、平均数.【分析】根据这组数据的平均数是10,写出平均数的表示式,得到关于x的方程,求出其中x的值,再利用方差的公式,写出方差的表示式,得到结果.【解答】解:∵数据8,9,x,11,12的平均数是10,∴=10∴x=10,∴这组数据的方差是(4+4+0+1+1)=2故答案为:2.6.已知函数y=f(x)是函数y=a x(a>0且a≠1)的反函数,其图象过点(a2,a),则f(x)=log2x.【考点】反函数.【分析】由题意可得f(x)=log a x,再根据它的图象过点(a2,a),求得a的值,可得f(x)的解析式.【解答】解:由题意可得f(x)=log a x,再根据它的图象过点(a2,a),可得=2=a,即a=2,故f(x)=log2x,故答案为:log2x.7.方程(θ为参数)所表示曲线的准线方程是.【考点】参数方程化成普通方程.【分析】利用同角三角函数的基本关系,消去参数θ,求得曲线方程,x2=y(0≤y≤2),由抛物线的性质,即可求得示曲线的准线方程.【解答】解:利用同角三角函数的基本关系,消去参数θ,参数方程(θ为参数)化为普通方程可得x2=y(0≤y≤2),则抛物线的焦点在y轴正半轴上,焦点坐标为(0,),∴曲线的准线方程,故答案为:.8.已知(1﹣2x)n关于x的展开式中,只有第4项的二项式系数最大,则展开式的系数之和为1.【考点】二项式系数的性质.【分析】由题意求得n=6,再令x=1,可得展开式的系数之和.【解答】解:∵(1﹣2x)n关于x的展开式中,只有第4项的二项式系数最大,即最大,∴.∴解得5<n<7,再根据n∈N,可得n=6,∴令x=1可得展开式的系数之和为(1﹣2)6=1,故答案为:1.9.若变量x,y满足约束条件,且z=2x+y的最小值为﹣6,则k=﹣2.【考点】简单线性规划.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即先确定z的最优解,然后确定k的值即可.【解答】解:作出不等式对应的平面区域,(阴影部分)由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线y=﹣2x+z的截距最小,此时z最小.目标函数为2x+y=﹣6,由,解得,即A(﹣2,﹣2),∵点A也在直线y=k上,∴k=﹣2,故答案为:﹣2.10.若正三棱锥的正视图与俯视图如图所示(单位:cm),则它的侧视图的面积为cm2.【考点】由三视图求面积、体积.【分析】由正三棱锥的正视图与俯视图形状可以看出,此物体的摆放方式是底面正三角形的高与正视图的投影线平行,如此其正视图中底边是正三棱锥的底面边长,由俯视图知底面是边长是的三角形,其高是棱锥的高,由此作出其侧视图,求侧视图的面积.【解答】解:由题意,此物体的侧视图如图.根据三视图间的关系可得侧视图中底AB=,高,=×AB×h=××=.∴S△V AB故答案为:11.已知a、b、c为集合A={1,2,3,4,5}中三个不同的数,通过如图所示算法框图给出的一个算法输出一个整数a,则输出的数a=5的概率是.【考点】程序框图.【分析】由算法可知输出的a是a、b、c中最大的一个,若输出的数为5,则这三个数中必须要有5,列举出从集合A中选三个不同的数的情况即可解决问题.【解答】解:由算法可知输出的a是a、b、c中最大的一个,若输出的数为5,则这三个数中必须要有5,从集合A={1,2,3,4,5}中选三个不同的数共有10种取法:123、124、125、134、135、145、234、235、245、345,满足条件的6种,所以概率为.故答案为:.12.在△ABC中,=+m•,向量的终点M在△ABC的内部(不含边界),则实数m的取值范围是0<m<.【考点】平面向量的基本定理及其意义.【分析】如图所示,设,过点D作DE∥AC交BC于点E.由=+m•,可知点M在线段DE上(不含点D,E),借助于点D,E即可得出.【解答】解:如图所示,设,过点D作DE∥AC交BC于点E.∵=+m•,可知点M在线段DE上(不含点D,E)当点M取点D时,,可得m=0,而M在△ABC的内部(不含边界),因此m>0.当点M取点E时,,此时可得m=,而M在△ABC的内部(不含边界),因此m.∴.故答案为:.13.已知数列{a n}的前n项和S n,对任意n∈N*,S n=(﹣1)n a n++n﹣3且(a n﹣p)(a n+1﹣p)<0恒成立,则实数p的取值范围是.【考点】数列递推式.【分析】由数列递推式求出首项,写出n≥2时的递推式,作差后对n分偶数和奇数讨论,求出数列通项公式,可得函数(n为正奇数)为减函数,最大值为,﹣p)(a n﹣p)<0函数(n为正偶数)为增函数,最小值为.再由(a n+1恒成立求得实数p的取值范围.【解答】解:由,得;当n≥2时,a n=S n﹣S n﹣1==.若n为偶数,则,∴(n为正奇数);若n为奇数,则==,∴(n为正偶数).函数(n为正奇数)为减函数,最大值为,函数(n为正偶数)为增函数,最小值为.若(a n﹣p)(a n﹣p)<0恒成立,+1则a1<p<a2,即.故答案为:.14.设函数y=f (x)的定义域为D,如果存在非零常数T,对于任意x∈D,都有f(x+T)=T•f (x),则称函数y=f(x)是“似周期函数”,非零常数T为函数y=f(x)的“似周期”.现有下面四个关于“似周期函数”的命题:①如果“似周期函数”y=f(x)的“似周期”为﹣1,那么它是周期为2的周期函数;②函数f(x)=x是“似周期函数”;③函数f(x)=2x是“似周期函数”;④如果函数f(x)=cosωx是“似周期函数”,那么“ω=kπ,k∈Z”.其中是真命题的序号是①④.(写出所有满足条件的命题序号)【考点】抽象函数及其应用.【分析】①由题意知f(x﹣1)=﹣f(x),从而可得f(x﹣2)=﹣f(x﹣1)=f(x);②由f(x+T)=T•f (x)得x+T=Tx恒成立;从而可判断;③由f(x+T)=T•f (x)得2x+T=T2x恒成立;从而可判断;④由f(x+T)=T•f (x)得cos(ω(x+T))=Tcosωx恒成立;即cosωxcosωT﹣sinωxsinωT=Tcosωx恒成立,从而可得,从而解得.【解答】解:①∵似周期函数”y=f(x)的“似周期”为﹣1,∴f(x﹣1)=﹣f(x),∴f(x﹣2)=﹣f(x﹣1)=f(x),故它是周期为2的周期函数,故正确;②若函数f(x)=x是“似周期函数”,则f(x+T)=T•f (x),即x+T=Tx恒成立;故(T﹣1)x=T恒成立,上式不可能恒成立;故错误;③若函数f(x)=2x是“似周期函数”,则f(x+T)=T•f (x),即2x+T=T2x恒成立;故2T=T成立,无解;故错误;④若函数f(x)=cosωx是“似周期函数”,则f(x+T)=T•f (x),即cos(ω(x+T))=Tcosωx恒成立;故cos(ωx+ωT)=Tcosωx恒成立;即cosωxcosωT﹣sinωxsinωT=Tcosωx恒成立,故,故ω=kπ,k∈Z;故正确;故答案为:①④.二、选择题(每小题5分)15.若函数f(x)=ax+1在区间(﹣1,1)上存在一个零点,则实数a的取值范围是()A.a>1 B.a<1 C.a<﹣1或a>1 D.﹣1<a<1【考点】函数零点的判定定理.【分析】由函数的零点的判定定理可得f(﹣1)f(1)<0,解不等式求得实数a的取值范围.【解答】解:函数f(x)=ax+1在区间(﹣1,1)上存在一个零点,则f(﹣1)f(1)<0,即(1﹣a)(1+a)<0,解得a<﹣1或a>1.故选:C.16.已知空间直线l不在平面α内,则“直线l上有两个点到平面α的距离相等”是“l∥α”的()A.充分非必要条件B.必要非充分条件C.充要条件 D.非充分非必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义,以及直线和平面平行的性质即可得到结论.【解答】解:若l∥α,则直线l上有两个点到平面α的距离相等成立,当直线和平面相交时,直线l上也可能存在两个点到平面α的距离相等,但此时l∥α不成立,∴“直线l上有两个点到平面α的距离相等”是“l∥α”的必要不充分条件,故选:B.17.双曲线(a2>λ>b2)的焦点坐标为()A.B.C.D.【考点】双曲线的简单性质.【分析】根据a2>λ>b2,将双曲线化成标准形式:,再用平方关系算出半焦距为c=,由此即可得到该双曲线的焦点坐标.【解答】解:∵a2>λ>b2,∴a2﹣λ>0且λ﹣b2>0,由此将双曲线方程化为∴设双曲线的半焦距为c,可得c==∵双曲线的焦点坐标为(±c,0)∴该双曲线的焦点坐标为(±,0)故选:B18.函数f(x)=sinx在区间(0,10π)上可找到n个不同数x1,x2,…,x n,使得==…=,则n的最大值等于()A.8 B.9 C.10 D.11【考点】正弦函数的图象.【分析】作出函数f(x)的图象,设==…==k,则由数形结合即可得到结论.【解答】解:设==…==k,则条件等价为f(x)=kx,的根的个数,作出函数f(x)和y=kx的图象,由图象可知y=kx与函数f(x)最多有10个交点,即n的最大值为10,故选:C.三、解答题19.(理)已知直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AC=BC=2,AA1=4,D是棱AA1的中点.如图所示.(1)求证:DC1⊥平面BCD;(2)求二面角A﹣BD﹣C的大小.【考点】与二面角有关的立体几何综合题;直线与平面垂直的判定.【分析】(1)建立空间直角坐标系,利用向量法能够证明DC1⊥平面BDC.(2)分别求出平面ABD的法向量和平面DBC的法向量,利用向量法能求出二面角A﹣BD ﹣C的大小.【解答】(理)(1)证明:按如图所示建立空间直角坐标系.由题意知C(0,0,0)、A(2,0,0)、B(0,2,0)、D(2,0,2)、A1(2,0,4)、C1(0,0,4).∴=(﹣2,0,2),,.∵=0,.∴DC1⊥DC,DC1⊥DB.又∵DC∩DB=D,∴DC1⊥平面BDC.(2)解:设是平面ABD的法向量.则,又,,∴,取y=1,得=(1,1,0).由(1)知,=(﹣2,0,2)是平面DBC的一个法向量,记与的夹角为θ,则cosθ==﹣,结合三棱柱可知,二面角A﹣BD﹣C是锐角,∴所求二面角A﹣BD﹣C的大小是.20.如图,2012年春节,摄影爱好者S在某公园A处,发现正前方B处有一立柱,测得立柱顶端O的仰角和立柱底部B的俯角均为30°,已知S的身高约为米(将眼睛距地面的距离按米处理)(1)求摄影者到立柱的水平距离和立柱的高度;(2)立柱的顶端有一长2米的彩杆MN绕中点O在S与立柱所在的平面内旋转.摄影者有一视角范围为60°的镜头,在彩杆转动的任意时刻,摄影者是否都可以将彩杆全部摄入画面?说明理由.【考点】平面向量数量积坐标表示的应用.【分析】(1)摄影者眼部记为点S,作SC⊥OB于C,则有∠CSB=30°,∠ASB=60°.SA=,在Rt△SAB中,由三角函数的定义可求AB;再由SC=3,∠CSO=30°,在Rt△SCO中由三角函数的定义可求OC,进而可求OB(2)以O为原点,以水平方向向右为x轴正方向建立平面直角坐标系.设M(cosθ,sinθ),θ∈[0,2π),则N(﹣cosθ,﹣sinθ),由(Ⅰ)知S(3,﹣),利用向量的数量积的坐标表示可求cos∠MSN=∈[,1],结合余弦函数的性质可求答案.【解答】解:(1)如图,不妨将摄影者眼部记为点S,作SC⊥OB于C,依题意∠CSB=30°,∠ASB=60°.又SA=,故在Rt△SAB中,可求得BA==3,即摄影者到立柱的水平距离为3米.…由SC=3,∠CSO=30°,在Rt△SCO中OC=SC•tan30°=,又BC=SA=,故OB=2,即立柱的高度为2米.…(2)如图,以O为原点,以水平方向向右为x轴正方向建立平面直角坐标系.设M(cosθ,sinθ),θ∈[0,2π),则N(﹣cosθ,﹣sinθ),由(Ⅰ)知S(3,﹣).…故=(cosθ﹣3,sinθ+),=(﹣cosθ﹣3,﹣sinθ+),∴•=(cosθ﹣3)(﹣cosθ﹣3)+(sinθ﹣)(﹣sinθ﹣)=11||•||=×=×==由θ∈[0,2π)知||•||∈[11,13]…所以cos ∠MSN=∈[,1],∴∠MSN <60°恒成立故在彩杆转动的任意时刻,摄影者都可以将彩杆全部摄入画面21.在平面直角坐标系中,已知椭圆C :=1,设R (x 0,y 0)是椭圆C 上任一点,从原点O 向圆R :(x ﹣x 0)2+(y ﹣y 0)2=8作两条切线,切点分别为P ,Q . (1)若直线OP ,OQ 互相垂直,且R 在第一象限,求圆R 的方程; (2)若直线OP ,OQ 的斜率都存在,并记为k 1,k 2,求证:2k 1k 2+1=0. 【考点】直线与圆锥曲线的综合问题. 【分析】(1)由直线OP ,OQ 互相垂直,且与圆R 相切,可得OR=4,再由R 在椭圆上,满足椭圆方程,求得点R 的坐标,即可得到圆R 的方程;(2)运用直线和圆相切的条件:d=r ,结合二次方程的韦达定理和点R 满足椭圆方程,化简整理,即可得证. 【解答】解:(1)由题圆R 的半径为,因为直线OP ,OQ 互相垂直,且与圆R 相切,所以,即,①又R (x 0,y 0)在椭圆C 上,所以,②由①②及R 在第一象限,解得,所以圆R 的方程为:;(2)证明:因为直线OP :y=k 1x ,OQ :y=k 2x 均与圆R 相切,所以,化简得,同理有,所以k 1,k 2是方程的两个不相等的实数根,所以.又因为R(x0,y0)在椭圆C上,所以,即,所以,即2k1k2+1=0.22.已知函数y=f(x)是单调递增函数,其反函数是y=f﹣1(x).(1)若y=x2﹣1(x>),求y=f﹣1(x)并写出定义域M;(2)对于(1)的y=f﹣1(x)和M,设任意x1∈M,x2∈M,x1≠x2,求证:|f﹣1(x1)﹣f ﹣1(x2)|<|x1﹣x2|;(3)求证:若y=f(x)和y=f﹣1(x)有交点,那么交点一定在y=x上.【考点】反函数;函数单调性的判断与证明;函数单调性的性质.【分析】(1)由,解得x=,把x与y互换,即可得出y=f﹣1(x);(2)任意取x1∈M,x2∈M,x1≠x2,则,利用不等式的性质即可证明;(3)设(a,b)是y=f(x)和y=f﹣1(x)的交点,即,可得a=f(b),b=f (a),对a与b的大小关系分类讨论,再利用反函数的性质即可证明.【解答】(1)解:由,解得x=,把x与y互换,可得y=f﹣1(x)=,x,M=.(2)证明:任意取x1∈M,x2∈M,x1≠x2,则,∵,∴,,∴,∴,∴,∴,∴.(3)证明:设(a,b)是y=f(x)和y=f﹣1(x)的交点,即,∴a=f(b),b=f(a),当a=b,显然在y=x上;当a>b,函数y=f(x)是单调递增函数,∴f(a)>f(b),∴b>a矛盾;当a<b,函数y=f(x)是单调递增函数,∴f(a)<f(b),∴b<a矛盾;因此,若y=f(x)和y=f﹣1(x)的交点一定在y=x上.23.对于实数a,将满足“0≤y<1且x﹣y为整数”的实数y称为实数x的小数部分,用记号=其||x||表示,对于实数a,无穷数列{a n}满足如下条件:a1=|a,a n+1中n=1,2,3,…(1)若a=,求数列{a n};(2)当a时,对任意的n∈N*,都有a n=a,求符合要求的实数a构成的集合A.(3)若a是有理数,设a=(p 是整数,q是正整数,p、q互质),问对于大于q的任意正整数n,是否都有a n=0成立,并证明你的结论.【考点】数列递推式.【分析】(1)由题设知=,a2====,由此能求出.(2)由a1=||a||=a,知,1<<4,由此进行分类讨论,能求出符合要求的实数a构成的集合A.(3)成立.证明:由a是有理数,可知对一切正整数n,a n为0或正有理数,可设,由此利用分类讨论思想能够推导出数列{a m}中a m以及它之后的项均为0,所以对不大q的自然数n,都有a n=0.【解答】解:(1)∵满足“0≤y<1且x﹣y为整数”的实数y称为实数x的小数部分,用记号||x||表示,=其中n=1,2,3,…a1=,a n+1∴=,a2====,…===,a k=,则a k+1所以.…(2)∵a1=||a||=a,∴,∴1<<4,①当,即1<<2时,==﹣1=a,所以a2+a﹣1=0,解得a=,(a=∉(,1),舍去).…②当,即2≤<3时,a2==,所以a2+2a﹣1=0,解得a==,(a=﹣∉(,],舍去).…③当,即3<4时,,所以a2+3a﹣1=0,解得a=(a=,舍去).…综上,{a=,a=,a=}.…(3)成立.…证明:由a是有理数,可知对一切正整数n,a n为0或正有理数,可设(p n是非负整数,q n是正整数,且既约).…①由,得0≤p1≤q;…②若p n≠0,设q n=ap n+β(0≤βP n,α,β是非负整数)则=a+,而由,得=,==,故P n+1=β,q n+1=P n,得0≤P n+1<P n.…若P n=0,则p n+1=0,…若a1,a2,a3,…,a q均不为0,则这q正整数互不相同且都小于q,但小于q的正整数共有q﹣1个,矛盾.…故a1,a2,a3,…,a q中至少有一个为0,即存在m(1≤m≤q),使得a m=0.从而数列{a m}中a m以及它之后的项均为0,所以对不大q的自然数n,都有a n=0.…(其它解法可参考给分)2017年1月4日。
上海市长宁、青浦、宝山、嘉定四区2016届高三4月联考
长宁、青浦、宝山、嘉定四区2016届第二学期高三教学质量检测数学试卷(理科) 2016.04.(满分150分,考试时间120分钟)考生注意:1.本试卷共4页,23道试题,满分150分.考试时间120分钟.2.本考试分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3.答卷前,务必用钢笔或圆珠笔在答题纸上将姓名、学校、班级等信息填写清楚,并将核对后的条形码贴在指定位置上.一.填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对4分,否则一律得零分.1.设集合},2||{R ∈<=x x x A ,},034{2R ∈≥+-=x x x x B ,则A B =I _________.2.已知i 为虚数单位,复数z 满足i 11=+-zz,则=||z __________. 3.设0>a 且1≠a ,若函数2)(1+=-x a x f 的反函数的图像经过定点P ,则点P 的坐标 是___________.4.计算:=++∞→222)1(C P lim n nn n __________.5.在平面直角坐标系内,直线:l 022=-+y x ,将l 与两条坐标轴围成的封闭图形绕y 轴 旋转一周,所得几何体的体积为___________. 6.已知0sin 2sin =+θθ,⎪⎭⎫⎝⎛∈ππθ,2,则=θ2tan _____________. 7.设定义在R 上的奇函数)(x f y =,当0>x 时,42)(-=xx f ,则不等式0)(≤x f 的解集是__________________.8.在平面直角坐标系xOy 中,有一定点)1,1(A ,若线段OA 的垂直平分线过抛物线:C px y 22=(0>p )的焦点,则抛物线C 的方程为_____________.9.曲线⎪⎪⎩⎪⎪⎨⎧+-=-=ty t x 5521,551(t 为参数)与曲线⎩⎨⎧+=⋅=θθθθcos sin ,cos sin y x (θ为参数)的公共点的坐标为____________.10.记nx x ⎪⎭⎫ ⎝⎛+12*(N ∈n )的展开式中第m 项的系数为m b ,若432b b =,则=n ________.11.从所有棱长均为2的正四棱锥的5个顶点中任取3个点,设随机变量ξ表示这三个点所 构成的三角形的面积,则其数学期望=ξE _________.12.已知各项均为正数的数列}{n a23n n =+L (*N ∈n ),则12231n a a a n +++=+L ___________. 13.甲、乙两人同时参加一次数学测试,共有20道选择题,每题均有4个选项,答对得3分,答错或不答得0分.甲和乙都解答了所有的试题,经比较,他们有2道题的选项不同,如果甲最终的得分为54分,那么乙的所有可能的得分值组成的集合为____________.14.已知0>a ,函数xax x f -=)((]2,1[∈x )的图像的两个端点分别为A 、B ,设M 是函数)(x f 图像上任意一点,过M 作垂直于x 轴的直线l ,且l 与线段AB 交于点N ,若1||≤MN 恒成立,则a 的最大值是_________________.二.选择题(本大题共有4题,满分20分)每题有且仅有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,每题选对得5分,否则一律得零分.15.“0s i n =α”是“1cos =α”的( ).(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既不充分也不必要条件16.下列命题正确的是( ).(A )若直线1l ∥平面α,直线2l ∥平面α,则1l ∥2l ; (B )若直线l 上有两个点到平面α的距离相等,则l ∥α; (C )直线l 与平面α所成角的取值范围是⎪⎭⎫⎝⎛2,0π; (D )若直线1l ⊥平面α,直线2l ⊥平面α,则1l ∥2l .17.已知a r ,b r 是平面内两个互相垂直的单位向量,若向量c r 满足()()0c a c b -⋅-=rr r r ,则 ||c r的最大值是( ).(A )1 (B )2 (C )2 (D )2218.已知函数⎪⎩⎪⎨⎧≤≤⎪⎭⎫ ⎝⎛<<=,153,6sin ,30,|log |)(3x x x x x f π 若存在实数1x ,2x ,3x ,4x 满足)()()()(4321x f x f x f x f ===,其中4321x x x x <<<,则4321x x x x 的取值范围是( ).(A ))96,60( (B ))72,45( (C ))48,30( (D ))24,15( 三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤. 19.(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分7分.如图,在直三棱柱111C B A ABC -中,底面△ABC 是等腰直角三角形,21===AA BC AC ,D 为侧棱1AA 的中点.(1)求证:⊥BC 平面11A ACC ;(2)求二面角11C CD B --的大小(结果用反三角 函数值表示).20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知函数13cos 3cos sin 3)(-⎪⎭⎫ ⎝⎛-+⎪⎭⎫⎝⎛++=πωπωωx x x x f (0>ω,R ∈x ),且函数)(x f 的最小正周期为π. (1)求函数)(x f 的解析式;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若0)(=B f ,23=⋅BC BA ,且4=+c a ,求b 的值. 21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.定义在D 上的函数)(x f ,如果满足:对任意D x ∈,存在常数0>M ,都有M x f ≤)(成立,则称)(x f 是D 上的有界函数,其中M 称为函数)(x f 的上界.(1)设1)(+=x x x f ,判断)(x f 在⎥⎦⎤⎢⎣⎡-21,21上是否为有界函数,若是,请说明理由,并写出)(x f 的所有上界M 组成的集合;若不是,也请说明理由;(2)若函数xxa x g 421)(⋅++=在]2,0[∈x 上是以3为上界的有界函数,求实数a 的取值范围.AB C A 1B 1C 1D22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.如图,设F 是椭圆14322=+y x 的下焦点,直线4-=kx y (0>k )与椭圆相交于A 、B 两点,与y 轴交于P 点.(1)若AB PA =,求k 的值;(2)求证:BFO AFP ∠=∠; (3)求△ABF 面积的最大值.23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知正项数列}{n a ,}{n b 满足:对任意*N ∈n ,都有n a ,n b ,1+n a 成等差数列,n b ,1+n a ,1+n b 成等比数列,且101=a ,152=a .(1)求证:数列{}nb 是等差数列;(2)求数列}{n a ,}{n b 的通项公式; (3)设12111n nS a a a =+++L ,如果对任意*N ∈n ,不等式n n n a baS -<22恒成立,求实数a 的取值范围.二模理科数学参考答案一.填空题1.]1,2(- 2.1 3.)1,3( 4.235.32π6.3 7.]2,0[]2,( --∞ 8.x y 42= 9.)1,0( 10.5 11.5326+ 12.n n 622+ 13.{48,51,54,57,60} 14.246+二.选择题15.B 16.D 17.C 18.B三.解答题 19.(1)因为底面△ABC 是等腰直角三角形,且BC AC =,所以,BC AC ⊥,(2分) 因为⊥1CC 平面111C B A ,所以BC CC ⊥1, ………………………………………(4分) 所以,⊥BC 平面11A ACC . ……………………………………………………(5分) (2)以C 为原点,直线CA ,CB ,1CC 为x ,y ,z 轴,建立空间直角坐标系, 则)0,0,0(C ,)0,0,2(A ,)0,2,0(B ,)2,0,0(1C ,)2,2,0(1B ,)1,0,2(D , 由(1),)0,2,0(=CB 是平面11A ACC 的一个法向量, ………………………(2分))2,2,0(1=CB ,)1,0,2(=CD ,设平面CD B 1的一个法向量为),,(z y x n =,则有 ⎪⎩⎪⎨⎧=⋅=⋅,0,01CD n CB n 即⎩⎨⎧=+=+,02,022z x z y 令1=x ,则2-=z ,2=y , 所以)2,2,1(-=n, …………………………………………(5分)设CB 与n 的夹角为θ,则32324||||cos =⨯=⋅=n CB CBθ, …………………(6分) 由图形知二面角11C CD B --的大小是锐角,所以,二面角11C CD B --的大小为32arccos . ……………………………(7分)20.(1)16sin 21cos sin 3)(-⎪⎭⎫⎝⎛+=-+=πωωωx x x x f , ………………(3分) 又π=T ,所以,2=ω, ………………………………………………(5分) 所以,162sin 2)(-⎪⎭⎫⎝⎛+=πx x f . …………………………………………………(6分)(2)0162sin 2)(=-⎪⎭⎫⎝⎛+=πB B f ,故2162sin =⎪⎭⎫ ⎝⎛+πB , 所以,6262πππ+=+k B 或65262πππ+=+k B (Z ∈k ),因为B 是三角形内角,所以3π=B .……(3分)而23cos =⋅=⋅B ac BC BA ,所以,3=ac , …………………………(5分)又4=+c a ,所以,1022=+c a ,所以,7cos 2222=-+=B ac c a b ,所以,7=a . …………………………………(8分)21.(1)111)(+-=x x f ,则)(x f 在⎥⎦⎤⎢⎣⎡-21,21上是增函数,故⎪⎭⎫⎝⎛≤≤⎪⎭⎫ ⎝⎛-21)(21f x f f , 即31)(1≤≤-x f , ……………………………………………(2分) 故1|)(|≤x f ,所以)(x f 是有界函数. ……………………………………………(4分) 所以,上界M 满足1≥M ,所有上界M 的集合是),1[∞+. ……………………(6分)(2)因为函数)(x g 在]2,0[∈x 上是以3为上界的有界函数,故3|)(|≤x g 在]2,0[∈x 上恒成立,即3)(3≤≤-x g ,所以,34213≤⋅++≤-xxa (]2,0[∈x ), ……(2分)所以⎪⎭⎫ ⎝⎛-≤≤⎪⎭⎫ ⎝⎛--x x x x a 21422144(]2,0[∈x ), 令x t 21=,则⎥⎦⎤⎢⎣⎡∈1,41t ,故t t a t t -≤≤--2224在⎥⎦⎤⎢⎣⎡∈1,41t 上恒成立,所以,min 2max 2)2()4(t t a t t -≤≤--(⎥⎦⎤⎢⎣⎡∈1,41t ), ………………………(5分)令t t t h --=24)(,则)(t h 在⎥⎦⎤⎢⎣⎡∈1,41t 时是减函数,所以2141)(max -=⎪⎭⎫ ⎝⎛=g t h ;(6分)令t t t p -=22)(,则)(t p 在⎥⎦⎤⎢⎣⎡∈1,41t 时是增函数,所以8141)(min -=⎪⎭⎫⎝⎛=h t p .…(7分)所以,实数a 的取值范围是⎥⎦⎤⎢⎣⎡--81,21. ……………………………………(8分)22.(1)由⎪⎩⎪⎨⎧-==+4,14322kx y y x 得03624)43(22=+-+kx x k ,所以△0)4(1442>-=k , 设),(11y x A ,),(22y x B ,则4324221+=+k k x x ,4336221+=k x x , ………………(2分) 因为AB PA =,所以122x x =,代入上式求得556=k 。
上海市长宁、青浦、宝山、嘉定四区2016届高三4月联考数学(理)试卷(WORD版,含解析)--含答案
长宁、青浦、宝山、嘉定四区2016届第二学期高三教学质量检测数学试卷(理科) 2016.04.(满分150分,考试时间120分钟)考生注意:1.本试卷共4页,23道试题,满分150分.考试时间120分钟.2.本考试分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3.答卷前,务必用钢笔或圆珠笔在答题纸上将姓名、学校、班级等信息填写清楚,并将核对后的条形码贴在指定位置上.一.填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对4分,否则一律得零分.1.设集合},2||{R ∈<=x x x A ,},034{2R ∈≥+-=x x x x B ,则A B =I _________. 2.已知i 为虚数单位,复数z 满足i 11=+-zz,则=||z __________. 3.设0>a 且1≠a ,若函数2)(1+=-x a x f 的反函数的图像经过定点P ,则点P 的坐标是___________.4.计算:=++∞→222)1(C P lim n nn n __________. 5.在平面直角坐标系内,直线:l 022=-+y x ,将l 与两条坐标轴围成的封闭图形绕y 轴 旋转一周,所得几何体的体积为___________. 6.已知0sin 2sin =+θθ,⎪⎭⎫⎝⎛∈ππθ,2,则=θ2tan _____________. 7.设定义在R 上的奇函数)(x f y =,当0>x 时,42)(-=xx f ,则不等式0)(≤x f 的 解集是__________________.8.在平面直角坐标系xOy 中,有一定点)1,1(A ,若线段OA 的垂直平分线过抛物线:C px y 22=(0>p )的焦点,则抛物线C 的方程为_____________.9.曲线⎪⎪⎩⎪⎪⎨⎧+-=-=ty t x 5521,551(t 为参数)与曲线⎩⎨⎧+=⋅=θθθθcos sin ,cos sin y x (θ为参数)的公共点的坐标为____________.10.记nx x ⎪⎭⎫ ⎝⎛+12*(N ∈n )的展开式中第m 项的系数为m b ,若432b b =,则=n ________.11.从所有棱长均为2的正四棱锥的5个顶点中任取3个点,设随机变量ξ表示这三个点所 构成的三角形的面积,则其数学期望=ξE _________.12.已知各项均为正数的数列}{n a23n n =+L (*N ∈n ),则12231n a a a n +++=+L ___________. 13.甲、乙两人同时参加一次数学测试,共有20道选择题,每题均有4个选项,答对得3分,答错或不答得0分.甲和乙都解答了所有的试题,经比较,他们有2道题的选项不同,如果甲最终的得分为54分,那么乙的所有可能的得分值组成的集合为____________.14.已知0>a ,函数xax x f -=)((]2,1[∈x )的图像的两个端点分别为A 、B ,设M 是函数)(x f 图像上任意一点,过M 作垂直于x 轴的直线l ,且l 与线段AB 交于点N ,若1||≤MN 恒成立,则a 的最大值是_________________.二.选择题(本大题共有4题,满分20分)每题有且仅有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,每题选对得5分,否则一律得零分. 15.“0sin =α”是“1cos =α”的( ).(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既不充分也不必要条件16.下列命题正确的是( ).(A )若直线1l ∥平面α,直线2l ∥平面α,则1l ∥2l ; (B )若直线l 上有两个点到平面α的距离相等,则l ∥α;(C )直线l 与平面α所成角的取值范围是⎪⎭⎫⎝⎛2,0π; (D )若直线1l ⊥平面α,直线2l ⊥平面α,则1l ∥2l .17.已知a r ,b r 是平面内两个互相垂直的单位向量,若向量c r 满足()()0c a c b -⋅-=rr r r ,则 ||c r的最大值是( ).(A )1 (B )2 (C )2 (D )2218.已知函数⎪⎩⎪⎨⎧≤≤⎪⎭⎫ ⎝⎛<<=,153,6sin ,30,|log |)(3x x x x x f π 若存在实数1x ,2x ,3x ,4x 满足)()()()(4321x f x f x f x f ===,其中4321x x x x <<<,则4321x x x x 的取值范围是( ).(A ))96,60( (B ))72,45( (C ))48,30( (D ))24,15( 三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分7分.如图,在直三棱柱111C B A ABC -中,底面△ABC 是等腰直角三角形,21===AA BC AC ,D 为侧棱1AA 的中点.(1)求证:⊥BC 平面11A ACC ;(2)求二面角11C CD B --的大小(结果用反三角 函数值表示).20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知函数13cos 3cos sin 3)(-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛++=πωπωωx x x x f (0>ω,R ∈x ),且函数)(x f 的最小正周期为π. (1)求函数)(x f 的解析式;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若0)(=B f ,23=⋅BC BA ,且4=+c a ,求b 的值.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.定义在D 上的函数)(x f ,如果满足:对任意D x ∈,存在常数0>M ,都有M x f ≤)(成立,则称)(x f 是D 上的有界函数,其中M 称为函数)(x f 的上界.(1)设1)(+=x x x f ,判断)(x f 在⎥⎦⎤⎢⎣⎡-21,21上是否为有界函数,若是,请说明理由,并写出)(x f 的所有上界M 组成的集合;若不是,也请说明理由;(2)若函数xxa x g 421)(⋅++=在]2,0[∈x 上是以3为上界的有界函数,求实数a 的取值范围.A B CA 1B 1C 1D22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.如图,设F 是椭圆14322=+y x 的下焦点,直线4-=kx y (0>k )与椭圆相交于A 、B 两点,与y 轴交于P 点.(1)若AB PA =,求k 的值;(2)求证:BFO AFP ∠=∠; (3)求△ABF 面积的最大值.23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知正项数列}{n a ,}{n b 满足:对任意*N ∈n ,都有n a ,n b ,1+n a 成等差数列,n b ,1+n a ,1+n b 成等比数列,且101=a ,152=a .(1)求证:数列{}nb 是等差数列;(2)求数列}{n a ,}{n b 的通项公式; (3)设12111n nS a a a =+++L ,如果对任意*N ∈n ,不等式n n n a baS -<22恒成立,求实数a 的取值范围.二模理科数学参考答案一.填空题1.]1,2(- 2.1 3.)1,3( 4.235.32π6.3 7.]2,0[]2,( --∞ 8.x y 42= 9.)1,0( 10.5 11.5326+ 12.n n 622+ 13.{48,51,54,57,60} 14.246+二.选择题15.B 16.D 17.C 18.B三.解答题19.(1)因为底面△ABC 是等腰直角三角形,且BC AC =,所以,BC AC ⊥,(2分) 因为⊥1CC 平面111C B A ,所以BC CC ⊥1, ………………………………………(4分) 所以,⊥BC 平面11A ACC . ……………………………………………………(5分) (2)以C 为原点,直线CA ,CB ,1CC 为x ,y ,z 轴,建立空间直角坐标系, 则)0,0,0(C ,)0,0,2(A ,)0,2,0(B ,)2,0,0(1C ,)2,2,0(1B ,)1,0,2(D , 由(1),)0,2,0(=CB 是平面11A ACC 的一个法向量, ………………………(2分))2,2,0(1=CB ,)1,0,2(=,设平面CD B 1的一个法向量为),,(z y x n =,则有 ⎪⎩⎪⎨⎧=⋅=⋅,0,01CD n CB n 即⎩⎨⎧=+=+,02,022z x z y 令1=x ,则2-=z ,2=y , 所以)2,2,1(-=n, …………………………………………(5分)设与n 的夹角为θ,则32324||||cos =⨯=⋅=n CB CBθ, …………………(6分) 由图形知二面角11C CD B --的大小是锐角,所以,二面角11C CD B --的大小为32arccos . ……………………………(7分)20.(1)16sin 21cos sin 3)(-⎪⎭⎫ ⎝⎛+=-+=πωωωx x x x f , ………………(3分)又π=T ,所以,2=ω, ………………………………………………(5分)所以,162sin 2)(-⎪⎭⎫ ⎝⎛+=πx x f . …………………………………………………(6分)(2)0162sin 2)(=-⎪⎭⎫⎝⎛+=πB B f ,故2162sin =⎪⎭⎫ ⎝⎛+πB , 所以,6262πππ+=+k B 或65262πππ+=+k B (Z ∈k ),因为B 是三角形内角,所以3π=B .……(3分)而23cos =⋅=⋅B ac BC BA ,所以,3=ac , …………………………(5分) 又4=+c a ,所以,1022=+c a ,所以,7cos 2222=-+=B ac c a b ,所以,7=a . …………………………………(8分)21.(1)111)(+-=x x f ,则)(x f 在⎥⎦⎤⎢⎣⎡-21,21上是增函数,故⎪⎭⎫⎝⎛≤≤⎪⎭⎫ ⎝⎛-21)(21f x f f ,即31)(1≤≤-x f , ……………………………………………(2分) 故1|)(|≤x f ,所以)(x f 是有界函数. ……………………………………………(4分) 所以,上界M 满足1≥M ,所有上界M 的集合是),1[∞+. ……………………(6分)(2)因为函数)(x g 在]2,0[∈x 上是以3为上界的有界函数,故3|)(|≤x g 在]2,0[∈x 上恒成立,即3)(3≤≤-x g ,所以,34213≤⋅++≤-xxa (]2,0[∈x ), ……(2分)所以⎪⎭⎫ ⎝⎛-≤≤⎪⎭⎫ ⎝⎛--x x x x a 21422144(]2,0[∈x ), 令x t 21=,则⎥⎦⎤⎢⎣⎡∈1,41t ,故t t a t t -≤≤--2224在⎥⎦⎤⎢⎣⎡∈1,41t 上恒成立,所以,min 2max 2)2()4(t t a t t -≤≤--(⎥⎦⎤⎢⎣⎡∈1,41t ), ………………………(5分)令t t t h --=24)(,则)(t h 在⎥⎦⎤⎢⎣⎡∈1,41t 时是减函数,所以2141)(max -=⎪⎭⎫ ⎝⎛=g t h ;(6分)令t t t p -=22)(,则)(t p 在⎥⎦⎤⎢⎣⎡∈1,41t 时是增函数,所以8141)(min -=⎪⎭⎫ ⎝⎛=h t p .…(7分)所以,实数a 的取值范围是⎥⎦⎤⎢⎣⎡--81,21. ……………………………………(8分)22.(1)由⎪⎩⎪⎨⎧-==+4,14322kx y y x 得03624)43(22=+-+kx x k ,所以△0)4(1442>-=k , 设),(11y x A ,),(22y x B ,则4324221+=+k k x x ,4336221+=k x x , ………………(2分) 因为AB PA =,所以122x x =,代入上式求得556=k 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宝山区2015学年度第一学期期末 高三年级数学学科教学质量监测试卷(本试卷共有23道试题,满分150分,考试时间120分钟.)一.填空题(本大题满分56分)本大题共有14题,只要求直接填写结果,每个空格填对得4分,否则 一律得零分.1.方程0624=--xx 的解集为 .2.已知:(1-2)5+10i z i =(i 是虚数单位 ),则z = .3.以)2,1(为圆心,且与直线03534=-+y x 相切的圆的方程是 .4.数列2,*3nn N ⎧⎫⎪⎪⎛⎫∈⎨⎬ ⎪⎝⎭⎪⎪⎩⎭所有项的和为 .5.已知矩阵A =⎪⎪⎭⎫⎝⎛421y ,B =⎪⎪⎭⎫ ⎝⎛876x ,AB =⎪⎪⎭⎫⎝⎛50432219,则x+y = . 6.等腰直角三角形的直角边长为1,则绕斜边旋转一周所形成的几何体的体积为 .7.若9a x x ⎛⎫- ⎪⎝⎭的展开式中3x 的系数是-84,则a= .8. 抛物线212y x =-的准线与双曲线22193x y -=的两条渐近线所围成的三角形的面积等于 . 9. 已知,0,>t ω函数xx x f ωωcos 1sin 3)(=的最小正周期为π2,将)(x f 的图像向左平移t 个单位,所得图像对应的函数为偶函数,则t 的最小值为 .10.两个三口之家,共4个大人,2个小孩,约定星期日乘红色、白色两辆轿车结伴郊游,每辆车最多 乘坐4人,其中两个小孩不能独坐一辆车,则不同的乘车方法种数是 .11. 向量a r ,b r 满足1a =r,2a b -=r r ,a r 与b r的夹角为60°,则b =r .12. 数列1212312341213214321⋅⋅⋅,,,,,,,,,,,则98是该数列的第 项. 13. 已知直线0)1(4)1()1(=+-++-a y a x a (其中a 为实数)过定点P , 点Q 在函数xx y 1+=的图像上,则PQ 连线的斜率的取值范围是 . 14. 如图,已知抛物线2y x =及两点11(0,)A y 和22(0,)A y ,其中120y y >>.过1A ,2A 分别作y 轴的垂线,交抛物线于1B ,2B 两点,直线12B B 与y 轴交于点33(0,)A y ,此时就称1A ,2A 确定了3A .依此类推,可由2A ,3A 确定4A ,L .记(0,)n n A y ,1,2,3,n =L .给出下列三个结论:① 数列{}n y是递减数列;② 对任意*n ∈N ,0n y >; ③ 若14y =,23y =,则523y =.其中,所有正确结论的序号是_____. 二.选择题(本大题满分20分)本大题共有4题,每题都给出代号为A 、B 、C 、D 的四个结论,其中 有且只有一个结论是正确的.必须用2B 铅笔将正确结论的代号涂黑,选对得5分,不选、选错或者选出的代号超过一个,一律得零分.15. 如图,该程序运行后输出的结果为…… ( ) (A )1 (B )2 (C )4 (D )1616. P 是ABC ∆所在平面内一点,若+=λ,其中R ∈λ, 则P 点一定在……( )(A )ABC ∆内部 (B )AC 边所在直线上 (C )AB 边所在直线上 (D )BC 边所在直线上17.若,a b 是异面直线,则下列命题中的假命题为------------------ ( ) (A )过直线a 可以作一个平面并且只可以作一个平面α与直线b 平行; (B )过直线a 至多可以作一个平面α与直线b 垂直; (C )唯一存在一个平面α与直线a b 、等距; (D )可能存在平面α与直线a b 、都垂直。
18.王先生购买了一部手机,欲使用中国移动“神州行”卡或加入联通的130网,经调查其收费标准见下表:(注:本地电话费以分为计费单位,长途话费以秒为计费单位.)长途电话才合算. ……( )(A )300秒 (B )400秒(C )500秒(D )600秒三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须写出必要的步骤,答题务必写在 黑色矩形边框内. 19.(本题满分12分)在三棱锥P ABC -中,已知PA ,PB ,PC 两两垂直,PB=5,PC=6,三棱锥P ABC -的体积为20,Q 是BC 的中点,求异面直线PB ,AQ 所成角的大小(结果用反三角函数值表示)。
20. (本题满分14分,第1小题6分,第2小题8分)C已知角C B A 、、是ABC ∆的三个内角,c b a 、、是各角的对边,若向量⎪⎭⎫ ⎝⎛-+-=2cos ),cos(1B A B A ,⎪⎭⎫ ⎝⎛-=2cos,85B A ,且89=⋅. (1)求B A tan tan ⋅的值; (2)求222sin c b a Cab -+的最大值.21. (本题满分14分,第1小题7分,第2小题7分)某市2013年发放汽车牌照12万张,其中燃油型汽车牌照10万张,电动型汽车2万张.为了节能减排和控制总量,从2013年开始,每年电动型汽车牌照按50%增长,而燃油型汽车牌照每一年比上一年减少0.5万张,同时规定一旦某年发放的牌照超过15万张,以后每一年发放的电动车...的牌照的数量维持在这一年的水平不变.(1)记2013年为第一年,每年发放的燃油型汽车牌照数构成数列{}n a ,每年发放的电动型汽车牌照数构成数列{}n b ,完成下列表格,并写出这两个数列的通项公式;22. (本题满分16分,第1小题4分,第2小题6分,第3小题6分)已知椭圆2212x y +=上两个不同的点A,B 关于直线1(0)2y mx m =+≠对称. (1)若已知)21,0(C ,M 为椭圆上动点,证明:210≤MC ; (2)求实数m 的取值范围;(3)求AOB ∆面积的最大值(O 为坐标原点).23.(本题满分18分,第1小题4分,第2小题6分,第3小题8分)已知函数()log k f x x =(k 为常数,0k >且1k ≠),且数列{}()n f a 是首项为4,公差为2的等差数列.(1)求证:数列{}n a 是等比数列; (2)若()n n n b a f a =+,当k =时,求数列{}n b 的前n 项和n S 的最小值; (3)若lg n n n c a a =,问是否存在实数k ,使得{}n c 是递增数列?若存在,求出k 的范围; 若不存在,说明理由.宝山区2015学年第一学期期末高三年级数学参考答案一.填空题1. {}3log 22. -3-4i 3.()()252122=-+-y x 4. 2 5. 8 6.π627. 18. 9.65π 10.48 11. 1212. 128 13. ),3[+∞- 14. ① ② ③ 二.选择题 15.D 16. B 17. D 18.B 三.解答题 19.解:11562032V PA =⨯⨯⨯=,所以4PA =,-------------------3分 取PC 的中点为D ,连结AD ,DQ ,则AQD ∠为异面直线PB ,AQ 所成的角,----------------------------5分53,2PD QD ==,5DA =,------------------------------------7分 因为QD PAC ⊥平面,所以QD AD ⊥----------------------9分 所以2tan =∠AQD异面直线PB ,AQ 所成的角为2arctan 。
-----------------------12分20. (本题满分14分,第1小题6分,第2小题8分)解:(1)由(1cos(),cos)2A B m A B -=-+u r ,5(,cos )82A B n -=r,且98m n ⋅=u r r , 即259[1cos()]cos828A B A B --++=.-----------------------------------------------------2分 ∴4cos()5cos()A B A B -=+,--------------------------------------------------------------------4分 即cos cos 9sin sin A B A B =,∴1tan tan 9A B =.----------------6分 (2)由余弦定理得222sin sin 1tan 2cos 2ab C ab C C a b c ab C ==+-,-----------------8分而∵tan tan 9tan()(tan tan )1tan tan 8A B A B A B A B ++==+-------------------------------------------10分由1tan tan 9A B =知:0tan ,tan >B A ------------------------------------------11分93tan()84A B +≥⨯=, 当且仅当1tan tan 3A B ==时取等号,---------------------12分又tan tan()C A B =-+,∴tan C 有最大值34-, 所以222sin ab Ca b c +-的最大值为38-.---------------------------------14分C21. 解:(1)当120n ≤≤且n N *∈时,2110(1)(0.5)22n n a n =+-⨯-=-+; 当21n ≥且n N *∈时,0n a =.∴21,120220,21n n n n Na n n N **⎧-+≤≤∈⎪=⎨⎪≥∈⎩且且----------------------------------------------------------4分 而4415.2515a b +=>,∴132(),1426.75,5n n n n Nb n n N -**⎧⋅≤≤∈⎪=⎨⎪≥∈⎩且且-------------------------------------------------------------7分 (2)当4n =时,12341234()()53.25n S a a a a b b b b =+++++++=.---------------8分 当205≤≤n 时,1212345()()n n n S a a a b b b b b b =++++++++++L L432[1()](1)1210() 6.75(4)32212n n n n --=+⨯-++-- 216843444n n =-+-------------------------------------------------------------11分 由200n S ≥ 得216843200444n n -+-≥,即2688430n n -+≤, 解得n=3416.3021≈≤ --------------------------------------------------------------13分∴到2029年累积发放汽车牌照超过200万张----------------------------------------------------14分22. (本题满分16分,第1小题4分,第2小题6分,第3小题6分)解:(1)设),,(y x M 则2212x y +=, 于是22)21(-+=y x MC =22)21(22-+-y y 492+--=y y --------------------------2分25)21(2++-=y因11≤≤-y , 所以,当21-=y 时,210max =MC .即210≤MC -------4分(2)由题意知0m ≠,可设直线AB 的方程为1y x b m=-+. ------------------------------5分 由221,21,x y y x b m ⎧+=⎪⎪⎨⎪=-+⎪⎩消去y ,得222222102m b x x b m m +-+-=. -----------------------7分 因为直线1y x b m =-+与椭圆2212x y +=有两个不同的交点,所以,224220b m ∆=-++>, 即2221b m<+①----------------------------8分将AB 中点2222(,)22mb m bM m m ++ --------------------------------------------------------9分 代入直线方程12y mx =+解得2222m b m+=-②由①②得m <m > --------------------------------------------------------10分 (3)令1((0,)22t m =∈- ,即23(0,)2t =,则 21232212242+++-⋅+=t t t t AB --------11分且O 到直线AB的距离为21t d +=-----------------------------------------------12分 设AOB ∆的面积为()S t ,所以222)21(22121)(22≤+--=⋅=t d AB t S -------------14分 当且仅当212t =时,等号成立.故AOB ∆----------------------16分 23.(本题满分16分,第1小题4分,第2小题6分,第3小题8分) 解:(1) 证:由题意()4(1)222n f a n n =+-⨯=+,即log 22k n a n =+,∴22n na k += ---------------------------------2分 ∴2(1)22122n n n n a k k a k++++==. ∵常数0k >且1k ≠,∴2k 为非零常数, ∴数列{}n a 是以4k 为首项,2k 为公比的等比数列. -----------------------4分(2)当k =时,112n n a += , ()2n+2n f a =,----------------------6分所以2111122411423122212n n n n S n n n +⎛⎫- ⎪++⎝⎭=+=++---------------------8分因为1n ≥,所以,2111322n n n +++-是递增数列, 因而最小值为1111513244S =++-=。