人教八年级下册数学第二十章 数据的分析 测试卷(解析版)
人教版八年级数学下册第二十章-数据的分析综合测评试卷(含答案解析)

人教版八年级数学下册第二十章-数据的分析综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在我校“文化艺术节”英语表演比赛中,有16名学生参加比赛,规定前8名的学生进入决赛,某选手想知道自己能否晋级,只需要知道这16名学生成绩的()A.中位数B.方差C.平均数D.众数2、甲、乙两人一周中每天制作工艺品的数量如图所示,则对甲、乙两人每天制作工艺品数量描述正确的是()A.甲比乙稳定B.乙比甲稳定C.甲与乙一样稳定D.无法确定3、对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中不正确的结论有( )A .1个B .2个C .3个D .4个4、已知数据1,2,3,3,4,5,则下列关于这组数据的说法错误的是( )A .平均数、中位数和众数都是3B .极差为4C .方差是53D5、某校有11名同学参加某比赛,预赛成绩各不同,要取前6名参加决赛,小敏己经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这11名同学成绩的( )A .最高分B .中位数C .极差D .平均分6、若样本12,,,n x x x ⋯的平均数为10,方差为2,则对于样本1232,32,,32n x x x ++⋅⋅⋅+,下列结论正确的是( )A .平均数为30,方差为8B .平均数为32,方差为8C .平均数为32,方差为20D .平均数为32,方差为187、在对一组样本数据进行分析时,小华列出了方差的计算公式S 2=22222(5)(4)(4)(3)(3)5x x x x x -+-+-+-+-,下列说法错误的是( ) A .样本容量是5B .样本的中位数是4C .样本的平均数是3.8D .样本的众数是48、有一组数据:1,2,3,3,4.这组数据的众数是( )A .1B .2C .3D .49、2022年冬季奥运会将在北京张家口举行,如表记录了四名短道速滑选手几次选拔赛成绩的平均数x 和方差s 2.根据表中数据,可以判断乙选手是这四名选手中成绩最好且发挥最稳定的运动员,则m、n的值可以是()A.m=50,n=4 B.m=50,n=18 C.m=54,n=4 D.m=54,n=1810、某校随机抽查了10名学生的体育成绩,得到的结果如表:下列说法正确的是()A.这10名同学的体育成绩的方差为50B.这10名同学的体育成绩的众数为50分C.这10名同学的体育成绩的中位数为48分D.这10名同学的体育成绩的平均数为48分第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、跳远运动员李强在一次训练中,先跳了6次的成绩如下:7.6,7.8,7.7,7.8,8.0,7.9(单位:m).这六次成绩的平均数为7.8,方差为160.如果李强再跳两次,成绩分别为7.6,8.0,则李强这8次跳远成绩与前6次的成绩相比较,其方差 _____.(填“变大”、“不变”或“变小”)2、如果一组数据1a ,2a ,…,n a 的方差是2,那么一组新数据12a ,22a ,…,2n a 的方差是__________.3、某校九年级进行了3次体育中考项目﹣﹣1000米跑的模拟测试,甲、乙、丙三位同学3次模拟测试的平均成绩都是3分55秒,三位同学成绩的方差分别是s 甲2=0.01,s 乙2=0.009,s 丙2=0.0093.则甲、乙、丙三位同学中成绩最稳定的是 ___.4、学校“校园之声”广播站要选拔一名英语主持人,小聪参加选拔的各项成绩如下:读:92分,听:80分,写:90分,若把读,听、写的成绩按5:3:2的比例计入个人的总分,则小聪的个人总分为____分.5、一组数据:2,5,7,3,5的众数是________.三、解答题(5小题,每小题10分,共计50分)1、某班10名男同学参加100米达标检测,15秒以下达标(包括15秒),这10名男同学成绩记录如下:+1.2,0,-0.8,+2,0,-1.4,-0.5,0,-0.3,+0.8 (其中超过15秒记为“+”,不足15秒记为“-”)(1)求这10名男同学的达标率是多少?(2)这10名男同学的平均成绩是多少?(3)最快的比最慢的快了多少秒?2、5,16,16,28,32,51,51的众数是什么?3、某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的满分均为100分,前6名选手的得分如下:根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩.(1)这6名选手笔试成绩的众数是分.(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比.(3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.4、某单位要买一批直径为60mm的螺丝,现有甲、乙两个螺丝加工厂,它们生产的螺丝的材料相同,价格也相同,该单位分别从甲、乙两厂的产品中抽样调查了20个螺丝,它们的直径(单位:mm)如下:甲厂:60,59,59.8,59.7,60.2,60.3,61,60,60,60.5,59.5,60.3,60.1,60.2,60,59.9,59.7,59.8,60,60;乙厂:60.1,60,60,60.2,59.9,60.1,59.7,59.9,60,60,60,60.1,60.5,60.4,60,59.6,59.5,59.9,60.1,60.你认为该单位应买哪个厂的螺丝?5、某中学为选拔一名选手参加我市“学宪法讲宪法”主题演讲比赛,经研究,按表所示的项目和权数对选拔赛参赛选手进行考评.下图分别是是小明、小华在选拔赛中的得分表和各项权数分布表:得分表结合以上信息,回答下列问题:(1)小明在选拔赛中四个项目所得分数的众数是,中位数是;(2)评分时按统计表中各项权数考评.①求出演讲技巧项目对应扇形的圆心角的大小.②如此考评,小明和小华谁更优秀,派出哪位同学代表学校参加比赛呢?---------参考答案-----------一、单选题1、A【解析】【分析】根据中位数的意义进行求解即可.【详解】解:16位学生参加比赛,取得前8名的学生进入决赛,中位数就是第8、第9个数的平均数,因而要判断自己能否晋级,只需要知道这16名学生成绩的中位数就可以.故选:A.【点睛】本题考查了中位数的意义,掌握中位数的意义是解题的关键.2、C【解析】【分析】先根据折线统计图得出甲、乙每天制作的个数,从而得出两组数据之间的关系,继而得出方差关系.【详解】解:由折线统计图知,甲5天制作的个数分别为15、20、15、25、20,乙5天制作的个数分别为10、15、10、20、15,∴甲从周一至周五每天制作的个数分别比乙每天制作的个数多5个,∴甲、乙制作的个数稳定性一样,故选:C.【点睛】本题主要考查了利用方差进行决策,准确分析判断是解题的关键.3、C【解析】【分析】直接根据众数、中位数和平均数的定义求解即可得出答案.【详解】数据3出现了6次,次数最多,所以众数是3,故①正确;这组数据按照从小到大的顺序排列为2,2,3,3,3,3,3,3,6,6,10,处于中间位置的是3,所以中位数是3,故②错误;平均数为22366210411⨯+⨯+⨯+=,故③、④错误;所以不正确的结论有②、③、④,故选:C.【点睛】本题主要考查众数、众数和平均数,掌握众数、中位数和平均数的定义是解题的关键.4、D【解析】【分析】分别求出这组数据的平均数、众数、中位数、极差、方差、标准差,再进行判断.【详解】解:这组数据的平均数为:(1+2+3+3+4+5)÷6=3,出现次数最多的是3,排序后处在第3、4位的数都是3,因此众数和中位数都是3,因此选项A不符合题意;极差为5﹣1=4,B选项不符合题意;S2=16×[(1﹣3)2+(2﹣3)2+(3﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=53,C选项不符合题意;S=D选项符合题意,故选:D.【点睛】考查平均数、中位数、众数、方差、标准差的计算方法,正确的计算是解答的前提.5、B【解析】【分析】由于共有11名同学参加某比赛,比赛取前6名参加决赛,根据中位数的意义分析即可.【详解】解:由于共有11个不同的成绩按从小到大排序后,中位数及中位数之后的共有6个数, 故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故选:B .【点睛】本题考查了中位数意义,解题的关键是正确掌握中位数的意义.6、D【解析】【分析】由样本12,,,n x x x ⋯的平均数为10,方差为2,可得()()()()2222123123···10,101010?··102,n n x x x x n x x x x n ++++=-+-+-++-=再利用平均数公式与方差公式计算1232,32,,32n x x x ++⋅⋅⋅+的平均数与方差即可.【详解】 解: 样本12,,,n x x x ⋯的平均数为10,方差为2,()()()()()222212312311···10,?··2,n n x x x x x x x x x x x x x n n ⎡⎤∴=++++=-+-+-++-=⎣⎦ ()()()()2222123123···10,101010?··102,n n x x x x n x x x x n ∴++++=-+-+-++-=∴ ()1231323232?··32n x x x x n++++++++ ()1131023232,n n n n n=⨯+=⨯= ()()()()22221231323232323232?··3232n x x x x n ⎡⎤+-++-++-+++-⎣⎦()()()()22221231910910910?··910n x x x x n ⎡⎤=-+-+-++-⎣⎦ 19218,n n =⨯⨯= 故选D【点睛】本题考查的是平均数,方差的含义与计算,熟练的运用平均数公式与方差公式进行推导是解本题的顾客.7、D【解析】【分析】先根据方差的计算公式得出样本数据,从而可得样本的容量,再根据中位数(按顺序排列的一组数据中居于中间位置的数)与众数(一组数据中出现频数最多的数)的定义、平均数的计算公式逐项判断即可得.【详解】解:由方差的计算公式得:这组样本数据为5,4,4,3,3,则样本的容量是5,选项A 正确;样本的中位数是4,选项B 正确; 样本的平均数是54433 3.85++++=,选项C 正确; 样本的众数是3和4,选项D 错误;故选:D .【点睛】题目主要考查了中位数与众数的定义、平均数与方差的计算公式等知识点,依据方差的计算公式正确得出样本数据是解题关键.8、C【解析】【分析】找出数据中出现次数最多的数即可.【详解】解:∵3出现了2次,出现的次数最多,∴这组数据的众数为3;故选:C.【点睛】此题考查了众数.众数是这组数据中出现次数最多的数.9、A【解析】【分析】根据乙选手是这四名选手中成绩最好且发挥最稳定的运动员,可得到乙选手的成绩的平均数最大,方差最小,即可求解.【详解】解:因为乙选手是这四名选手中成绩最好的,所以乙选手的成绩的平均数最小,又因为乙选手发挥最稳定,所以乙选手成绩的方差最小.故选:A.【点睛】本题主要考查了平均数和方差的意义,理解方差是反映一组数据的波动大小的一个量:方差越大,则平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.10、C【解析】【分析】根据众数、中位数、平均数及方差的定义列式计算即可.【详解】这组数据的平均数为110×(46+47×2+48×3+49×2+50×2)=48.2,故D选项错误,这组数据的方差为110×[(46﹣48.2)2+2×(47﹣48.2)2+3×(48﹣48.2)2+2×(49﹣48.2)2+2×(50﹣48.2)2]=1.56,故A选项错误,∵这组数据中,48出现的次数最多,∴这组数据的众数是48,故B选项错误,∵这组数据中间的两个数据为48、48,∴这组数据的中位数为48482=48,故C选项正确,故选:C.【点睛】本题考查众数、中位数、平均数及方差,把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数;一组数据中,出现次数最多的数就叫这组数据的众数;熟练掌握定义及公式是解题关键.二、填空题1、变大【解析】【分析】先由平均数的公式计算出李强第二次的平均数,再根据方差的公式进行计算,然后比较即可得出答案.【详解】解:∵李强再跳两次,成绩分别为7.6,8.0, ∴这组数据的平均数是()7.867.68.07.88m ⨯++=, ∴这8次跳远成绩的方差是:()()()()()222222127.67.827.87.87.77.828.07.87.97.88S ⎡⎤=⨯-+⨯-+-+⨯-+-⎣⎦ 0.0225= ∵0.0225>160, ∴方差变大;故答案为:变大.【点睛】本题主要考查了平均数的计算和方差的计算,熟练掌握平均数和方差的计算是解答此题的关键. 2、8【解析】【分析】设一组数据1a ,2a ,…,n a 的平均数为x ,方差是22s =,则另一组数据12a ,22a ,…,2n a 的平均数为2x x '=,方差是2s ',代入方差公式2222121[()()()]n s x x x x x x n =-+-++-,计算即可.【详解】解:设一组数据1a ,2a ,…,n a 的平均数为x ,方差是22s =,则另一组数据12a ,22a ,…,2n a 的平均数为2x x '=,方差是2s ',∵2222121[()()()]n s a x a x a x n =-+-++-, ∴2222121[(22)(22)(22)]n s a x a x a x n '=-+-++-, 则2222121[4()4()4()]n s a x a x a x n '=-+-++-, ∴2222124[()()()]n s a x a x a x n '=-+-++-,∴224s s '=,2428s '=⨯=.【点睛】本题考查了方差的性质:当一组数据的每一个数都乘以同一个数时,方差变成这个数的平方倍.即如果一组数据1a ,2a ,…,n a 的方差是2s ,那么另一组数据1ka ,2ka ,⋯,n ka 的方差是22k s .3、乙【解析】【分析】根据方差的定义,方差越小数据越稳定.【详解】解:∵s 甲2=0.01,s 乙2=0.009,s 丙2=0.0093,∴s 乙2<s 丙2<s 甲2,∴甲、乙、丙三位同学中成绩最稳定的是乙.故答案为:乙.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.4、88【解析】【分析】利用加权平均数按照比例求得小莹的个人总分即可.【详解】解:根据题意得:532⨯⨯⨯(分),92+80+90=885+3+25+3+25+3+2答:小聪的个人总分为88分;故答案为:88.【点睛】本题考查了加权平均数的计算方法,在进行计算时候注意权的分配,另外还应细心,否则很容易出错.5、5【解析】【分析】根据众数的概念求解.【详解】解:这组数据5出现的次数最多.故众数为5.故答案为:5,【点睛】本题考查了众数的知识,一组数据中出现次数最多的数据叫做众数.三、解答题1、(1)70%;(2)15.1秒;(3)最快的比最慢的快了3.4秒【分析】(1)求这10名男同学的达标人数除以总人数即可求解;(2)根据10名男同学的成绩即可求出平均数;(3)分别求出最快与最慢的时间,故可求解.【详解】解(1)从记录数据可知达标人数是7∴ 达标率=7÷10×100%=70%(2)15+(+1.2+0-0.8+2+0-1.4-0.5+0-0.3+0.8 )÷10=15.1(秒)∴这10名男同学的平均成绩是15.1秒(3)最快的是(15-1.4)=13.6(秒)最慢的是(15+2)=17(秒)17-13.6=3.4(秒)∴最快的比最慢的快了3.4秒.【点睛】此题主要考查有理数的混合运算的实际应用,解题的关键是熟知有理数的运算法则.2、16和51【分析】根据众数的定义:在一组数据中出现次数最多的数据,由此可求解.【详解】解:因为5,16,16,28,32,51,51中出现最多的数据为16和51,分别为两次,所以这组数据的众数是16和51.【点睛】本题主要考查众数,熟练掌握求一组数据的众数是解题的关键.3、(1)84;(2)笔试成绩和面试成绩各占的百分比是40%,60%;(3)2号:89.6分,3号:85.2分,4号:90分,5号:81.6分,6号:83分,综合成绩排序前两名人选是4号和2号【分析】(1)根据中位数和众数的定义即把这组数据从小到大排列,再找出最中间两个数的平均数就是中位数,再找出出现的次数最多的数即是众数;(2)先设笔试成绩和面试成绩各占的百分百是x ,y ,根据题意列出方程组,求出x ,y 的值即可;(3)根据笔试成绩和面试成绩各占的百分比,分别求出其余五名选手的综合成绩,即可得出答案.【详解】解:(1)把这组数据从小到大排列为,80,84,84,85,90,92,84出现了2次,出现的次数最多,则这6名选手笔试成绩的众数是84分;故答案为:84;(2)设笔试成绩和面试成绩各占的百分比是x ,y ,根据题意得:1859088x y x y +=⎧⎨+=⎩, 解得40%60%x y =⎧⎨=⎩, ∴笔试成绩和面试成绩各占的百分比是40%,60%.(3)2号选手的综合成绩是92×0.4+88×0.6=89.6(分),3号选手的综合成绩是84×0.4+86×0.6=85.2(分),4号选手的综合成绩是90×0.4+90×0.6=90(分),5号选手的综合成绩是84×0.4+80×0.6=81.6(分),6号选手的综合成绩是80×0.4+85×0.6=83(分).∴综合成绩排序前两名人选是4号和2号.【点睛】本题考查了众数、二元一次方程组的实际应用,加权平均数等知识点,依据题意,正确建立方程求出题(2)中的笔试成绩和面试成绩各占的百分比是解题的关键.4、买乙厂的螺丝【分析】分别求出甲乙两厂螺丝的平均数,极差,方差,然后根据平均数,极差,方差综合选取即可.【详解】 解:60.2+60.3+61+600+60+60.5+59.60+59+59.8+59.70+.1=6205+60.3+60.1+6.2+60+599+59.759.86060x +++⎛⎫⨯= ⎪⎝⎭甲 mm , 60.1+60+60+60.2+59.9+60.1+59.7+59.9+60+60+600+60.1+60.5+60.4+60+59.6+59.5+59.9+60.1+601620x ⎛⎫=⨯= ⎪⎝⎭乙 mm ; 61592mm R =-=甲,60.559.51mm R =-=乙;2222222222222222222(60-60)+(59-60)+(59.8-60)+(59.7-60)+(60.2-60)+(60.3-60)+(61-60)1=+(60-60)+(60-60)+(60.5-60)+(59.5-60)+(60.3-60)+(60.1-60)+(60.2-60)20+(60-60)+(59.9-60)+(59.7-60)+(59.8-60)+(60-60S ⨯甲220.152)+(60-60)⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦; 2222222222222222222(60.1-60)+(60-60)+(60-60)+(60.2-60)+(59.9-60)+(60.1-60)+(59.7-60)1=?+(59.9-60)+(60-60)+(60-60)+(60-60)+(60.1-60)+(60.5-60)+(60.4-60)20+(60-60)+(59.6-60)+(59.5-60)+(59.9-60)+(60.1-S 乙220.05160)+(60-60)⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦; ∴从甲、乙两厂抽取的10个螺丝直径的平均数都是60mm ,但甲厂20个螺丝直径的极差为2mm ,方差为0.152;乙厂20个螺丝直径的极差为1mm ,方差为0.051.因此在同等条件下应买乙厂的螺丝.【点睛】本题考查了平均数,极差,方差,以及根据平均数,极差,方差做决策,熟练掌握计算平均数,极差,方差的方法是解本题的关键.5、(1)85分,82.5分;(2)①144°;②小明更优秀,应派出小明代表学校参加比赛【分析】(1)根据众数和中位数的定义求解即可;(2)①根据扇形统计图中的数据,可以得到演讲技巧项目的百分比,进而求出圆心角大小;②根据加权平均数的定义列式计算出小明、小华的成绩,从而得出答案.【详解】解:(1)小明在选拔赛中四个项目所得分数的众数是85分,中位数是85802+=82.5(分);(2)①1-5%-15%-40%=40%360⨯40%=144°答:演讲技巧项目对应扇形的圆心角为144°;②小明分数为:855%7015%8040%8540%80.75⨯+⨯+⨯+⨯=小华分数为:905%7515%7540%8040%77.75⨯+⨯+⨯+⨯=80.75>77.75∴小明更优秀,应派出小明代表学校参加比赛【点睛】本题考查了众数、中位数、加权平均数,解题的关键是掌握众数、中位数、加权平均数的定义.。
人教新版八年级下册数学《第20章 数据的分析》单元测试卷和答案详解(PDF可打印)

人教新版八年级下册《第20章数据的分析》单元测试卷(1)一、选择题:(每题3分,共18分,请将答案填写在表格中)1.(3分)数据2,3,5,5,4的众数是()A.2B.3C.4D.52.(3分)两名同学进行了10次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们成绩的()A.众数B.中位数C.方差D.以上都不对3.(3分)某校五个绿化小组一天植树的棵树如下:10、10、12、x、8.已知这组数据的众数与平均数相同,那么这组数据的平均数是()A.12B.10C.8D.94.(3分)从鱼塘捕获同时放养的草鱼240条,从中任选8条称得每条鱼的质量分别为:1.5,1.6,1.4,1.3,1.5,1.2,1.7,1.8(单位:千克),那么可估计这240条鱼的总质量大约为()A.300千克B.360千克C.36千克D.30千克5.(3分)若样本x1+1,x2+1,…,x n+1的平均数为10,方差为2,则对于样本x1+2,x2+2,…,x n+2,下列结论正确的是()A.平均数为10,方差为2B.平均数为11,方差为3C.平均数为11,方差为2D.平均数为12,方差为46.(3分)甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:班级参加人数中位数方差平均数甲55149 1.91135乙55151 1.10135某同学分析上表后得出如下结论:①甲、乙两班学生成绩平均水平相等;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论正确的是()A.①②③B.①②C.①③D.②③二、填空题(每小题3分,共18分)7.(3分)若x,y,z的平均数是6,则5x+3、5y﹣2、5z+5的平均数是.8.(3分)一组数据1,3,2,5,2,a的众数是a,这组数据的中位数是.9.(3分)已知样本方差S2=,则这个样本的容量是,样本的平均数是.10.(3分)某校体育期末考核“立定跳远”、“800米”、“仰卧起坐”三项,并按3:5:2的比重算出期末成绩.已知小林这三项的考试成绩分别为80分、90分、100分,则小林的体育期末成绩为分.11.(3分)一名射击运动员连续打靶8次,命中的环数如图所示,这组数据的中位数是环,众数是环.12.(3分)已知一组数据的平均数是3,方差是2,把这组数据扩大2倍,那么新数据的平均数是,方差是.三、计算题:(共28分)13.(8分)学期末,某班评选一名优秀学生干部,下表是班长、学习委员和团支部书记的得分情况:班长学习委员团支部书记思想表现242826学习成绩262624工作能力282426假设在评选优秀干部时,思想表现、学习成绩、工作能力这三方面的重要比为3:3:4,通过计算说明谁应当选为优秀学生干部.14.(10分)某快餐店共有10名员工,所有员工工资的情况如下表:人员店长厨师甲厨师乙会计服务员甲服务员乙勤杂工人数111113220000700040002500220018001200工资额(元)请解答下列问题:(1)餐厅所有员工的平均工资是;所有员工工资的中位数是.(2)用平均数还是用中位数描述该餐厅员工工资的一般水平比较恰当?(3)去掉店长和厨师甲的工资后,其他员工的平均工资是多少?它是否也能反映该快餐店员工工资的一般水平?15.(10分)下表是七年级三班30名学生期末考试数学成绩表(已破损)成绩(分)5060708090100人数(人)2573已知该班学生期末考试数学成绩平均分是76分.(1)求该班80分和90分的人数分别是多少?(2)设该班30名学生成绩的众数为a,中位数为b,求a+b的值.四、综合题:(共36分)16.(12分)随着我市社会经济的发展和交通状况的改善,我市的旅游业得到了高速发展,某旅游公司对我市一企业旅游年消费情况进行了问卷调查,随机抽取部分员工,记录每个人消费金额,并将调查数据适当调整,绘制成如图两幅尚不完整的表和图.频数(人数)频率组别个人年消费金额x(元)A x≤2000180.15B2000<x≤4000a bC4000<x≤6000D6000<x≤8000240.20E x>8000120.10合计c 1.00根据以上信息回答下列问题:(1)a=,b=,c=.并将条形统计图补充完整;(2)这次调查中,个人年消费金额的中位数出现在组;(3)若这个企业有3000多名员工,请你估计个人旅游年消费金额在6000元以上的人数.17.(12分)某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为6种型号).根据以上信息,解答下列问题:(1)该班共有多少名学生?其中穿175型校服的学生有多少?(2)在条形统计图中,请把空缺部分补充完整.(3)在扇形统计图中,请计算185型校服所对应的扇形圆心角的大小;(4)求该班学生所穿校服型号的众数和中位数.18.(12分)班主任要从甲、乙两名跳远运动员中挑选一人参加校运动会比赛.在最近的10次选拔赛中,他们的成绩如下(单位:cm):甲584594608596608597602600612599乙615618580579618593585590598624(1)他们的平均成绩分别是多少?(2)甲、乙两名运动员这10次比赛成绩的极差、方差分别是多少?(3)怎样评价这两名运动员的运动成绩?(4)历届比赛表明,成绩达到5.96m就有可能夺冠,你认为为了夺冠应选择谁参加这项比赛?如果历届比赛成绩表明,成绩达到6.10m就能打破纪录,那么你认为为了打破纪录应选择谁参加这项比赛?人教新版八年级下册《第20章数据的分析》单元测试卷(1)参考答案与试题解析一、选择题:(每题3分,共18分,请将答案填写在表格中)1.(3分)数据2,3,5,5,4的众数是()A.2B.3C.4D.5【考点】众数.【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【解答】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故选:D.2.(3分)两名同学进行了10次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们成绩的()A.众数B.中位数C.方差D.以上都不对【考点】统计量的选择.【分析】根据方差的意义:是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.故要判断哪一名学生的成绩比较稳定,通常需要比较这两名学生三级蛙跳测试成绩的方差.【解答】解:由于方差能反映数据的稳定性,需要比较这两名学生三级蛙跳成绩的方差.故选:C.3.(3分)某校五个绿化小组一天植树的棵树如下:10、10、12、x、8.已知这组数据的众数与平均数相同,那么这组数据的平均数是()A.12B.10C.8D.9【考点】众数;算术平均数.【分析】根据题意先确定x的值,再根据定义求解即可.【解答】解:当x=8或12时,有两个众数,而平均数只有一个,不合题意舍去,当众数为10,根据题意得=10,解得x=10,∵这组数据的众数与平均数相同,∴这组数据的平均数是10;故选:B.4.(3分)从鱼塘捕获同时放养的草鱼240条,从中任选8条称得每条鱼的质量分别为:1.5,1.6,1.4,1.3,1.5,1.2,1.7,1.8(单位:千克),那么可估计这240条鱼的总质量大约为()A.300千克B.360千克C.36千克D.30千克【考点】用样本估计总体;算术平均数.【分析】先计算出8条鱼的平均质量,然后乘以240即可.【解答】解:8条鱼的质量总和为(1.5+1.6+1.4+1.3+1.5+1.2+1.7+1.8)=12千克,每条鱼的平均质量=12÷8=1.5(千克),可估计这240条鱼的总质量大约为1.5×240=360(千克).故选:B.5.(3分)若样本x1+1,x2+1,…,x n+1的平均数为10,方差为2,则对于样本x1+2,x2+2,…,x n+2,下列结论正确的是()A.平均数为10,方差为2B.平均数为11,方差为3C.平均数为11,方差为2D.平均数为12,方差为4【考点】方差;算术平均数.【分析】一般地设n个数据,x1,x2,…x n,平均数=(x1+x2+x3…+x n),方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].直接用公式计算.【解答】解:由题知,x1+1+x2+1+x3+1+…+x n+1=10n,∴x1+x2+…+x n=10n﹣n=9nS12=[(x1+1﹣10)2+(x2+1﹣10)2+…+(x n+1﹣10)2]=[(x12+x22+x32+…+x n2)﹣18(x1+x2+x3+…+x n)+81n]=2,∴(x12+x22+x32+…+x n2)=83n另一组数据的平均数=[x1+2+x2+2+…+x n+2]=[(x1+x2+x3+…+x n)+2n]=[9n+2n]=×11n=11,另一组数据的方差=[(x1+2﹣11)2+(x2+2﹣11)2+…+(x n+2﹣11)2]=[(x12+x22+…+x n2)﹣18(x1+x2+…+x n)+81n]=[83n﹣18×9n+81n]=2,故选:C.6.(3分)甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:班级参加人数中位数方差平均数甲55149 1.91135乙55151 1.10135某同学分析上表后得出如下结论:①甲、乙两班学生成绩平均水平相等;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论正确的是()A.①②③B.①②C.①③D.②③【考点】方差;算术平均数;中位数.【分析】平均水平的判断主要分析平均数;优秀人数的判断从中位数不同可以得到;波动大小比较方差的大小.【解答】解:从表中可知,平均字数都是135,①正确;甲班的中位数是149,乙班的中位数是151,比甲的多,而平均数都要为135,说明乙的优秀人数多于甲班的,②正确;甲班的方差大于乙班的,又说明甲班的波动情况大,所以③也正确.①②③都正确.故选:A.二、填空题(每小题3分,共18分)7.(3分)若x,y,z的平均数是6,则5x+3、5y﹣2、5z+5的平均数是32.【考点】算术平均数.【分析】5x+3,5y﹣2,5z+5的平均数是(5x+3+5y﹣2+5z+5)÷3=[5(x+y+z)+6]÷3,因为x,y,z的平均数是6,则x+y+z=18;再整体代入即可求解.【解答】解:∵x,y,z的平均数是6,∴x+y+z=18;∴(5x+3+5y﹣2+5z+5)÷3=[5(x+y+z)+6]÷3=[5×18+6]÷3=96÷3=32.故答案为:32.8.(3分)一组数据1,3,2,5,2,a的众数是a,这组数据的中位数是2.【考点】中位数;众数.【分析】一组数据中出现次数最多的数据叫做众数,由此可得出a的值,将数据从小到大排列可得出中位数.【解答】解:1,3,2,5,2,a的众数是a,∴a=2,将数据从小到大排列为:1,2,2,2,3,5,中位数为:2.故答案为:2.9.(3分)已知样本方差S2=,则这个样本的容量是4,样本的平均数是3.【考点】方差;总体、个体、样本、样本容量;算术平均数.【分析】从方差公式中可以得到样本容量和平均数.【解答】解:根据样本方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2,其中n是这个样本的容量,是样本的平均数,所以本题中这个样本的容量是4,样本的平均数是3.故填4,3.10.(3分)某校体育期末考核“立定跳远”、“800米”、“仰卧起坐”三项,并按3:5:2的比重算出期末成绩.已知小林这三项的考试成绩分别为80分、90分、100分,则小林的体育期末成绩为89分.【考点】加权平均数.【分析】根据加权平均数的计算公式列出算式,再进行计算即可.【解答】解:根据题意得:(80×3+90×5+100×2)÷(3+5+2)=89(分);故答案为:89.11.(3分)一名射击运动员连续打靶8次,命中的环数如图所示,这组数据的中位数是8.5环,众数是8环.【考点】众数;条形统计图;中位数.【分析】根据众数和中位数的概念求解.【解答】解:把数据按照从小到大的顺序排列为:7,8,8,8,9,9,10,10,中位数为:=8.5,众数为:8.故答案为:8.5,8.12.(3分)已知一组数据的平均数是3,方差是2,把这组数据扩大2倍,那么新数据的平均数是6,方差是8.【考点】方差;算术平均数.【分析】由题意可知,将这组数据的每个数都扩大2倍,那它的和也将扩大2倍,它的平均数也扩大2倍;根据方差的性质可知,数据中的每个数据都扩大2倍,则方差扩大4倍,即可得出答案.【解答】解:设这组数有x个,这组数的平均数是3,那么这组数的和为3x,如果这组数据的每个数都扩大2倍,则这组数的总和为3x×2,平均数为3x×2÷x=6.将这组数据中的每个数据都扩大2倍,所得到的一组数据的方差将扩大4倍,∴新数据的方差是2×4=8,故答案为:6;8.三、计算题:(共28分)13.(8分)学期末,某班评选一名优秀学生干部,下表是班长、学习委员和团支部书记的得分情况:班长学习委员团支部书记思想表现242826学习成绩262624工作能力282426假设在评选优秀干部时,思想表现、学习成绩、工作能力这三方面的重要比为3:3:4,通过计算说明谁应当选为优秀学生干部.【考点】加权平均数.【分析】根据三项成绩的不同权重,分别计算三人的成绩.【解答】解:班长的成绩=24×0.3+26×0.3+28×0.4=26.2(分);学习委员的成绩=28×0.3+26×0.3+24×0.4=25.8(分);团支部书记的成绩=26×0.3+24×0.3+26×0.4=25.4(分);∵26.2>25.8>25.4,∴班长应当选.14.(10分)某快餐店共有10名员工,所有员工工资的情况如下表:人员店长厨师甲厨师乙会计服务员甲服务员乙勤杂工人数1111132 20000700040002500220018001200工资额(元)请解答下列问题:(1)餐厅所有员工的平均工资是4350;所有员工工资的中位数是2000.(2)用平均数还是用中位数描述该餐厅员工工资的一般水平比较恰当?(3)去掉店长和厨师甲的工资后,其他员工的平均工资是多少?它是否也能反映该快餐店员工工资的一般水平?【考点】中位数;加权平均数.【分析】(1)根据加权平均数的定义和中位数的定义即可得到结论;(2)中位数描述该餐厅员工工资的一般水平比较恰当;(3)由平均数的定义即可得到结论.【解答】解:(1)平均工资为(20000+7000+4000+2500+2200+1800×3+1200×2)=4350元;工资的中位数为=2000元;故答案为:4350,2000;(2)由(1)可知,用中位数描述该餐厅员工工资的一般水平比较恰当;(3)去掉店长和厨师甲的工资后,其他员工的平均工资是2062.5元,和(2)的结果相比较,能反映餐厅员工工资的一般水平.15.(10分)下表是七年级三班30名学生期末考试数学成绩表(已破损)成绩(分)5060708090100人数(人)2573已知该班学生期末考试数学成绩平均分是76分.(1)求该班80分和90分的人数分别是多少?(2)设该班30名学生成绩的众数为a,中位数为b,求a+b的值.【考点】众数;二元一次方程组的应用;统计表;中位数.【分析】(1)根据题意:设该班80分和90分的人数分别是x、y;得方程=76与x+y=30﹣2﹣5﹣7﹣3;解方程组即可.(2)众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.求出a,b的值就可以.【解答】解:(1)据题意得,∴∴该班80分和90分的人数分别是8人,5人.成绩(分)5060708090100人数(人)257853(2)据题意得a=80,b=(80+80)÷2=80∴a+b=160四、综合题:(共36分)16.(12分)随着我市社会经济的发展和交通状况的改善,我市的旅游业得到了高速发展,某旅游公司对我市一企业旅游年消费情况进行了问卷调查,随机抽取部分员工,记录每个人消费金额,并将调查数据适当调整,绘制成如图两幅尚不完整的表和图.组别个人年消费金额x(元)频数(人数)频率A x ≤2000180.15B 2000<x ≤4000abC 4000<x ≤6000D 6000<x ≤8000240.20Ex >8000120.10合计c1.00根据以上信息回答下列问题:(1)a =36,b =0.30,c =120.并将条形统计图补充完整;(2)这次调查中,个人年消费金额的中位数出现在C组;(3)若这个企业有3000多名员工,请你估计个人旅游年消费金额在6000元以上的人数.【考点】频数(率)分布表;条形统计图;中位数;用样本估计总体.【分析】(1)首先根据A 组的人数和所占的百分比确定c 的值,然后确定a 和b 的值;(2)根据样本容量和中位数的定义确定中位数的位置即可;(3)利用样本估计总体即可得到正确的答案.【解答】解:(1)观察频数分布表知:A 组有18人,频率为0.15,∴c =18÷0.15=120,∵a =36,∴b =36÷120=0.30;∴C 组的频数为120﹣18﹣36﹣24﹣12=30,补全统计图为:故答案为:36,0.30,120;(2)∵共120人,∴中位数为第60和第61人的平均数,∴中位数应该落在C小组内;(3)个人旅游年消费金额在6000元以上的人数3000×(0.10+0.20)=900人.17.(12分)某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为6种型号).根据以上信息,解答下列问题:(1)该班共有多少名学生?其中穿175型校服的学生有多少?(2)在条形统计图中,请把空缺部分补充完整.(3)在扇形统计图中,请计算185型校服所对应的扇形圆心角的大小;(4)求该班学生所穿校服型号的众数和中位数.【考点】条形统计图;中位数;众数;扇形统计图.【分析】(1)根据穿165型的人数与所占的百分比列式进行计算即可求出学生总人数,再乘以175型所占的百分比计算即可得解;(2)求出185型的人数,然后补全统计图即可;(3)用185型所占的百分比乘以360°计算即可得解;(4)根据众数的定义以及中位数的定义解答.【解答】解:(1)15÷30%=50(名),50×20%=10(名),即该班共有50名学生,其中穿175型校服的学生有10名;(2)185型的学生人数为:50﹣3﹣15﹣15﹣10﹣5=50﹣48=2(名),补全统计图如图所示;(3)185型校服所对应的扇形圆心角为:×360°=14.4°;(4)165型和170型出现的次数最多,都是15次,故众数是165和170;共有50个数据,第25、26个数据都是170,故中位数是170.18.(12分)班主任要从甲、乙两名跳远运动员中挑选一人参加校运动会比赛.在最近的10次选拔赛中,他们的成绩如下(单位:cm):甲584594608596608597602600612599乙615618580579618593585590598624(1)他们的平均成绩分别是多少?(2)甲、乙两名运动员这10次比赛成绩的极差、方差分别是多少?(3)怎样评价这两名运动员的运动成绩?(4)历届比赛表明,成绩达到5.96m就有可能夺冠,你认为为了夺冠应选择谁参加这项比赛?如果历届比赛成绩表明,成绩达到6.10m就能打破纪录,那么你认为为了打破纪录应选择谁参加这项比赛?【考点】方差;算术平均数;极差.【分析】(1)根据平均数的公式进行计算即可;(2)根据极差和方差的计算公式计算即可;(3)从方差和极差两个数比较即可;(4)根据成绩稳定性与目标进行分析即可.【解答】解:(1)甲的平均数=(584+594+…+599)=600(cm),乙的平均数=(615+618+…+624)=600(cm);(2)甲的极差为:612﹣584=28;乙的极差为:624﹣579=45;S甲2=[(584﹣600)2+(594﹣600)2+…+(599﹣600)2]=59.4,S乙2=[(615﹣600)2+(618﹣600)2+…+(624﹣600)2]=266.8.(3)甲的方差较小,成绩较稳定,乙的方差较大,波动较大,但最好成绩较好,爆发力强.(4)若只想夺冠,选甲参加比赛,因为甲的方差较小,成绩较稳定,且大于或等于5.96m 的次数有8次;若要打破纪录,应选乙参加比赛,因为有四次超过6.10m,最好成绩较好,爆发力强.。
新人教版八年级数学下册 第二十章 数据的分析 测试卷含答案

人教版八年级数学下学期第二十章测试卷时间:120分钟分值:120分一、选择题(本大题共6小题,每小题3分,共18分)1.有一组数据:2,5,3,4,5,3,4,5,则这组数据的众数是()A.5B.4C.3D.22.某体育用品商店一天卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如下表所示:鞋的尺码/cm2323.52424.525销售量/双13362则这15双鞋的尺码组成的一组数据中,众数和中位数分别为()A.23.5,24B.24.5,24C.24,24D.24.5,24.53.某校有35名同学参加赣州市的客家文化知识竞赛,预赛分数各不相同,取前18名同学参加决赛.其中一名同学知道自己的分数后,要判断自己能否进入决赛,只需要知道这35名同学分数的()A.众数B.中位数C.平均数D.方差4.在“经典诵读”比赛活动中,某校10名学生的参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法正确的是()A.众数是90分B.中位数是95分C.平均数是95分D.方差是155.为参加学校举办的“诗意校园·致远方”朗诵艺术大赛,八年级的“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90分,方差是2;小强五次成绩的平均数也是90分,方差是14.8,则下列说法正确的是()A.小明的成绩比小强稳定B.小明、小强两人成绩一样稳定C.小强的成绩比小明稳定D.无法确定小明、小强谁的成绩更稳定6.某科普小组有5名成员,身高分别为(单位: cm):160,165,170,163,167.增加1名身高为165 cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A.平均数不变,方差不变B.平均数不变,方差变大C.平均数不变,方差变小D.平均数变小,方差不变二、填空题(本大题共6小题,每小题3分,共18分)7.某校规定学生期末数学的总评成绩由三部分构成:卷面成绩、课外论文成绩、平日表现成绩(三部分所占比例如图),若某名同学三部分的得分依次是92分,80分,84分,则他这学期期末数学的总评成绩是.8.为了调查某一路口某时段的汽车流量,小华记录了15天同一时段通过该路口的汽车辆数,其中有2天是142辆,有2天是145辆,有6天是156辆,有5天是157辆,那么这15天在该时段通过该路口的汽车平均辆数为.9.小芳的爸爸为了了解小芳的数学成绩,现随机抽取她的三次数学考试成绩(单位:分),分别为87,93,90,则这三次数学考试成绩的方差是.10.小晨同学班上的四个绿化小组植树的棵数如下:10,10,x,8,已知这组数据的众数和平均数相等,那么这组数据的中位数是.11.在2020年的“慈善一日捐”活动中,济南市某中学八年级(2)班的50名学生自发组织献爱心捐款活动.班长将捐款情况进行了统计,并绘制成了如图所示的统计图.根据图中提供的信息,可知捐款金额的中位数是.12.有一组数据:1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是.三、解答题(本大题共5小题,每小题6分,共30分)13.图是某次考试中(满分为100分)某班级的数学成绩的频数分布直方图,求该班级这次考试的数学平均成绩.14.某公司招聘人才,对应聘者分别进行了阅读能力、专业知识、表达能力三项的测试,并将三项测试得分按3∶5∶2的比例确定每人的最终成绩,现欲从甲、乙两名应聘者中录取一人,已知两人的各项测试得分如下表(单位:分):阅读能力专业知识表达能力甲938673乙958179(1)请通过相关的计算说明谁将被录用;(2)请对落选者今后的应聘提些合理的建议.15.某地一次性投放了700辆公共自行车供市民租用出行,由于投放数量不够,导致出现了需要租用却未租到车的现象,现随机抽取了某五天在同一时段的调查数据汇成如下表格:时间(7:00-8:00)第一天第二天第三天第四天第五天需要租车却未15001200130013001200租到车的人数(人)请回答下列问题:(1)表格中的五个数据(人数)的中位数是多少?(2)由随机抽样估计平均每天在7:00-8:00需要租用公共自行车的人数.16.我国于1992年起,将每年的11月9日定为全国的“消防宣传日”,某校为了解学生对消防安全知识的掌握情况,组织全校学生参加了消防安全知识测试,并对测试成绩做了详细的统计,将测试成绩(成绩都是整数,试卷满分30分)绘制成了如图所示的频数分布直方图.请回答下列问题:(1)全校参加消防安全知识测试的学生有名;(2)测试成绩的中位数落在分数段内;(3)若用各分数段的中间值(如5.5~10.5的中间值为8)来代替本段分数的平均分,请你估算本次测试全校学生的平均成绩.17.某校为提升初中学生学习数学的兴趣,培养学生的创新精神,举办了“玩转数学”比赛.现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙、丙三个小组各项得分如下表:研究报告小组展示答辩甲918078乙817485丙798390(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果按照研究报告占40%,小组展示占30%,答辩占30%计算各小组的成绩,那么哪个小组的成绩最高?四、解答题(本大题共3小题,每小题8分,共24分)18.某校某名同学因患白血病住院治疗,全校师生闻讯后纷纷捐款.该校八年级一班的全体同学也参加了捐款活动,该班同学捐款情况的部分统计图如图所示.(1)求该班的总人数;(2)将条形图补充完整,并写出捐款金额的众数;(3)该班平均每人捐款多少元?19.某市为了了解高峰时段从总站乘K2路公交车出行的人数情况,随机抽查了10个班次从总站乘该路车的人数,结果如下:14,23,16,25,23,28,26,27,23,25.(1)这组数据的众数为,中位数为;(2)计算这10个班次从总站乘该路车人数的平均数;(3)如果K2路公交车在高峰时段从总站共出车60个班次,根据上面的计算结果,估计在高峰时段从总站乘该路车出行的乘客共有多少人?20.某校开展“十九大知识”竞赛,八年级一、二两个班分别选5名同学参加比赛,其成绩如图所示(满分10分):(1)根据图填写下表:平均数 (单位:分)中位数 (单位:分) 众数 (单位:分)方差一班8.5二班8.5101.6(2)一、二两班同学都认为自己班的成绩较好,请你分别写出一条支持一班、二班同学观点的理由.五、解答题(本大题共2小题,每小题9分,共18分)21.某中学七、八年级各选派10名选手参加学校举办的“爱我江西”知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀,七、八年级两支代表队选手成绩的条形图如图所示,成绩统计分析表如下所示,其中七年级代表队得6分、10分的选手人数分别为a,b.队别平均分中位数方差合格率优秀率七年级6.7m3.4190%n八年级7.17.51.6980%10%(1)请依据图表中的数据,求a,b的值;(2)直接写出表中m,n的值;(3)有人说七年级的合格率、优秀率均高于八年级,所以七年级的成绩比八年级的好,但也有人说八年级的成绩比七年级的好.请你给出两条支持八年级成绩好的理由.22.某校八年级一班要从班级里数学成绩较优秀的甲、乙两名学生中选拔一人参加“全市初中数学联赛”,为此,数学老师对两名同学进行了辅导,并在辅导期间测试了6次,测试成绩如下表(单位:分):甲797884818375乙837780858075利用表中数据,解答下列问题:(1)分别计算甲、乙测试成绩的平均数;(2)分别写出甲、乙测试成绩的中位数;(3)分别计算甲、乙测试成绩的方差(结果取整数);(4)根据以上信息,你认为老师应该派谁参赛?并简述理由.六、解答题(本大题共12分)23.净月某中学为了抗疫宣传,在七、八年级开展了“防疫知识”大赛.为了解参赛学生的成绩情况,从两个年级中各随机抽取了10名学生的成绩(单位:分),数据如下:七年级:889490948494999499100八年级:84938894939893989799整理数据:按如下分数段整理样本数据:成绩x(分)80≤x<8585≤x<9090≤x<9595≤x≤100人数年级七年级1153八年级a144分析数据:统计量平均数中位数众数方差年级七年级93.694b23.6八年级93.7c9320.4根据以上信息,回答下列问题:(1)a=,b=,c=;(2)由统计数据可知,年级选手的成绩比较接近;(3)学校规定,成绩不低于90分的选手可以获奖,若该校七年级有200人参加比赛,请估计有多少人获奖.答案1.A2.D3.B4.A5.A6.C7.88.8分 8.153辆 9.6 10.1011.30元 12.4.8或5或5.213.解:根据题意,得55×4+65×12+75×14+85×8+95×24+12+14+8+2=73(分),∴该班级这次考试的数学平均成绩为73分.14.解:(1)甲的成绩=93×310+86×510+73×210=85.5(分),乙的成绩=95×310+81×510+79×210=84.8(分). ∵85.5>84.8,∴甲将被录用.(2)建议乙在应聘前要多复习专业知识(合理即可).15.解:(1)由表格可知,中位数是1300.(2)∵这五天平均每天需要租车却未租到车的人数=(1500+1200+1300+1300+1200)÷5=1300(人),∴估计平均每天在7:00~8:00需要租用公共自行车的人数为1300+700=2000(人).16.解:(1)由图可知,学生的总人数为(0.1+0.7+1.3+2.8+3.1+4.0)×100=1200(名).故填1200.(2)15.5~20.5(3)x =112×(0.1×3+1.3×8+3.1×13+4.0×18+2.8×23+0.7×28)=17.25(分), ∴本次测试全校学生的平均成绩约为17.25分.17.解:(1)由题意,得x 甲=91+80+783=83(分),x 乙=81+74+853=80(分),x 丙=79+83+903=84(分).∵x 丙>x 甲>x 乙,∴小组的排名顺序为丙、甲、乙.(2)甲组的成绩是91×40%+80×30%+78×30%=83.8(分),乙组的成绩是81×40%+74×30%+85×30%=80.1(分),丙组的成绩是79×40%+83×30%+90×30%=83.5(分).∵83.8>83.5>80.1,∴甲组的成绩最高.18.解:(1)14÷28%=50(人).答:该班的总人数为50人.(2)捐款10元的人数为50-9-14-7-4=16(人).补全条形图如图所示.捐款金额的众数是10元.(3)150×(5×9+10×16+15×14+20×7+25×4)=150×655=13.1(元).答:该班平均每人捐款13.1元.19.解:(1)23 24(2)110×(14+16+23+23+23+25+25+26+27+28)=23.故这10个班次从总站乘该路车人数的平均数是23.(3)60×23=1380(人).故估计在高峰时段从总站乘该路车出行的乘客共有1380人.20.解:(1)一班成绩的平均数=15×(8.5+7.5+8+8.5+10)=8.5(分),一班成绩的众数为8.5分,一班成绩的方差=15×[(8.5-8.5)2+(7.5-8.5)2+(8-8.5)2+(8.5-8.5)2+(10-8.5)2]=0.7,二班成绩的中位数为8分.故从左到右、从上到下依次填8.5,8.5,0.7,8.(2)支持一班的理由:因为两班的平均数相等,而一班的方差较小,所以一班的成绩比较稳定,所以支持一班同学的观点.支持二班的理由:二班有两名同学得了10分,比一班人数多,所以支持二班同学的观点.(答案合理即可).21.解:(1)依题意,得{3×1+6a +7×1+8×1+9×1+10b =6.7×10,1+a +1+1+1+b =10, 解得{a =5,b =1.(2)由条件及(1)中的结论可知m=6,n=2÷10×100%=20%.(3)(答案不唯一)①八年级的平均分高于七年级;②八年级的成绩比七年级的稳定.22.解:(1)x 甲=79+78+84+81+83+756=80(分), x 乙=83+77+80+85+80+756=80(分).(2)甲、乙测试成绩的中位数都是80分.(3)s 甲2=16×[(79-80)2+(78-80)2+(84-80)2+(81-80)2+(83-80)2+(75-80)2]≈9,s 乙2=16×[(83-80)2+(77-80)2+(80-80)2+(85-80)2+(80-80)2+(75-80)2]≈11. (4)应该派甲参赛.理由如下:∵在甲、乙测试成绩的平均数和中位数都相同的情况下,甲的方差较小,测试成绩更稳定, ∴应该派甲参赛.23.解:(1)由样本数据知,八年级在80≤x<85段的人数a=1.将八年级10名学生的成绩重新排列为84,88,93,93,93,94,97,98,98,99,所以其中位数c=(93+94)÷2=93.5,七年级94分人数最多,故众数b=94.故答案为1,94,93.5.(2)由表知八年级成绩的方差20.4小于七年级成绩的方差23.6,∴八年级的成绩更稳定,即成绩比较接近.故答案为八.(3)估计七年级的获奖人数为200×5+310=160(人).。
八年级数学下册《第二十章 数据的分析》解答题练习-附答案(人教版)

八年级数学下册《第二十章数据的分析》解答题练习-附答案(人教版) 1.在“心系灾区”自愿捐款活动中,某班30名同学的捐款情况如下表:(1)这个班级捐款总数是多少元?(2)求这30名同学捐款的平均数.2.饮料店为了了解本店罐装饮料上半年的销售情况,随机调查了8天该种饮料的日销售量,结果如下(单位:听):33,32,28,32,25,24,31,35.(1)这8天的平均日销售量是多少听?(2)根据上面的计算结果,估计上半年(按181天计算)该店能销售这种饮料多少听?3.某中学为了了解学生的体育锻炼情况,随机抽查了部分学生一周参加体育锻炼的时间,得到如图的条形统计图,根据图形解答下列问题:(1)这次共抽查了名学生;(2)所抽查的学生一周平均参加体育锻炼多少小时?(3)已知该校有1 200名学生,估计该校有多少名学生一周参加体育锻炼的时间超过6小时?4.对垃圾进行分类投放,能有效提高对垃圾的处理和再利用,减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度,增强同学们的环保意识,普及垃圾分类及投放的相关知识,某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试,根据测试成绩分布情况,他们将全部测试成绩分成A、B、C、D四组,绘制了如下统计图表:依据以上统计信息,解答下列问题:(1)求得m=________,n=__________;(2)这次测试成绩的中位数落在______组;(3)求本次全部测试成绩的平均数.5.在上学期的几次测试中,小张和小王的几次数学成绩(单位:分)如下表:平时成绩期中成绩期末成绩小张82 85 91小王84 89 86(1)小张可能是根据什么来判断的?小王可能是根据什么来判断的?(2)你能根据小张的想法设计一种方案使小张的成绩比小王的高吗?写出你的方案.6.某中学对全校学生60秒跳绳的次数进行了统计,全校学生60秒跳绳的平均次数是100次,某班体育委员统计了全班50名学生60秒跳绳的成绩,列出的频数分布直方图如图所示(每个分组包括左端点,不包括右端点).(1)该班学生60秒跳绳的平均次数至少是多少?是否超过全校平均次数?(2)该班一个学生说:“我的跳绳成绩在我班是中位数.”请你给出该生跳绳成绩所在的范围.7.某餐厅共有10名员工,所有员工工资的情况如下表:请解答下列问题:(1)餐厅所有员工的平均工资是多少?(2)所有员工工资的中位数是多少?(3)用平均数还是中位数描述该餐厅员工工资的一般水平比较恰当?(4)去掉经理和厨师甲的工资后,其他员工的平均工资是多少?它是否能反映餐厅员工工资的一般水平?8.随机抽取某小吃店一周的营业额(单位:元)如下表:(1)分析数据,填空:这组数据的平均数是元,中位数是元,众数是元.(2)估计一个月的营业额(按30天计算):①星期一到星期五营业额相差不大,用这5天的平均数估算合适么?答(填“合适”或“不合适”):.②选择一个你认为最合适的数据估算这个小吃店一个月的营业额.9.为了传承中华优秀传统文化,某校组织八年级学生参加了“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解大赛的成绩分布情况,随机抽取了其中若干名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,绘制如下不完整的条形统计图.汉字听写大赛成绩分数段统计表汉字听写大赛成绩分数段条形统计图分数段频数50≤x<60 260≤x<70 670≤x<80 980≤x<90 1890≤x≤100 15(1)补全条形统计图.(2)这次抽取的学生成绩的中位数在的分数段中;这次抽取的学生成绩在60≤x<70的分数段的人数占抽取人数的百分比是.(3)若该校八年级一共有学生350名,成绩在90分以上(含90分)为“优”,则八年级参加这次比赛的学生中成绩“优”等的约有多少人?10.某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B 级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?11.某中学某班的学生对本校学生会倡导的“抗震救灾,众志成城”自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据.如图所示为根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3∶4∶5∶8∶6,又知此次调查中捐款25元和30元的学生一共有42人.(1)他们一共调查了多少人?(2)这组数据的众数、中位数各是多少?(3)若该校共有1560名学生,请估计全校学生的总捐款数.12.某校为了解学生每天参加户外活动的情况,随机抽查了一部分学生每天参加户外活动的时间情况,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题;(1)在图①中,m的值为,表示“2小时”的扇形的圆心角为度;(2)求统计的这组学生户外运动时间的平均数、众数和中位数.13.某教育局为了解本地八年级学生参加社会实践活动情况,随机抽查了部分八年级学生第一学期参加社会实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图(如图)请根据图中提供的信息,回答下列问题:(1)α=,并写出该扇形所对圆心角的度数为,请补全条形图.(2)在这次抽样调查中,众数和中位数分别是多少?(3)如果该地共有八年级学生2000人,请你估计“活动时间不少于7天”的学生人数大约有多少人?14.中考低于测试前,某区教育局为了了解选报引体向上的九年级男生的成绩情况,随机抽查了本区部分选报引体向上项目的九年级男生的成绩,并将测试得到的成绩绘成了下面两幅不完整的统计图.请你根据图中的信息,解答下列问题:(1)写出扇形图中a= %,本次抽测中,成绩为6个的学生有名.(2)求这次抽测中,测试成绩的平均数,众数和中位数;(3)该区体育中考选报引体向上的男生共有1800人,如果体育中考引体向上达6个以上(含6个)得满分,请你估计该区体育中考选报引体向上的男生能获得满分的有多少名?15.迎接学校“元旦”文艺汇演,八年级某班的全体同学捐款购买了表演道具,经过充分的排练准备,最终获得了一等奖.班长对全体同学的捐款情况绘制成下表:捐款金额5元10元15元20元捐款人数10人15人5人由于填表时不小心把墨水滴在了统计表上,致使表中数据不完整,但知道捐款金额为10元的人数为全班人数的30%,结合上表回答下列问题:(1)该班共有名同学;(2)该班同学捐款金额的众数是元,中位数是元.(3)如果把该班同学的捐款情况绘制成扇形统计图,则捐款金额为20元的人数所对的扇形圆心角为度.16.某中学的国旗护卫队需从甲、乙两队中选择一队身高比较整齐的队员担任护旗手,每队中每个队员的身高(单位:cm)如下表及图1所示:甲队 178 177 179 179 178 178 177 178 177 179图1分析数据:两组样本数据的平均数、中位数、众数、方差如表所示: 整理、描述数据: 平均数 中位数 众数 方差 甲队 178 178 b 0.6 乙队178a178c(1)表中a = ,b = ,c = ;(2)根据表格中的数据,你认为选择哪个队比较好?请说明理由.17.甲、乙两运动员的射击成绩(靶心为10环)统计如下表(不完全):运动员 \ 环数 \ 次数12 345甲 10 8 9 10 8 乙10 9 9ab某同学计算出了甲的成绩平均数是9,方差是s 2甲=15[(10-9)2+(8-9)2+(9-9)2+(10-9)2+(8-9)2]=0.8,请作答:(1)在图中用折线统计图将甲运动员的成绩表示出来; (2)若甲、乙射击成绩平均数都一样,则a +b = ;(3)在(2)的条件下,当甲比乙的成绩较稳定时,请列举出a,b 的所有可能取值,并说明理由.18.我市某中学七、八年级各选派10名选手参加学校举办的环保知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀,这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表(不完整)如下所示:队别平均分中位数方差合格率优秀率七年级m 3.41 90% 20%八年级7.1 n 80% 10%(1)观察条形统计图,可以发现:八年级成绩的标准差,七年级成绩的标准差(填“>”、“<”或“=”),表格中m=,n=;(2)计算七年级的平均分;(3)有人说七年级的合格率、优秀率均高于八年级,所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.19.现有甲、乙两家农副产品加工厂到快餐公司推销鸡腿,两家鸡腿的价格相同,品质相近.快餐公司决定通过检查鸡腿的质量来确定选购哪家的鸡腿.检查人员从两家的鸡腿中各随机抽取15个,记录它们的质量(单位:g)如表所示.质量(g) 73 74 75 76 77 78甲的数量 2 4 4 3 1 1乙的数量 2 3 6 2 1 1根据表中数据,回答下列问题:(1)甲厂抽取质量的中位数是g;乙厂抽取质量的众数是g.(2)如果快餐公司决定从平均数和方差两方面考虑选购,现已知抽取乙厂的样本平均数乙=75,方差≈1.73.请你帮助计算出抽取甲厂的样本平均数及方差(结果保留小数点后两位),并指出快餐公司应选购哪家加工厂的鸡腿?20.甲、乙两名队员参加射击训练,成绩分别绘制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩(环) 中位数(环) 众数(环) 方差甲 a 7 7 1.2乙7 b 8 c(2)分别运用表中的四个统计量,简要分析这两名队员的射击成绩,若选派其中一名参赛,你认为应选哪名队员?参考答案1.解:(1)这个班级捐款总数为5×11+10×9+15×6+20×2+25×1+30×1=330(元).(2)这个班级捐款总数是330元,这30名同学捐款的平均数为11元.2.解:(1)18×(33+32+28+32+25+24+31+35)=30(听). (2)181×30=5 430(听).3.解:(1)60(2)4×15+5×10+7×15+8×2060=6.25(时); (3)1 200×15+2060=700(名). 4.解:(1)30,19%. (2)B(或70<x ≤80).(3)本次全部测试成绩的平均数为:1200×(2 581+5 543+5 100+2 796)=80.1(分). 5.解:(1)小张可能是根据加权平均数来判断的,小王可能是根据算术平均数来判断的.(2)参考方案:平时成绩、期中成绩、期末成绩所占的百分比分别为30%,30%,40%,这样小张的综合成绩就是86.5分,小王的综合成绩就是86.3分.6.解:(1)该班学生60秒跳绳的平均次数至少是:(60×4+80×13+100×19+120×7+140×5+160×2)÷50=100.8(次).因为100.8>100所以超过全校平均次数.(2)这个学生的跳绳成绩在该班是中位数由4+13+19=36,可知该生跳绳成绩一定在100~120次范围内.7.解:(1)平均工资为4350元(2)工资的中位数为2000元(3)由(1)(2)可知,用中位数描述该餐厅员工工资的一般水平比较恰当(4)去掉经理和厨师甲的工资后,其他员工的平均工资是2062.5元,和(3)的结果相比较,能反映餐厅员工工资的一般水平8.解:(1)这组数据的平均数==780(元);按照从小到大排列为540、640、640、680、780、1070、1110中位数为680元,众数为640元;故答案为:780,680,640;(2)①因为在周一至周日的营业额中周六、日的营业额明显高于其他五天的营业额所以去掉周六、日的营业额对平均数的影响较大故用该店本周星期一到星期五的日平均营业额估计当月的营业总额不合适;故答案为:不合适;②用该店本周一到周日的日均营业额估计当月营业额当月的营业额为30×780=23400(元).9.解:(1)补全条形图如下:(2)∵被调查的总人数为2+6+9+18+15=50人,而第25、26个数据均落在80≤x<90∴这次抽取的学生成绩的中位数在80≤x<90的分数段中这次抽取的学生成绩在60≤x<70的分数段的人数占抽取人数的百分比是×100%=12%故答案为:80≤x<90,12%;(3)105.答:该年级参加这次比赛的学生中成绩“优”等的约有105人.10.解:(1)∵总人数为18÷45%=40人∴C等级人数为40﹣(4+18+5)=13人则C对应的扇形的圆心角是117°,故答案为:117;(2)补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B等级,所以所抽取学生的足球运球测试成绩的中位数会落在B等级故答案为:B.(4)估计足球运球测试成绩达到A级的学生有30人.11.解:(1)设捐款25元的有8x人,则捐款30元的有6x人.根据题意列方程,得8x +6x =42,解得x =3∴他们一共调查了3x +4x +5x +8x +6x =78(人).(2)由图象可知,众数为25元.由于本组数据的个数为78,按从小到大的顺序排列,处于中间位置的两个数都是25元,故中位数为25元.(3)全校学生的总捐款数约为(3×3×10+3×4×15+3×5×20+3×8×25+3×6×30)×156078=34200(元).12.解:(1)m%=1﹣40%﹣25%﹣15%=20%,即m 的值是20表示“2小时”的扇形的圆心角为:360°×15%=54°故答案为:20、54;(2)这组数据的平均数是:=众数是:1,中位数是:1.13.解:(1)a =1﹣(40%+20%+25%+5%)=1﹣90%=10%圆心角的度数为360°×10%=36°;(2)众数是5天,中位数是6天;(3)2000×(25%+10%+5%)=800(人).答:估计“活动时间不少于7天”的学生人数大约有800人.14.解:(1)a=1﹣30%﹣15%﹣10%﹣20%=25%成绩为6的学生有:20÷10%×25%=50(名)故答案为:25,50;(2)平均数是:3×10%+4×15%+5×30%+6×25%+7×20%=5.3众数是:5个,中位数是:5个;(3)1800×(25%+20%)=810(名)答:该区体育中考选报引体向上的男生能获得满分的有810名.15.解:(1)∵15÷30%=50∴该班共有50人;(2)∵∵捐15元的同学人数为50﹣(10+15+5+)=20∴学生捐款的众数为10元又∵第25个数为10,第26个数为15∴中位数为(10+15)÷2=12.5元;(3)依题意捐款金额为20元的人数所对应的扇形圆心角的度数为36°.故答案为:50,15,12.5,36.16.解:(1)乙队共10名队员,中位数落在第3组,为178,即a =178;甲队178出现的次数最多,故众数为178,即b =178;c =110×[(176﹣178)2×2+(177﹣178)2+(178﹣178)2×4+(179﹣178)2+(180﹣178)2×2]=1.8; (2)选甲队好.∵甲队的方差为0.6,乙队的方差为1.8∴甲队的方差小于乙队的方差∴甲队的身高比乙队整齐,故选甲队比较好.17.解:(1)如图所示;(2)[由题意,知15(10+9+9+a +b)=9,∴a +b =17.] (3)在(2)的条件下,a,b 的值有四种可能:第①种和第②种方差相等:s 2乙=15(1+0+0+4+1)=1.2>s 2甲 ∴甲比乙的成绩较稳定.第③种和第④种方差相等:s 2乙=15(1+0+0+0+1)=0.4<s 2甲 ∴乙比甲的成绩稳定.因此,a=7,b=10或a=10,b=7时,甲比乙的成绩较稳定.18.解:(1)∵八年级成绩的方差=110[2(5﹣7.1)2+(6﹣7.1)2+2(7﹣7.1)2+4(8﹣7.1)2+(9﹣7.1)2]=1.69<3.41∴八年级成绩的标准差<年级成绩的标准差;七年级成绩为3,6,6,6,6,6,7,8,9,10∴中位数为6,即m=6;八年级成绩为5,5,6,7,7,8,8,8,8,9∴中位数为7.5,即n=7.5;故答案为:<,6,7.5;(2)七年级成绩的平均分=(3×1+5×6+7×1+8×1+9×1+10×1)÷10=6.7;(3)①八年级队平均分高于七年级队;②八年级队的成绩比七年级队稳定;③八年级队的成绩集中在中上游;所以支持八年级队成绩好.19.解:(1)75;75.(2)解:=(73×2+74×4+75×4+76×3+77+78)÷15=75=≈1.87∵=,>∴两家加工厂的鸡腿质量大致相等,但乙加工厂的鸡腿质量更稳定.因此快餐公司应该选购乙加工厂生产的鸡腿.20.解:(1)a=7,b=7.5,c=4.2(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定,综合以上各因素,若选派一名学生参赛的话,可选择乙参赛,因为乙获得高分的可能更大。
人教版八年级数学下册 第20章 数据的分析 单元检测试题(有答案)

第20章数据分析单元检测试题(满分120分;时间:120分钟)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 某鞋店销售同种品牌不同尺码的男鞋,采购员再次进货时,对于男鞋的尺码,他最关注的是()A.方差B.众数C.中位数D.平均数2. 一次数学考试,七年一班人的分数和为,七年二班人的分数和为,则这次考试两个班的平均分为()A. B. C. D.3. 下列说法正确的是()A.数据,,,,的中位数是B.数据,,,,,,的众数是C.若甲组数据方差,乙组数据方差,则乙组数据比甲组数据稳定D.数据,,,,的平均数是4. 某校男子篮球队名队员进行定点投篮练习,每人投篮次,他们投中的次数统计如表:投中次数人数则这些队员投中次数的众数、中位数和平均数分别为()A.,,B.,,C.,,D.,,5. 某服装厂为了解某中学八年级学生的校服尺码,随机抽查了名学生的校服尺码,经统计得到下表:尺码组中值人数则这组数据的中位数所在的范围是()A. B. C. D.6. 以下是某校九年级名同学参加学校首届“汉字听写大赛”的成绩统计表:成绩/分人数/人则这组数据的中位数和平均数分别为()A.,B.,C.,D.,7. 某班六名同学体能测试成绩(分)如下:,,,,,,对这组数据表述错误的是()A.众数是B.方差是C.平均数是D.中位数是8. 对于一组统计数据:,,,,,下列说法错误的是()A.平均数是B.中位数是C.众数是D.方差是9. 某班名同学参加体能测试的成绩分别为:,,,,,.下列表述错误的是A.众数是B.中位数是C.平均数是D.方差是10. 甲、乙两人一周五天工作日每天生产合格产品的个数如下表所示,其中为自然数.则下列说法不正确的是()甲乙A.甲、乙的中位数一定相同B.当时,甲的方差大于乙的方差C.甲、乙的众数一定相同D.甲的平均数一定大于乙的平均数二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 为了测试甲、乙两种电子表走时的误差,做了如下所示统计:甲、乙两种电子表走时误差平均数都是秒,方差分别为和,则两种电子表走时较稳定的是________.(填“甲”或“乙”)12. 在初三基础测试中,从化某中学的小明的科成绩分别为语文分,英语分,数学分,物理分,化学分,政治分,则他的成绩的众数为________ 分.13. 已知一组数据,,,,的平均数是,那么这组数据的方差是________.14. 已知一个样本,,,,,,的众数为,平均数为,则该样本的方差为________.15. 一组数据,,,,,,若这组数据中的每个数据都是这组数据的众数,则这组数据的平均数是________.16. 某中学八年级班学生为地震灾区举行了一次募捐活动,有名同学捐了元,位同学捐了元,还有一位同学捐了元.你认为这个同学捐款的平均数、中位数、众数,用哪一个来代表他们每人捐款的一般数额比较好呢?________.17. 若个数,,,,的平均数是,则________.18. 学校规定学生的数学期末总评成绩由三部分组成,平时成绩占,期中成绩占,期末成绩占.小红的平时成绩、期中成绩、期末成绩依次为分、分、分,那么小红的数学期末总评成绩为________分.19. 为从甲、乙两名射击运动员中选出一人参加市锦标赛,特统计了他们最近次射击训练的成绩,其中,他们射击的平均成绩都为环,方差分别是,,从稳定性的角度来看________的成绩更稳定.(填“甲”或“乙”)20. 学校举行“纪念反法西斯战争胜利周年”演讲比赛,共有同学进入决赛,比赛将评出金奖名,银奖名,铜奖名.某参赛选手知道自己的分数后,要判断自己能否获奖,他应当关注的是有关成绩的________.(填“平均数”、“中位数”或“众数”)三、解答题(本题共计6 小题,共计60分,)21. 在一次歌咏比赛中,六个评委给周小红打的分数分别为:,,,,,.为了尽可能减少人为因素的影响,去掉一个最高分,去掉一个最低分,那么,周小红的平均分是多少?22. 某中学对各个班级的教室卫生情况的考查包括以下几项:黑板、门窗、桌椅、地面,一天,三个班级各项卫生成绩分别如表:黑板门窗桌椅地面一班二班三班小明将黑板、门窗、桌椅、地面这四项得分依次按、、、的比例计算各班的卫生成绩,那么哪个班的成绩最高?23. 为了参加“中小学生首届诗词大会”,某校八年级的两班学生进行了预选,其中班上前名学生的成绩(百分制)分别为:八班,,,,;八班,,,,.通过数据分析,列表如下:班级平均分中位数众数方差八班八班直接写出表中,,的值;根据以上数据分析,你认为哪个班前名同学的成绩较好?说明理由.24. 某校举行了主题为“新冠肺炎防护”的知识竞赛活动,对八年级的两班学生进行了预选,其中班上前名学生的成绩(百分制)分别为:八(1)班,,,,;八(2)班,,,,.通过数据分析,列表如下:班级平均分中位数众数方差八(1)八(2)(1)直接写出表中,,的值:=________,=________,=________;(2)求的值,并根据以上数据分析,你认为哪个班前名同学的成绩较好?说明理由.25. 为全力抗击疫情,响应政府“停课不停学”的号召,某市教育局发布关于疫情防控期间开展在线课程教学的通知:从月日开始,全市初高中毕业班按照教学计划,开展在线课程教学和答疑,据互联网后台数据显示,某中学九年级七科老师月日在线答疑问题各学科个数如下表.直接写出九年级七科老师月日在线答疑问题各学科个数的众数与中位数;计算九年级七科老师在线答疑问题各学科个数的平均数.26. 市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第次第次第次第次第次第次甲乙(1)根据表格中的数据,分别计算出甲、乙两人的平均成绩;(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.参考答案与试题解析一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】B【解答】解:由于众数是数据中出现次数最多的数,故他应更关心同种品牌不同尺码的男鞋的销售数量最多的,即这组数据的众数.故选.2.【答案】D【解答】解:∵七年一班人的分数和为,七年二班人的分数和为,∴两班的总成绩是,∴这次考试两个班的平均分为.故选.3.【答案】D【解答】解:、把这组数据从小到大排列为:,,,,,中位数是,故本选项错误;、在数据,,,,,,中,出现了次,出现的次数最多,则众数是,故本选项错误;、因为甲组数据方差,乙组数据方差,则,所以乙组数据和甲组数据同样稳定,故本选项错误;、数据,,,,的平均数是,故本选项正确;故选.4.【答案】A【解答】在这一组数据中是出现次数最多的,故众数是次;处于中间位置的两个数的平均数是=,那么由中位数的定义可知,这组数据的中位数是次.平均数是:=(次),所以答案为:、、,5.【答案】B【解答】解:∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都在,∴这组数据的中位数所在的范围是.故选.6.【答案】A【解答】解:∵共有名同学,中位数是第和的平均数,∴这组数据的中位数是;这组数据的平均数是:;故选:.7.【答案】D【解答】、出现的次数最多,所以众数是,正确,不符合题意;、方差是:=,正确,不符合题意;、平均数是=,正确,不符合题意;、把数据按大小排列,中间两个数都为,,所以中位数是,错误,符合题意.8.【答案】D【解答】、平均数为,正确;、重新排列为、、、、,则中位数为,正确;、众数为,正确;、方差为=,错误;9.【答案】B【解答】解:、出现的次数最多,所以众数是,正确;、把数据按大小排列,中间两个数为,,所以中位数是,错误;、平均数是,正确;、方差是,正确.故选.10.【答案】C【解答】解:为自然数,,甲、乙的中位数一定相同,都是,故正确;当时,甲的平均数,乙的平均数,,,甲的方差大于乙的方差,故正确;为自然数,不确定,乙的众数不确定,甲、乙的众数不一定相同,故错误;甲的平均数,乙的平均数,甲的平均数一定大于乙的平均数,故正确.故选.二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【答案】乙【解答】解:方差反映了一组数据的波动大小,方差越大,波动性越大,∵,∴乙电子表更稳定.故答案为:.12.【答案】【解答】解:∵出现了两次,出现的次数最多,∴其众数为分.故答案为.13.【答案】【解答】=,解得=,=.14.【答案】【解答】解:解:因为众数为,可设,,未知,平均数,解得,根据方差公式;故答案为:.15.【答案】【解答】解;∵数据,,,,,中的每个数据都是这组数据的众数,∴,∴这组数据的平均数是,故答案为:.16.【答案】众数【解答】解:由于众数是数据中出现次数最多的数,故代表他们每人捐款的一般数额是众数.故填众数.17.【答案】【解答】解:,,,,的平均数是,,.故答案为:.18.【答案】【解答】解:小红的数学期末总评成绩(分).故填.19.【答案】甲【解答】∵,,∴,∴成绩最稳定的运动员是甲,20.【答案】中位数【解答】解:∵进入决赛的名学生所得分数互不相同,共有个奖项,∴这名学生所得分数的中位数即是获奖的学生中的最低分,∴某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是中位数,如果这名学生的分数大于或等于中位数,则他能获奖,如果这名学生的分数小于中位数,则他不能获奖.故答案为:中位数.三、解答题(本题共计6 小题,每题10 分,共计60分)21.【答案】周小红的平均分是.【解答】周小红的平均分是.22.【答案】解:一班的成绩是:(分);二班的成绩是:(分);三班的成绩是:(分);则三班的成绩最高.【解答】解:一班的成绩是:(分);二班的成绩是:(分);三班的成绩是:(分);则三班的成绩最高.23.【答案】解:,由小到大将八班名学生的成绩排列:,,,,,所以,;八班前名同学的成绩较好.理由:虽然八班,八两班的成绩的中位数、众数相同,但八班的成绩的平均数大,且方差小,∴八班前5名同学的成绩较好.【解答】解:,由小到大将八班名学生的成绩排列:,,,,,所以,;八班前名同学的成绩较好.理由:虽然八班,八两班的成绩的中位数、众数相同,但八班的成绩的平均数大,且方差小,∴八班前5名同学的成绩较好.24.【答案】,,∵八(2)班的方差==.∴由数据可知,两班成绩中位数,众数相同,而八(2)班平均成绩更高,且方差更小,成绩更稳定,∴八(2)班前名同学的成绩较好;【解答】八(2)班的平均分==,将八(1)班的前名学生的成绩按从小到大的顺序排列为:,,,,,第三个数是,所以中位数=,出现了次,次数最多,所以众数=.故答案为,,;∵八(2)班的方差==.∴由数据可知,两班成绩中位数,众数相同,而八(2)班平均成绩更高,且方差更小,成绩更稳定,∴八(2)班前名同学的成绩较好;25.【答案】解:九年级七科老师月日在线答疑问题各学科个数的众数是,中位数是.答:九年级七科老师在线答疑问题各学科个数的平均数是【解答】解:九年级七科老师月日在线答疑问题各学科个数的众数是,中位数是.答:九年级七科老师在线答疑问题各学科个数的平均数是26.【答案】甲:=,乙:=;;;推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.【解答】甲:=,乙:=;;;推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.。
人教版八年级数学下册单元测试《第20章 数据分析》(解析版)

《第20章数据分析》一、填空题(共14小题,每题2分,共28分)1.对于数据组3,3,2,3,6,3,6,3,2,4中,众数是;平均数是;极差是,中位数是.2.数据3,5,4,2,5,1,3,1的方差是.3.某学生7门学科考试成绩的总分是560分,其中3门学科的总分是234分,则另外4门学科成绩的平均分是分.4.已知一组数据1,2,y的平均数为4,那么y的值是.5.若样本x1+1,x2+1,…,xn+1的平均数为10,方差为2,则另一样本x1+2,x2+2,…,xn+2,的平均数为,方差为.6.小张和小李去练习射击,第一轮10枪打完后两人的成绩如图所示,通常新手的成绩不太稳定,那么根据图的信息,估计小张和小李两人中新手是.7.某日天气预报说今天最高气温为8℃,气温的极差为10℃,则该日最低气温为℃.8.一班级组织一批学生去春游,预计共需费用120元,后来又有2人参加进来,总费用不变,于是每人可以少分摊3元,原来参加春游的学生人数是.9.当五个整数从小到大排列后,其中位数是4,如果这组数据的唯一众数是6,那么这组数据可能的最大的和是.10.八年级某班为了引导学生树立正确的消费观,随机调查了10名同学某日除三餐以外的零花钱情况,其统计图如下,据图可知:零花钱在3元以上(包括3元)的学生所占比例为%,该班学生每日零花钱的平均数大约是元.11.为了调查某一段的汽车流量,记录了30天中每天同一时段通过该路口的汽车辆数,其中有4天是284辆,4天是290辆,12天是312辆,10天314辆,那么这30天该路口同一时段通过的汽车平均数为辆.12.某一段时间,小芳测得连续五天的日最低气温后,整理得出下表:那么空缺的两个数据是,.13.一养雨专业户为了估计池塘里鱼的条数,先随意捕上100条做上标记,然后放回湖里,过一段时间,待带标记的鱼完全混合于鱼群后,又捕捞了5次,记录如下表:由此估计池塘里大约有条鱼.14.现有A、B两个班级,每个班级各有45名学生参加一次测试,每名参加者可获得0,1,2,3,4,5,6,7,8,9分这几种不同的分值中的一种.测试结果A班的成绩如下表所示,B班的成绩如图所示.(1)由观察可知,班的方差较大;(2)若两班合计共有60人及格,问参加者最少获分才可以及格.二、选择题(共4小题,每题3分,共12分)15.某学校五个绿化小组一天植树的棵数如下:10,10,12,x ,8,如果这组数据的平均数与众数相等,那么这组数据的中位数是( ) A .8B .9C .10D .1216.某班50名学生身高测量结果如下表:该班学生身高的众数和中位数分别是( )A .1.60,1.56B .1.59,1.58C .1.60,1.58D .1.60,1.6017.如果一组数据a 1,a 2,…,a n 的方差是2,那么一组新数据2a 1,2a 2,…,2a n 的方差是( ) A .2B .4C .8D .1618.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:某同学分析上表后得出如下结论:①甲、乙两班学生成绩平均水平相等;②乙班优秀的人数多于甲班优秀的人数19.某校规定学生期末数学总评成绩由三部分构成:期末统考卷面成绩(占70%)、平时测验成绩(占20%)、上课表现成绩(占10%),若学生董方的三部分得分依次是92分、80分、84分,则她这学期期末数学总评成绩是多少?20.某市举行一次少年滑冰比赛,各年龄组的参赛人数如下表所示:(1)求全体参赛选手年龄的众数、中位数;(2)小明说,他所在年龄组的参赛人数占全体参赛人数的28%.你认为小明是哪个年龄组的选手?请说明理由.21.某校八年级(1)班50名学生参加2007年贵阳市数学质量监控考试,全班学生的成绩统计如下表:请根据表中提供的信息解答下列问题:(1)该班学生考试成绩的众数是;(2)该班学生考试成绩的中位数是;(3)该班张华同学在这次考试中的成绩是83分,能不能说张华同学的成绩处于全班中游偏上水平?试说明理由.22.当今,青少年视力水平的下降已引起全社会的关注,为了了解某校3000名学生的视力情况,从中抽取了一部分学生进行了一次抽样调查,利用所得数据,绘制出如下的直方图(长方形的高表示人数),根据图形,回答下列问题:(1)本次抽样调查共抽测了名学生;(2)参加抽测学生的视力的众数在内;(3)如果视力为4.9(包括4.9)以上为正常,估计该校学生视力正常的人数约为.23.为了了解某校2000名学生参加环保知识竞赛的成绩,从中抽取了部分学生的竞赛成绩(均为整数),整理后绘制成如下的频数分布直方图(如图),请结合图形解答下列问题.(1)指出这个问题中的总体;(2)求竞赛成绩在79.5~89.5这一小组的频率;(3)如果竞赛成绩在90分以上(含90分)的同学可获得奖励,请估计全校约有多少人获得奖励.24.小红的奶奶开了一个金键牛奶销售店,主要经营“金键学生奶”、“金键酸牛奶”、“金键原味奶”,可奶奶经营不善,经常有品种的牛奶滞销(没卖完)或脱销(量不够),造成了浪费或亏损,细心的小红结合所学的统计知识帮奶奶统计了一个星期牛奶的销售情况,并绘制了下表:(1)计算各品种牛奶的日平均销售量,并说明哪种牛奶销量最高;(2)计算各品种牛奶的方差(保留两位小数),并比较哪种牛奶销量最稳定;(3)假如你是小红,你会对奶奶有哪些好的建议.25.为了增强环境保护意识,6月5日“世界环境日”当天,在环保局工作人员指导下,若干名“环保小卫士”组成的“控制噪声污染”课题学习研究小组,抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位:dB),将调查的数据进行处理(设所测数据是正整数),得频数分布表如下:根据表中提供的信息解答下列问题:(1)频数分布表中的a= ,b= ,c= ;(2)补充完整频数分布直方图;(3)如果全市共有200个测量点,那么在这一时刻噪声声级小于75dB的测量点约有多少个?26.今年3月5日,我校组织全体学生参加了“走出校门,服务社会”的活动.九年级三班同学统计了该天本班学生打扫街道,去敬老院服务和到社区文艺演出的人数,并做了如下直方图和扇形统计图.请根据同学所作的两个图形.解答:(1)九年级三班有多少名学生;(2)补全直方图的空缺部分;(3)若九年级有800名学生,估计该年级去敬老院的人数.27.下表给出1980年至北京奥运会前的百米世界记录情况:(1)请你根据以上成绩数据,求出该组数据的众数为,极差为.(2)请在下图中用折线图描述此组数据.28.(8分)国家主管部门规定:从2008年6月1日起,各商家禁止向消费者免费提供一次性塑料购物袋.为了了解巴中市市民对此规定的看法,对本市年龄在16﹣65岁之间的居民,进行了400个随机访问抽样调查,并根据每个年龄段的抽查人数和该年龄段对此规定的支持人数绘制了下面的统计图.根据上图提供的信息回答下列问题:(1)被调查的居民中,人数最多的年龄段是岁.(2)已知被调查的400人中有83%的人对此规定表示支持,请你求出31﹣40岁年龄段的满意人数,并补全图.(3)比较21﹣30岁和41﹣50岁这两个年龄段对此规定的支持率的高低.(四舍五入到1%,注:某年龄段的支持率=).新人教版八年级数学下册《第20章 数据分析》2016年单元测试卷(A 卷)参考答案与试题解析一、填空题(共14小题,每题2分,共28分)1.对于数据组3,3,2,3,6,3,6,3,2,4中,众数是 3 ;平均数是 3.5 ;极差是 4 ,中位数是 3 .【考点】中位数;算术平均数;众数;极差.【分析】根据查众数、平均数、极差与中位数的定义解答. 【解答】解:众数是一组数据中出现次数最多的数,所以众数是3; 平均数是(3+3+2+3+6+3+6+3+2+4)÷10=3.5; 极差是6﹣2=4;将这组数据从小到大的顺序排列2,2,3,3,3,3,3,4,6,6.处于中间位置的数是3,3,那么由中位数的定义可知,这组数据的中位数是3. 故填3;3.5;4;3.【点评】本题为统计题,考查众数、平均数、极差与中位数的意义,解题的关键是准确理解各概念的含义.2.数据3,5,4,2,5,1,3,1的方差是 2.25 . 【考点】方差. 【专题】计算题.【分析】根据方差的公式计算.方差S 2= [(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2].【解答】解:平均数=(3+5+4+2+5+1+3+1)=3,方差S 2= [(3﹣3)2+(4﹣3)2+(5﹣3)2+(2﹣3)2+(1﹣3)2+(5﹣3)2+(3﹣3)2+(1﹣3)2]=2.25.故填2.25.【点评】本题考查方差的定义.一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2= [(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.3.某学生7门学科考试成绩的总分是560分,其中3门学科的总分是234分,则另外4门学科成绩的平均分是 81.5 分. 【考点】算术平均数. 【专题】计算题.【分析】由题意得,用7门学科考试成绩的总分﹣3门学科的总分即为4门学科成绩的总分,再用4门学科成绩的总分除以门数即得4门学科成绩的平均分.【解答】解:另外4门学科成绩的平均分=(560﹣234)÷4=81.5. 故填81.5.【点评】本题考查了平均数的计算.4.已知一组数据1,2,y 的平均数为4,那么y 的值是 9 . 【考点】算术平均数.【分析】只要运用求平均数公式:即可求出,为简单题.【解答】解:由题意知,平均数=(1+2+y )=4, 所以y=12﹣1﹣2=9. 故填9.【点评】本题考查了平均数的概念.熟记公式是解决本题的关键.5.若样本x 1+1,x 2+1,…,x n +1的平均数为10,方差为2,则另一样本x 1+2,x 2+2,…,x n +2,的平均数为 11 ,方差为 2 . 【考点】算术平均数;方差.【分析】利用平均数和方差的定义解答.【解答】解:根据题意,新数据都加了1,所以平均数也加1,即新数据的平均数为11;又因为数据的波动大小没变,所以方差不变,仍然是2. 故填11;2.【点评】本题考查方差、平均数的意义.6.小张和小李去练习射击,第一轮10枪打完后两人的成绩如图所示,通常新手的成绩不太稳定,那么根据图的信息,估计小张和小李两人中新手是小李.【考点】方差;折线统计图.【分析】根据图形可知,小李的射击不稳定,可判断新手是小李.【解答】解:由图象可以看出,小李的成绩波动大,∵波动性越大,方差越大,成绩越不稳定,∴新手是小李.故填小李.【点评】考查了方差的意义:波动性越大,方差越大,成绩越不稳定.7.某日天气预报说今天最高气温为8℃,气温的极差为10℃,则该日最低气温为﹣2 ℃.【考点】极差.【分析】极差的公式:极差=最大值﹣最小值.找出所求数据中最大的值8,气温的极差为10℃,再代入公式求值即可【解答】解:数据中最大的值8,气温的极差为10℃,该日最低气温=8﹣10=﹣2(℃).故填﹣2.【点评】极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.注意:(1)极差的单位与原数据单位一致;(2)如果数据的平均数、中位数、极差都完全相同,此时用极差来反映数据的离散程度就显得不准确.8.一班级组织一批学生去春游,预计共需费用120元,后来又有2人参加进来,总费用不变,于是每人可以少分摊3元,原来参加春游的学生人数是8 .【考点】算术平均数.【专题】计算题.【分析】设原来参加的人数为x,据此列方程得:﹣=3,即可解得x的值.【解答】解:设原来参加的人数为x,则﹣=3,解得x=8.经检验x=8是原方程的根,所以x=8.故答案为8.【点评】本题考查了平均数的概念和方程的思想.平均数等于所有数据的和除以数据的个数.分式方程要验根.9.当五个整数从小到大排列后,其中位数是4,如果这组数据的唯一众数是6,那么这组数据可能的最大的和是21 .【考点】众数;中位数.【专题】开放型.【分析】根据中位数和众数的定义分析可得答案.【解答】解:因为五个整数从小到大排列后,其中位数是4,这组数据的唯一众数是6.所以这5个数据分别是x,y,4,6,6,其中x=1或2,y=2或3.∴这组数据可能的最大的和是2+3+4+6+6=21.故答案为:21.【点评】主要考查了根据一组数据的中位数来确定数据的能力.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意:找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.10.八年级某班为了引导学生树立正确的消费观,随机调查了10名同学某日除三餐以外的零花钱情况,其统计图如下,据图可知:零花钱在3元以上(包括3元)的学生所占比例为50 %,该班学生每日零花钱的平均数大约是 2.8 元.【考点】加权平均数;条形统计图.【专题】计算题.【分析】读图可知:零花钱在3元以上(包括3元)的学生有5人,据此即可求得所占的比例;利用平均数的计算公式即可求得该班学生每日零花钱的平均数.【解答】解:∵零花钱在3元以上(包括3元)的学生有5人,∴所占比例为=50%;则该班学生每日零花钱的平均数大约为(2+3+1+4+1+5+2+4+2+3)=2.8(元).故填50%,2.8.【点评】本题考查的是样本平均数的求法及运用,即平均数公式:.11.为了调查某一段的汽车流量,记录了30天中每天同一时段通过该路口的汽车辆数,其中有4天是284辆,4天是290辆,12天是312辆,10天314辆,那么这30天该路口同一时段通过的汽车平均数为306 辆.【考点】加权平均数.【专题】计算题.【分析】由题意知,要求30天该路口同一时段通过的汽车平均数,计算出30天通过的总车辆,再除以总天数即可.【解答】解:30天该路口同一时段通过的汽车平均数=(284×4+290+4+312×12+314×10)÷30=306.故填306.【点评】本题考查了加权平均数的概念,熟记公式是解决本题的关键.12.某一段时间,小芳测得连续五天的日最低气温后,整理得出下表:那么空缺的两个数据是 4 , 2 .【考点】算术平均数;方差.【专题】图表型.【分析】根据平均数的计算方法,可以求出星期五的最低气温,然后根据方差的计算公式计算出方差.【解答】解:设星期五的最低气温为a,则平均气温==3,解得a=4;S2= [(1﹣3)2+(3﹣3)2+(2﹣3)2+(5﹣3)2+(4﹣+3)2]=2.故填4,2.【点评】熟练掌握平均数和方差的计算公式.13.一养雨专业户为了估计池塘里鱼的条数,先随意捕上100条做上标记,然后放回湖里,过一段时间,待带标记的鱼完全混合于鱼群后,又捕捞了5次,记录如下表:由此估计池塘里大约有1000 条鱼.【考点】用样本估计总体.【专题】图表型.【分析】先计算捕捞了5次中有标记的鱼所占的比例,而在整体中有标记的共有100条,根据比例即可求得总数.【解答】解:(90+100+120+100+80)=490条,带标记的有:(11+9+12+9+8)=49条,则带标记的鱼所占的比例是;则可估计:池塘里大约有100÷=1000条.【点评】统计的思想就是用样本的信息来估计总体的信息,本题体现了统计思想,考查了用样本估计总体.14.现有A、B两个班级,每个班级各有45名学生参加一次测试,每名参加者可获得0,1,2,3,4,5,6,7,8,9分这几种不同的分值中的一种.测试结果A班的成绩如下表所示,B班的成绩如图所示.(1)由观察可知, A 班的方差较大;(2)若两班合计共有60人及格,问参加者最少获 4 分才可以及格.【考点】方差.【专题】图表型.【分析】(1)根据方差的意义:反映一组数据的波动大小,方差越大,波动性越大,反之也成立;(2)计算第60人的分数即可.【解答】解:(1)观察图象可知,B班成绩分布集中,故可得A班的方差较大;(2)据统计表可知:两个班的成绩从高到低排到60名时,为4分;若两班合计共有60人及格,参加者最少获4分才可以及格.故填A;4.【点评】本题考查方差的意义:它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.同时要学会看统计图.二、选择题(共4小题,每题3分,共12分)15.某学校五个绿化小组一天植树的棵数如下:10,10,12,x,8,如果这组数据的平均数与众数相等,那么这组数据的中位数是()A.8 B.9 C.10 D.12【考点】中位数;算术平均数;众数.【专题】应用题.【分析】利用平均数、众数与中位数的意义求解.可先算出x的值,再把数据按从小到大的顺序排列,找出最中间的数(或中间的两个数的平均数),即为中位数.【解答】解:①当众数是10,平均数为=10,所以x=10,将这组数据从小到大的顺序排列8,10,10,10,12,处于中间位置的那个数是10,那么由中位数的定义可知,这组数据的中位数是10.②当众数为12,则=12,x=20,不合题意舍去.③当众数为8,则=8,x=0,不合题意舍去故选C.【点评】本题为统计题,考查平均数、众数与中位数的意义.解题的关键是理解题意,列出方程求得x的值.一组数据中出现次数最多的数据叫做众数.平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.中位数把样本数据分成了相同数目的两部分.16.某班50名学生身高测量结果如下表:该班学生身高的众数和中位数分别是()A.1.60,1.56 B.1.59,1.58 C.1.60,1.58 D.1.60,1.60【考点】众数;中位数.【专题】图表型.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:表图为从小到大排列,数据1.60出现了10次,出现最多,故1.60为众数;1.58和1.58处在第25、26位,其平均数1.58,故1.58为中位数. 所以本题这组数据的中位数是1.58,众数是1.60. 故选:C .【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.17.如果一组数据a 1,a 2,…,a n 的方差是2,那么一组新数据2a 1,2a 2,…,2a n 的方差是( ) A .2B .4C .8D .16【考点】方差. 【专题】计算题.【分析】设一组数据a 1,a 2,…,a n 的平均数为,方差是s 2=2,则另一组数据2a 1,2a 2,…,2a n的平均数为′=2,方差是s′2,代入方差的公式S 2= [(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2],计算即可.【解答】解:设一组数据a 1,a 2,…,a n 的平均数为,方差是s 2=2,则另一组数据2a 1,2a 2,…,2a n 的平均数为′=2,方差是s′2,∵S 2= [(a 1﹣)2+(a 2﹣)2+…+(a n ﹣)2],∴S′2= [(2a 1﹣2)2+(2a 2﹣2)2+…+(2a n ﹣2)2]= [4(a 1﹣)2+4(a 2﹣)2+…+4(a n ﹣)2] =4S 2 =4×2 =8. 故选C .【点评】本题考查了方差的性质:当一组数据的每一个数都乘以同一个数时,方差变成这个数的平方倍.即如果一组数据a 1,a 2,…,a n 的方差是s 2,那么另一组数据ka 1,ka 2,…,ka n 的方差是k 2s 2.18.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:某同学分析上表后得出如下结论:①甲、乙两班学生成绩平均水平相等;②乙班优秀的人数多于甲班优秀的人数19.某校规定学生期末数学总评成绩由三部分构成:期末统考卷面成绩(占70%)、平时测验成绩(占20%)、上课表现成绩(占10%),若学生董方的三部分得分依次是92分、80分、84分,则她这学期期末数学总评成绩是多少?【考点】加权平均数.【专题】计算题.【分析】计算加权平均数就可得到董方的期末数学总评成绩.【解答】解:董方这学期期末数学总评成绩为=88.8(分).【点评】本题考查的是加权平均数的求法.熟记公式是解决本题的关键.解题时要认真审题,不要把数据代错.20.某市举行一次少年滑冰比赛,各年龄组的参赛人数如下表所示:(1)求全体参赛选手年龄的众数、中位数;(2)小明说,他所在年龄组的参赛人数占全体参赛人数的28%.你认为小明是哪个年龄组的选手?请说明理由.【考点】众数;统计表;中位数.【专题】应用题.【分析】(1)中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;(2)根据其所占的比例即可求得其所在的是16岁的年龄组.【解答】解:(1)众数是:14岁;中位数是:15岁.(2)解法一:∵全体参赛选手的人数为:5+19+12+14=50名又∵50×28%=14(名)∴小明是16岁年龄组的选手.解法二:∵全体参赛选手的人数为:5+19+12+14=50名又∵16岁年龄组的选手有14名,而14÷50=28%∴小明是16岁年龄组的选手.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.要明确定义.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求;如果是偶数个则找中间两位数的平均数.21.某校八年级(1)班50名学生参加2007年贵阳市数学质量监控考试,全班学生的成绩统计如下表:请根据表中提供的信息解答下列问题:(1)该班学生考试成绩的众数是88 ;(2)该班学生考试成绩的中位数是86 ;(3)该班张华同学在这次考试中的成绩是83分,能不能说张华同学的成绩处于全班中游偏上水平?试说明理由.【考点】众数;中位数.【专题】图表型.【分析】(1)众数是指一组数据中出现次数最多的数据.88分的最多,所以88为众数;(2)找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.此题共50名学生,排序后第25,26个数据的平均数是86,所以中位数是86;(3)成绩处于全班中游偏上水平,还是偏下水平,应该与中位数进行比较.该班张华同学在这次考试中的成绩是83分低于全班成绩的中位数,所以张华同学的成绩处于全班中游偏下水平.【解答】解:(1)88出现的次数最多,所以众数是88;(2)排序后第25,26个数据的平均数是86,所以中位数是86;(3)用样本来估计总体不能说张华的成绩处于中游偏上的水平.因为全班成绩的中位数是86,83分低于全班成绩的中位数,张华同学的成绩处于全班中游偏下水平.【点评】主要考查了众数,中位数的确定方法和用样本估计总体的能力.注意众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.22.当今,青少年视力水平的下降已引起全社会的关注,为了了解某校3000名学生的视力情况,从中抽取了一部分学生进行了一次抽样调查,利用所得数据,绘制出如下的直方图(长方形的高表示人数),根据图形,回答下列问题:(1)本次抽样调查共抽测了150 名学生;(2)参加抽测学生的视力的众数在 3.95~4.25 内;(3)如果视力为4.9(包括4.9)以上为正常,估计该校学生视力正常的人数约为600人.【考点】频数(率)分布直方图;用样本估计总体;众数.【专题】应用题;图表型.【分析】(1)根据频数分布直方图,确定各分组范围内的人数,得到总数.(2)因为在3.95~4.25的人数最多,所以参加抽测学生的视力的众数在3.95~4.25内.(3)用样本估计总体.【解答】解:(1)根据频数分布直方图,共抽测了50+40+30+20+10=150名学生;(2)因为在3.95~4.25的人数最多,所以参加抽测学生的视力的众数在3.95~4.25内.(3)样本中学生视力正常的人数的比例为(20+10)÷150=,该校学生视力正常的人数约为3000×=600人.【点评】此题考查了同学们的识图能力,用样本估计总体和众数的概念.众数是数据中出现次数最多的数.23.为了了解某校2000名学生参加环保知识竞赛的成绩,从中抽取了部分学生的竞赛成绩(均为整数),整理后绘制成如下的频数分布直方图(如图),请结合图形解答下列问题.(1)指出这个问题中的总体;(2)求竞赛成绩在79.5~89.5这一小组的频率;(3)如果竞赛成绩在90分以上(含90分)的同学可获得奖励,请估计全校约有多少人获得奖励.【考点】频数(率)分布直方图;用样本估计总体;频数与频率.【专题】图表型.【分析】(1)根据总体的概念:所要考查的对象的全体即总体进行回答;(2)根据频率=频数÷总数进行计算;(3)首先计算样本中的频率,再进一步估计总体.【解答】解:(1)总体是某校2000名学生参加环保知识竞赛的成绩.(2),答:竞赛成绩在79.5~89.5这一小组的频率为0.25.(3)9÷(6+12+18+15+9)×2000=300,。
完整版八年级下册第二十章数据的分析测试题及答案人教版及答案
A八年级数学第二十章数据的分析测试题(人教版)及答案分)满分;100(时限:100分钟在每小题给出的四个答案中,只有一个是符合题目要求,请把(一、细心选一选) 分正确答案的代号填入题后的括号内,每小题3分,共30就名运动员的年龄,200名运动员的年龄情况,从中抽查了201.为了了解参加某运动会的)这个问题来说,下面说法正确的是(.每个运动员是总体 B A.200名运动员是总体20.样本容量是 D C.20名运动员是所抽取的一个样本那么这组数据的众数与中位数?的平均数是-0.5,3,-2,-x,-12.已知一组数据-2,-2,)分别是(-1.5和-1 D.-2-2和0.5 C.-2和 A.-2和3 B.有四个苗圃生产?一城市准备选购一千株高度大约为2m的某种风景树来进行街道绿化,3.株树苗的高20.?采购小组从四个苗圃中都任意抽查了基地投标(单株树的价格都一样)度,得到的数据如下:树苗平均高度(单位:m)标准差1.8 0.2 甲苗圃 1.8 0.6 乙苗圃0.62.0 丙苗圃 2.0 0.2丁苗圃请你帮采购小组出谋划策,应选购()A.甲苗圃的树苗B.乙苗圃的树苗; C.丙苗圃的树苗D.丁苗圃的树苗4.将一组数据中的每一个数减去50后,所得新的一组数据的平均数是2,?则原来那组数据的平均数是()A.50 B.52 C.48 D.25、某服装销售商在进行市场占有率的调查时,他最应该关注的是() A.服装型号的平均数;B.服装型号的众数;C.服装型号的中位数;D.最小的服装型号6.一组数据-1,0,3,5,x的极差是7,那么x的值可能有( ).(A)1个(B)2个(C)4个(D)6个7.样本数据3,6,a,4,2的平均数是4,则这个样本的方差是()A. 2B.C. 3D. 28.关于数据-4,1,2,-1,2,下面结果中,错误的是( ).(A)中位数为1 (B)方差为26(D)2(C)众数为平均数为09.已知样本x、x,…,x的方差是2,则样本3x+2,3x+2,…,3x+2的方差是( )nn1122 (A)6(B)-2(C)6或-2(D)不能确定2,现在给每个员工的月工资增加200名员工,50他们的月工资方差是s元,某工厂共有10..) ( 那么他们的新工资的方差2 (B)不变变小了(D) (C)(A)变为s变大了+200二、耐心填一填分)分共30(本大题共分10小题,每小题3 ______.101中,极差是______,方差是11.一组数据100,97,99,103,的方差是,3.__ ___12、一组数据-1,0,1,212?s,则样本容量是______,样本平均数是13.一个样本的方差______.1214.在一组数据中,受最大的一个数据值影响最大的数据代表是______.15、5个数据分别减去100后所得新数据为8,6,-2,3,0,则原数据的平均数为. 16.在演唱比赛中,8位评委给一名歌手的演唱打分如下:9.3,9.5,9.9,9.4,9.3,8.9,9.2,9.6,若去掉一个最高分和一个最低分后的平均分为得分,则这名歌手最后得分约为________.17.一个样本,各个数据的和为515,如果这个样本的平均数为5,那么这个样本的容量是_________18.若x,x,x的平均数为7,则x+3,x+2,x+4的平均数为.32211319.为了估计湖里有多少鱼,我们从湖里捕上150条鱼作上标记,然后放回湖里去,经过一段时间再捕上300条鱼,其中带标记的鱼有30条,?则估计湖里约有鱼_______条20、小张和小李去练习射击,第一轮10枪打完后两人的成绩如图所示,?通常新手的成绩不太稳定,那么根据图的信息,估计小张和小李两人中新手是________.三、仔细想一想,(本大题共40分)、解答题21(本小题6分)某校九年级举行了一次数学测验,为了估计平均成绩,在619份试卷中抽取一部分试卷的成绩如下:有1人100分,2人90分,12人85分,8人80分,10人75分,5人70分.(1)求出样本平均数、中位数和众数;(2)估计全年级的平均分.22.(6分)下表是某校八年级(1)班20名学生某次数学测验的成绩统计表60 70 80 90 100 成绩(分)15xy2人数(人)(1)若这20名学生成绩的平均分数为82分,求x和y的值;(2)在(1)的条件下,设这20名学生本次测验成绩的众数为a,中位数为b,求a,b的值.23(本小题7分)甲、乙两人在相同的条件下各射靶5次,每次射靶的成绩情况如图所示:⑴你根据图中的数据填写下表:姓名平均数(环)众数(环)方差甲乙⑵从平均数和方差相结合看,分析谁的成绩好些.24.(本小题7分某乡镇企业生产部有技术工人15人,?生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:540 450 300 240 210 120每人加工件数1 1 2 6 3 2 人数(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)假如生产部负责人把每位工人的月加工零件数定为260(件),?你认为这个定额是否合理,为什么?25、(本小题7分.为检测一批橡胶制品的弹性,现抽取15条皮筋的抗拉伸程度的数据(单位:牛):5 4 4 4 5 7 3 3 5 56 6 3 6 6(1)这批橡胶制品的抗拉伸程度的极差为______牛;(2)若生产产品的抗拉伸程度的波动方差大于1.3,这家工厂就应对机器进行检修,现在这家工厂是否应检修生产设备?通过计算说明.26(本小题7分)某学校对初中毕业班经过初步比较后,决定从九年级(1)、(4)、(8)?班这三个班中推荐一个班为市级先进班集体的候选班,?现对这三个班进行综合素质考评,下表是它们五项素质考评的得分表:(以分为单位,每项满分为10分)班级行为规范学习成绩校运动会艺术获奖劳动卫生10 6 10 7 10)班九年级(1 8 8 9 8 10 九年级(4)班9109698)班九年级((1)请问各班五项考评分的平均数、?中位数和众数中哪个统计量不能反映三个班的考评结果的差异?并从中选择一个能反映差异的统计量将他们的得分进行排序.(2)根据你对表中五个项目的重要程度的认识,?设定一个各项考评内容的占分比例(比例的各项须满足:①均为整数;②总和为10;③不全相同),?按这个比例对各班的得分重新计算,比较出大小关系,并从中推荐一个得分最高的班作为市级先进班集体的候选班.....A八年级数学第二十章数据的分析测试题(人教版)答案一.选择题5. B4.B .D 3.D D 1.2.B.10B.B.9..6.B.7.A;8 一、填空题15.103 .平均数..12;3.141311.6;4.12. 220.小李19.1500.16.9.4分.17.103 18.10;三、解答题分.85分;(2)估计全年级平均80.解21(1)样本平均数是80分,中位数是80分,众数是a=90,b=80.1)x=5,y=7;(2).解:22(2.8 ,乙:6,6,6,0.4 解23. ⑴甲:6,所以,甲的成绩较为稳定,甲成绩比<,且6 ⑵甲、乙成绩的平均数都是.乙成绩要好些(件)众数:240(件);解:24.(1)平均数:260(件)中位数:240人不11?2)不合理,因为表中数据显示,每月能完成260件的人数一共是4人,还有(既240能达到此定额,?尽管260是平均数,但不利于调动多数员工的积极性,因为是中位数,又是众数,是大多数人能达到的定额,故定额为240较为合理.,说明应该对机器进行检修.;(2)方差约是1.5,大于1.3解25.(1)4 P,P顺次为3个班考评分的平均数;26.解:(1)(1)设P,814,W,W顺次为三个班考评分的中位数;W841顺次为三个班考评分的众数.Z,Z,Z8141(分).10+10+6+10+7则:P)==8.6(1511=(9+10+9+6+9)=8.6(分);(=8+8+8+9+10)=8.6(分),PP 8455W=10(分),W=8(分),W=9(?分);Z=10(分),Z=8(分),Z=9(分)841184∴平均数不能反映这三个班的考评结果的差异,而用中位数(或众数)?能反映差异,且W>W>W(Z>Z>Z)418814(2)给出一种参考答案,选定行为规范:学习成绩:校运动会:艺术获奖:劳动卫生=3:3:2:1:1设K、K、K顺次为3个班的考评分,841则:K=0.3×10+0.3×10+0.2×6+0.1×10+0.1×7=8.9 1K=0.3×10+0.3×8+0.2×8+0.1×9+0.1×8=8.7 4K=0.3×9+0.3×10+0.2×9+0.1×6+0.1×9=9.08.∵K>K>K,418∴推荐初三(8)班为市级先进班集体的候选班较合适.。
人教新版八年级下册数学《第20章 数据的分析》单元测试卷及答案详解(PDF可打印)
人教新版八年级下册《第20章数据的分析》单元测试卷(2)一、选择题1.(3分)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的个位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是()A.平均数B.中位数C.方差D.标准差2.(3分)一组数据2,3,5,5,5,6,9.若去掉一个数据5,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差3.(3分)某校规定学生的学期学业成绩由三部分组成:平时成绩占20%,期中成绩占30%,期末成绩占50%,小颖的平时、期中、期末成绩分别为85分、90分、92分,则她本学期的学业成绩为()A.85B.90C.92D.894.(3分)人民商场对上周女装的销售情况进行了统计,如下表所示:色黄色绿色白色紫色红色数量(件)10018022080520经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是()A.平均数B.中位数C.众数D.方差5.(3分)期中考试后,班里有两位同学议论他们小组的数学成绩,小晖说:“我们组考分是82分的人最多”,小聪说:“我们组的7位同学成绩排在最中间的恰好也是82分”.上面两位同学的话能反映出的统计量是()A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数6.(3分)如图,是学校举行“爱国主义教育”比赛活动中获得前10名学生的参赛成绩,对于这些成绩,下列说法正确的是()A.众数是90分B.中位数是95分C.平均数是95分D.方差是157.(3分)某科普小组有5名成员,身高(单位:cm)分别为:160,165,170,163,172.把身高160cm的成员替换成一位165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A.平均数变小,方差变小B.平均数变大,方差变大C.平均数变大,方差不变D.平均数变大,方差变小8.(3分)某校为了解八年级参加体育锻炼情况,在八年级学生中随机调查了50名学生一周参加体育锻炼的时间,并根据数据绘成统计图如下,则关于这50个数据的说法错误的是()A.平均数是9B.众数是9C.中位数是9D.方差是9 9.(3分)某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如表:命中环数678910甲命中相应环数的次数01310乙命中相应环数的次数20021关于以上数据,下列说法错误的是()A.甲命中环数的中位数是8环B.乙命中环数的众数是9环C.甲的平均数和乙的平均数相等D.甲的方差小于乙的方差10.(3分)甲、乙两名同学五次引体向上的测试成绩(个数)如图所示,下列判断正确的是()A.甲的最好成绩比乙好B.甲的成绩的中位数比乙大C.甲的成绩比乙稳定D.甲的成绩的平均数比乙大二、填空题11.(3分)若一组数据8,9,7,8,x,3的平均数是7,则这组数据的众数是.12.(3分)某班一次体育测试中得100分的有4人,90分的有11人,80分的有11人,70分的有8人,60分的有5人,剩下8人,一共得了300分,则平均数是(精确到0.1),众数是,中位数是.13.(3分)某班学生理化生实验操作测试成绩的统计结果如下表.则这些学生成绩的众数为.成绩/分345678910人数112289151214.(3分)某校为了了解九年级男生的体能情况,规定参加测试的每名男生从“仰卧起坐”、“引体向上”、“耐久跑1000米”三个项目中随机抽取一项作为测试项目.(1)九(1)班的全体25名男生积极参加,参加各项测试项目的统计结果如图所示,则参加“引体向上”测试的男生有名;(2)九(1)班男生参加“耐久跑1000米”测试的部分成绩(单位:分)为:95,100,82,90,95,85.①若九(1)班所有参加“耐久跑1000米”测试的男生成绩的众数是90分,则中位数是分;②如果将不低于90分的成绩评为优秀,请你估计该校九年级抽中“耐久跑1000米”的120名男生的成绩为优秀的约有多少人?15.(3分)如图,是甲、乙两人10次射击成绩(环数)的条形统计图,则甲、乙两人成绩较稳定的是;如果甲又连续射击了5次,且环数均为9环,那么甲的方差变化情况是(填“变大”“变小”或“不变”).三、解答题16.已知有理数﹣3,1,m.(1)计算﹣3,1这两个数的平均数;(2)如果这三个数的平均数是2,求m的值.17.(10分)为了强化学生的环保意识,某校团委在全校举办了“保护环境,人人有责”知识竞赛活动,初、高中根据初赛成绩,各选出5名选手组成初中代表队和高中代表队进行复赛,两个队学生的复赛成绩如图所示:(1)根据图示填写表:平均数中位数众数方差初中队8.50.7高中队8.510(2)小明同学说:“这次复赛我得了8分,在我们队中排名属中游偏下!”小明是初中队还是高中队的学生?为什么?(3)结合两队成绩的平均数、中位数和方差,分析哪个队的复赛成绩较好.18.(10分)某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分):方案1:所有评委所给分的平均数.方案2:在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数.方案3:所有评委所给分的中位数.方案4:所有评委所给分的众数.为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验,如图是这个同学的得分统计图:(1)分别按上述4个方案计算这个同学演讲的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.19.(80分)某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级成绩频数分布直方图:b.七年级成绩在70≤x<80这一组的是:7072747576767777777879c.七、八年级成绩的平均数、中位数如下:年级平均数中位数七76.9m八79.279.5根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有人;(2)表中m的值为;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.人教新版八年级下册《第20章数据的分析》单元测试卷(2)参考答案与试题解析一、选择题1.(3分)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的个位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是()A.平均数B.中位数C.方差D.标准差【考点】标准差;算术平均数;中位数;方差.【分析】利用平均数、中位数、方差和标准差的定义对各选项进行判断.【解答】解:这组数据的平均数、方差和标准差都与第4个数有关,而这组数据的中位数为46,与第4个数无关.故选:B.2.(3分)一组数据2,3,5,5,5,6,9.若去掉一个数据5,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差【考点】统计量的选择.【分析】依据平均数、中位数、众数、方差的定义和公式分别进行求解即可.【解答】解:A、原来数据的平均数是(2+3+5+5+5+6+9)=5,去掉一个数据5后平均数仍为5,故A与要求不符;B、原来数据的众数是5,去掉一个数据5后众数仍为5,故B与要求不符;C、原来数据的中位数是5,去掉一个数据5后中位数仍为5,故C与要求不符;D、原来数据的方差是:[(2﹣5)2+(3﹣5)2+3×(5﹣5)2+(6﹣5)2+(9﹣5)2]=,去掉一个数据5后,方差是[(2﹣5)2+(3﹣5)2+2×(5﹣5)2+(6﹣5)2+(9﹣5)2]=5,发生变化的是方差;故选:D.3.(3分)某校规定学生的学期学业成绩由三部分组成:平时成绩占20%,期中成绩占30%,期末成绩占50%,小颖的平时、期中、期末成绩分别为85分、90分、92分,则她本学期的学业成绩为()A.85B.90C.92D.89【考点】加权平均数.【分析】根据加权平均数的计算方法计算即可.【解答】解:她本学期的学业成绩为:20%×85+30%×90+50%×92=90(分).故选:B.4.(3分)人民商场对上周女装的销售情况进行了统计,如下表所示:色黄色绿色白色紫色红色数量(件)10018022080520经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是()A.平均数B.中位数C.众数D.方差【考点】统计量的选择.【分析】在决定本周进女装时多进一些红色的,主要考虑的是各色女装的销售的数量,而红色上周销售量最大.【解答】解:在决定本周进女装时多进一些红色的,主要考虑的是各色女装的销售的数量,而红色上周销售量最大.由于众数是数据中出现次数最多的数,故考虑的是各色女装的销售数量的众数.故选:C.5.(3分)期中考试后,班里有两位同学议论他们小组的数学成绩,小晖说:“我们组考分是82分的人最多”,小聪说:“我们组的7位同学成绩排在最中间的恰好也是82分”.上面两位同学的话能反映出的统计量是()A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数【考点】统计量的选择.【分析】根据中位数和众数的定义回答即可.【解答】解:在一组数据中出现次数最多的数是这组数据的众数,排在中间位置的数是中位数,故选:D.6.(3分)如图,是学校举行“爱国主义教育”比赛活动中获得前10名学生的参赛成绩,对于这些成绩,下列说法正确的是()A.众数是90分B.中位数是95分C.平均数是95分D.方差是15【考点】方差;算术平均数;中位数;众数.【分析】根据众数、中位数、平均数、方差的定义和统计图中提供的数据分别列出算式,求出答案.【解答】解:A、众数是90分,人数最多,正确;B、中位数是90分,错误;C、平均数是=91(分),错误;D、×[(85﹣91)2×2+(90﹣91)2×5+(100﹣91)2+2(95﹣91)2]=19(分2),错误;故选:A.7.(3分)某科普小组有5名成员,身高(单位:cm)分别为:160,165,170,163,172.把身高160cm的成员替换成一位165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A.平均数变小,方差变小B.平均数变大,方差变大C.平均数变大,方差不变D.平均数变大,方差变小【考点】方差;算术平均数.【分析】根据平均数、中位数的意义、方差的意义,可得答案.【解答】解:原数据的平均数为×(160+165+170+163+172)=166(cm)、方差为×[(160﹣166)2+(165﹣166)2+(170﹣166)2+(163﹣166)2+(172﹣166)2]=19.6(cm2),新数据的平均数为×(165+165+170+163+172)=167(cm),方差为×[2×(165﹣167)2+(170﹣167)2+(163﹣167)2+(172﹣167)2]=11.6(cm2),所以平均数变大,方差变小,故选:D.8.(3分)某校为了解八年级参加体育锻炼情况,在八年级学生中随机调查了50名学生一周参加体育锻炼的时间,并根据数据绘成统计图如下,则关于这50个数据的说法错误的是()A.平均数是9B.众数是9C.中位数是9D.方差是9【考点】条形统计图;加权平均数;中位数;众数;方差.【分析】利用加权平均数公式、方差公式以及众数、中位数的定义即可求解.【解答】解:A、平均数是:=9,故命题正确;B、众数是9,命题正确;C、中位数是9,命题正确;D、方差是:【2(7﹣9)2+12(8﹣9)2+20(9﹣9)2+10(10﹣9)2】=0.6,故命题错误.故选:D.9.(3分)某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如表:命中环数678910甲命中相应环数的次数01310乙命中相应环数的次数20021关于以上数据,下列说法错误的是()A.甲命中环数的中位数是8环B.乙命中环数的众数是9环C.甲的平均数和乙的平均数相等D.甲的方差小于乙的方差【考点】方差;加权平均数;中位数;众数.【分析】根据中位数、众数、平均数的定义以及方差的计算公式分别对每一项进行分析,即可得出答案.【解答】解:A、把甲命中环数从小到大排列为7,8,8,8,9,最中间的数是8,则中位数是8环,故本选项正确;B、在乙命中环数中,6和9都出现了2次,出现的次数最多,则乙命中环数的众数是6和9,故本选项错误;C、甲的平均数是:(7+8+8+8+9)÷5=8(环),乙的平均数是:(6+6+9+9+10)÷5=8(环),则甲的平均数和乙的平均数相等,故本选项正确;D、甲的方差是:[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4,乙的方差是:[2×(6﹣8)2+2×(9﹣8)2+(10﹣8)2]=2.8,则甲的方差小于乙的方差,故本选项正确;故选:B.10.(3分)甲、乙两名同学五次引体向上的测试成绩(个数)如图所示,下列判断正确的是()A.甲的最好成绩比乙好B.甲的成绩的中位数比乙大C.甲的成绩比乙稳定D.甲的成绩的平均数比乙大【考点】方差;算术平均数;中位数.【分析】分别计算出两人成绩的平均数、中位数、方差可得出答案.【解答】解:甲同学的成绩依次为:7、8、8、8、9,则其中位数为8,平均数为8,方差为×[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4;乙同学的成绩依次为:6、7、8、9、10,则其中位数为8,平均数为8,方差为×[(6﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2,∴甲的成绩比乙稳定,甲、乙的平均成绩和中位数均相等,甲的最好成绩比乙低,故选:C.二、填空题11.(3分)若一组数据8,9,7,8,x,3的平均数是7,则这组数据的众数是7和8.【考点】众数;算术平均数.【分析】根据平均数先求出x,再确定众数.【解答】解:因为数据的平均数是7,所以x=42﹣8﹣9﹣7﹣8﹣3=7.根据众数的定义可知,众数为7和8.故答案为:7和8.12.(3分)某班一次体育测试中得100分的有4人,90分的有11人,80分的有11人,70分的有8人,60分的有5人,剩下8人,一共得了300分,则平均数是 6.4(精确到0.1),众数是80和90,中位数是80.【考点】众数;加权平均数;中位数.【分析】根据平均数的定义,用总分除以总人数即可求出平均数,找出出现的次数最多数就是众数,把这47个数从小到大排列,最中间的数是第24个数,即可求出中位数.【解答】解;平均数是:300÷(4+11+11+8+5+8)=300÷47≈6.4,90分的有11人,80分的有11人,出现的次数最多,则众数是80和90,把这47个数从小到大排列,最中间的数是第24个数,是80,则中位数是80;故答案为;6.4,80和90,80.13.(3分)某班学生理化生实验操作测试成绩的统计结果如下表.则这些学生成绩的众数为9.成绩/分345678910人数1122891512【考点】众数.【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】解:本题中数据9出现了15次,出现的次数最多,所以本题的众数是9.故填9.14.(3分)某校为了了解九年级男生的体能情况,规定参加测试的每名男生从“仰卧起坐”、“引体向上”、“耐久跑1000米”三个项目中随机抽取一项作为测试项目.(1)九(1)班的全体25名男生积极参加,参加各项测试项目的统计结果如图所示,则参加“引体向上”测试的男生有9名;(2)九(1)班男生参加“耐久跑1000米”测试的部分成绩(单位:分)为:95,100,82,90,95,85.①若九(1)班所有参加“耐久跑1000米”测试的男生成绩的众数是90分,则中位数是90分;②如果将不低于90分的成绩评为优秀,请你估计该校九年级抽中“耐久跑1000米”的120名男生的成绩为优秀的约有多少人?【考点】众数;用样本估计总体;中位数.【分析】(1)由统计结果图即可得出结果;(2)①根据已知数据通过由小到大排列确定出众数与中位数即可;②求出8名男生成绩的平均数,然后用92与平均数进行比较即可;③求出成绩不低于90分占的百分比,乘以80即可得到结果.【解答】解:(1)由统计结果图得,参加“引体向上”测试的男生有9名;故答案为:9;(2)①九(1)班男生参加“耐久跑1000米”测试的部分成绩从高到低排列为:100,95,95,90,85,82,共有8名男生参加“耐久跑1000米”.若九(1)班所有参加“耐久跑1000米”测试的男生成绩的众数是90分,故答案为:90;则这8名男生中共有三名男生得分为90分,则参加“耐久跑1000米”测试的男生成绩的中位数是.则6÷8×120=90(人),∴该校九年级抽中“耐久跑1000米”的120名男生的成绩为优秀的约有90人.15.(3分)如图,是甲、乙两人10次射击成绩(环数)的条形统计图,则甲、乙两人成绩较稳定的是乙;如果甲又连续射击了5次,且环数均为9环,那么甲的方差变化情况是变小(填“变大”“变小”或“不变”).【考点】条形统计图;方差.【分析】根据条形统计图中提供的数据分别计算甲、乙两组的平均数、方差,通过方差的大小比较,得出稳定性.【解答】解:甲的平均数是:=9(环),甲的方差是:×[(8﹣9)2×4+(9﹣9)2×2+(10﹣9)2×4]=0.8,乙的平均数是:=9(环),乙的方差是:×[(8﹣9)2×3+(9﹣9)2×4+(10﹣9)2×3]=0.6,∵0.8>0.6,∴乙成绩稳定.甲又连续射击5次,环数均为9环,则平均数还为9,则方差为×[(8﹣9)2×4+(9﹣9)2×2+(10﹣9)2×4]=<0.8,故方差变小.故答案为:乙;变小.三、解答题16.已知有理数﹣3,1,m.(1)计算﹣3,1这两个数的平均数;(2)如果这三个数的平均数是2,求m的值.【考点】算术平均数.【分析】(1)根据平均数的计算公式列出算式,再进行计算即可得出答案;(2)根据这三个数的平均数是2,得出=2,然后求解即可得出答案.【解答】解:(1)﹣3,1这两个数的平均数为=﹣1;(2)∵这三个数的平均数是2,∴=2,∴m=8.17.(10分)为了强化学生的环保意识,某校团委在全校举办了“保护环境,人人有责”知识竞赛活动,初、高中根据初赛成绩,各选出5名选手组成初中代表队和高中代表队进行复赛,两个队学生的复赛成绩如图所示:(1)根据图示填写表:平均数中位数众数方差初中队8.58.58.50.7高中队8.5810 1.6(2)小明同学说:“这次复赛我得了8分,在我们队中排名属中游偏下!”小明是初中队还是高中队的学生?为什么?(3)结合两队成绩的平均数、中位数和方差,分析哪个队的复赛成绩较好.【考点】方差;算术平均数;中位数;众数.【分析】(1)由条形图得出初中队和高中队成绩,再根据中位数、众数及方差的概念求解可得;(2)根据中位数的意义求解可得;(3)从平均数、中位数及方差的意义求解可得.【解答】解:(1)由图知初中队的成绩从小到大排列为:7.5、8、8.5、8.5、10,所以初中队成绩的中位数是8.5,众数是8.5;高中队成绩从小到大排列为:7、7.5、8、10、10,所以高中队成绩的中位数为8,方差为×[(7﹣8.5)2+(7.5﹣8.5)2+(8﹣8.5)2+2×(10﹣8.5)2]=1.6,补全表格如下:平均数中位数众数方差初中队8.58.58.50.7高中队8.5810 1.6(2)小明在初中队.理由如下:根据(1)可知,初中、高中队的中位数分别为8.5分和8分,∵8<8.5,∴小明在初中队.(3)初中队的成绩好些.因为两个队的平均数相同,初中队的中位数高,而且初中队的方差小于高中队的方差,所以在平均数相同的情况下中位数高、方差小的初中队成绩较好.18.(10分)某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分):方案1:所有评委所给分的平均数.方案2:在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数.方案3:所有评委所给分的中位数.方案4:所有评委所给分的众数.为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验,如图是这个同学的得分统计图:(1)分别按上述4个方案计算这个同学演讲的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.【考点】中位数;众数;条形统计图;算术平均数.【分析】本题关键是理解每种方案的计算方法:(1)方案1:平均数=总分数÷10.方案2:平均数=去掉一个最高分和一个最低分的总分数÷8.方案3:10个数据,中位数应是第5个和第6个数据的平均数.方案4:求出评委给分中,出现次数最多的分数.(2)考虑不受极值的影响,不能有两个得分等原因进行排除.【解答】解:(1)方案1最后得分:×(3.2+7.0+7.8+3×8+3×8.4+9.8)=7.7;方案2最后得分:(7.0+7.8+3×8+3×8.4)=8;方案3最后得分:8;方案4最后得分:8或8.4.(2)因为方案1中的平均数受极端数值的影响,不适合作为这个同学演讲的最后得分,所以方案1不适合作为最后得分的方案.因为方案4中的众数有两个,众数失去了实际意义,所以方案4不适合作为最后得分的方案.19.(80分)某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级成绩频数分布直方图:b.七年级成绩在70≤x<80这一组的是:7072747576767777777879c.七、八年级成绩的平均数、中位数如下:年级平均数中位数七76.9m八79.279.5根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有23人;(2)表中m的值为77.5;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.【考点】频数(率)分布直方图;加权平均数;中位数;用样本估计总体.【分析】(1)根据条形图及成绩在70≤x<80这一组的数据可得;(2)根据中位数的定义求解可得;(3)将各自成绩与该年级的中位数比较可得答案;(4)用总人数乘以样本中七年级成绩超过平均数76.9分的人数所占比例可得.【解答】解:(1)在这次测试中,七年级在80分以上(含80分)的有15+8=23人,故答案为:23;(2)七年级50人成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为77、78,∴m==77.5,故答案为:77.5;(3)甲学生在该年级的排名更靠前,∵七年级学生甲的成绩大于中位数77.5分,其名次在该年级抽查的学生数的25名之前,八年级学生乙的成绩小于中位数79.5分,其名次在该年级抽查的学生数的25名之后,∴甲学生在该年级的排名更靠前.(4)估计七年级成绩超过平均数76.9分的人数为400×=224(人).。
八年级数学下册第20章数据的分析单元检测试卷(人教版有答案和解释)
八年级数学下册第20章数据的分析单元检测试卷(人教版有答案和解释)第20数据的分析单元检测姓名:__________班级:__________考号:__________一.选择题(本大题共12小题,每小题4分,共48分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.将一组数据中的每一个数减去40后,所得新的一组数据的平均数是2,则原那组数据的平均数是()A.40 B.42 .38 D.22.有8个数的平均数是11,另外有12个数的平均数是12,这20个数的平均数是()A.116 B.232 .232 D.113.已知数据:2,1,4,6,9,8,6,1,则这组数据的中位数是()A.4 B.6 .D.4和64.在某次数学测验中,随机抽取了10份试卷,其成绩如下:72,77,79,81,81,81,83,83,8,89,则这组数据的众数、中位数分别为()A.81,82 B.83,81 .81,81 D.83,82.2012年4月份,某市市区一周空气质量报告中某项污染指数的数据是:31,3,31,33,30,33,31,则下列表述错误的是()A.众数是31 B.中位数是30 .平均数是32 D.极差是6.在一次射击训练中,甲、乙两人各射击10次,两人10次射击成绩的平均数均是91环,方差分别是S甲2=12,S乙2=16,则关于甲、乙两人在这次射击训练中成绩稳定的描述正确的是()A.甲比乙稳定B.乙比甲稳定.甲和乙一样稳定D.甲、乙稳定性没法对比7.我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定9名同学参加决赛,他们的决赛成绩各不相同,其中小辉已经知道自己的成绩,但能否进前名,他还必须清楚这9名同学成绩的()A.众数B.平均数.中位数D.方差8.调查某一路口某时段的汽车流量,记录了30天同一时段通过该路口的汽车辆数,其中有2天是26辆,2天是28辆,23天是899辆,3天是447辆.那么这30天在该时段通过该路口的汽车平均辆数为()A.12辆B.320辆.770辆D.900辆9.济南园博园对2016年国庆黄金周七天假期的游客人数进行了统计,如表:日期10月1日10月2日10月3日10月4日10月日10月6日10月7日旅游人数(万)122223812206其中平均数和中位数分别是()A.2和22 B.2和2 .1和22 D.22和3810.某小组名同学在一周内参加家务劳动的时间如表所示,关于“劳动时间”的这组数据,以下说法正确的是()动时间(小时)3344人数1121A.中位数是4,平均数是37 B.众数是4,平均数是37.中位数是4,平均数是38 D.众数是2,平均数是3811.在一次设计比赛中,小军10次射击的成绩是:6环1次,7环3次,8环2次,9环3次,10环1次,关于他的射击成绩,下列说法正确的是()A.极差是2环B.中位数是8环.众数是9环D.平均数是9环12.某射击队要从甲、乙、丙、丁四人中选拔一名选手参赛,在选拔赛中,每人射击10次,然后从他们的成绩平均数(环)及方差两个因素进行分析,甲、乙、丙的成绩分析如表所示,丁的成绩如图所示.甲乙丙平均数797980方差32904918根据以上图表信息,参赛选手应选()A.甲B.乙.丙D.丁二.填空题(本大题共6小题,每小题4分,共24分)13.某电视台举办青年歌手演唱大赛,7位评委给1号选手的评分如下:93 89 92 9 92 97 94按规定,去掉一个最高分和一个最低分后,将其余得分的平均数作为选手的最后得分.那么,1号选手的最后得分是分.14.老师在计算学期总平均分的时候按照如下标准:作业占10%,测验占30%,期中考试占2%,期末考试占3%.小丽和小明的成绩如下表所示,则小丽的总平均分是,小明的总平均分是.学生作业测验期中考试期末考试小丽8077188小明768068901.五名学生的数学成绩如下:78、79、80、82、82,则这组数据的中位数是.16.一名射击运动员连续打靶8次,命中的环数如图所示,这组数据的众数是.17.已知一组数据1,,x,,﹣1的平均数为1,则这组数据的极差是.18.如图是一次射击训练中甲、乙两人的10次射击成绩的分布情况,则射击成绩的方差较小的是(填“甲”或“乙”).三.解答题(共8小题)19.已知数x1,x2,…xn的平均数是,求(x1﹣)+(x2﹣)+…(xn﹣)20.在某一中学田径运动会上,参加男子跳高的17名运动员的成绩如表所示:成绩(米)10160161701718018190人数23234111分别求这些运动员成绩的中位数和平均数(结果保留到小数点后第2位).21.某公司招聘一名员工,对甲、乙、丙三名应聘者进行三项素质测试,各项测试成绩如下表:测试项目测试成绩甲乙丙创新897综合知识77语言97(1)如果根据三项成绩的平均分确定录用人选,那么应该选谁?为什么?(2)根据实际需要,公司将创新、综合知识和语言三项得分按3:2:1的比例确定最终人选,那么如何确定人选?为什么?22.公司销售部有销售人员1人,销售部为了制定某种商品的月销售定额,统计了这1人某月的销售量如下:每人销售数1800102021010120人数11332(1)求这1位营销人员销售量的平均数、中位数、众数(直接写出结果,不要求过程);(2)假设销售部把每位销售人员的月销售定额规定为320,你认为是否合理,为什么?如果不合理,请你从表中选一个较合理的销售定额,并说明理由.23.现有甲、乙两家农副产品加工厂到快餐公司推销鸡腿,两家鸡腿的价格相同,品质相近.快餐公司决定通过检查鸡腿的质量确定选购哪家的鸡腿.检查人员从两家的鸡腿中各随机抽取1个,记录它们的质量(单位:g)如表所示.质量(g)73747767778甲的数量244311乙的数量236211根据表中数据,回答下列问题:(1)甲厂抽取质量的中位数是g;乙厂抽取质量的众数是g.(2)如果快餐公司决定从平均数和方差两方面考虑选购,现已知抽取乙厂的样本平均数乙=7,方差≈173.请你帮助计算出抽取甲厂的样本平均数及方差(结果保留小数点后两位),并指出快餐公司应选购哪家加工厂的鸡腿?24.在八次数学测试中,甲、乙两人的成绩如下:甲:89,93,88,91,94,90,88,87 乙:92,90,8,93,9,86,87,92请你从下列角度比较两人成绩的情况,并说明理由:(1)分别计算两人的极差;并说明谁的成绩变化范围大;(2)根据平均数判断两人的成绩谁优谁次;(3)根据众数判断两人的成绩谁优谁次;(4)根据中位数判断两人的成绩谁优谁次;()根据方差判断两人的成绩谁更稳定.2.城东中学七年级举行跳绳比赛,要求与每班选出名学生参加,在规定时间每人跳绳不低于10次为优秀,冠、亚军在甲、乙两班中产生,如表是这两个班的名学生的比赛数据(单位:次)1号2号3号4号号平均次数方差甲班10148 160 139 13 10 468乙班139 10 14 169 147 a 1032根据以上信息,解答下列问题:(1)写出表中a的值和甲、乙两班的优秀率;(2)写出两班比赛数据的中位数;(3)你认为冠军奖应发给那个班?简要说明理由.26.某地区在一次九年级数学做了检测中,有一道满分8分的解答题,按评分标准,所有考生的得分只有四种:0分,3分,分,8分.老师为了了解学生的得分情况与题目的难易情况,从全区400名考生的试卷中随机抽取一部分,通过分析与整理,绘制了如下两幅图不完整的统计图.请根据以上信息解答下列问题:(1)填空:a=,b=,并把条形统计图补全;(2)请估计该地区此题得满分(即8分)的学生人数;(3)已知难度系数的计算公式为L= ,其中L为难度系数,X为样本平均得分,为试题满分值.一般说,根据试题的难度系数可将试题分为以下三类:当0<L≤04时,此题为难题;当04<L≤07时,此题为中等难度试题;当07<L<1时,此题为容易题.试问此题对于该地区的九年级学生说属于哪一类?参考答案与试题解析一.选择题1.分析:根据所有数据均减去40后平均数也减去40,从而得出答案.解:一组数据中的每一个数减去40后的平均数是2,则原数据的平均数是42;故选B.2.分析:根据平均数的公式求解即可,8个数的和加12个数的和除以20即可.解:根据平均数的求法:共(8+12)=20个数,这些数之和为8×11+12×12=232,故这些数的平均数是=116.故选A.3.分析:要求中位数,是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的两个数的平均数.解:从小到大排列此数据为:1、1、2、4、6、6、8、9,第4位和第位分别是4和6,平均数是,则这组数据的中位数是.故选.4.分析:根据众数与中位数的定义分别进行解答即可.解:∵81出现了3次,出现的次数最多,∴这组数据的众数是81,把这组数据从小到大排列为72,77,79,81,81,81,83,83,8,89,最中间两个数的平均数是:(81+81)÷2=81,则这组数据的中位数是81;故选..分析:分别计算该组数据的众数、中位数、平均数及极差后即可作出正确的判断.解:数据31出现了3次,最多,众数为31,故A不符合要求;按从小到大排序后为:30、31、31、31、33、33、3,位于中间位置的数是31,故B符合要求;平均数为(30+31+31+31+33+33+3)÷7=32,故不符合要求;极差为3﹣30=,故D不符合要求.故选B.6.分析:根据方差的意义可作出判断.方差是用衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.解:∵S甲2=12,S乙2=16,∴S甲2<S乙2,∴甲、乙两人在这次射击训练中成绩稳定的是甲,∴甲比乙稳定;故选A.7.分析:9人成绩的中位数是第名的成绩.参赛选手要想知道自己是否能进入前名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.解:由于总共有9个人,且他们的分数互不相同,第名的成绩是中位。
八年级数学下册《第二十章-数据分析》练习题附答案-人教版
八年级数学下册《第二十章数据分析》练习题附答案-人教版一、选择题1.将一组数据中的每一个数减去50后,所得新的一组数据的平均数是2,则原来那组数据的平均数是( )A.50B.52C.48D.22.为鼓励市民珍惜每一滴水,某居委会表扬了100个节约用水模范户,8月份节约用水的情况如下表:每户节水量(单位:吨) 1 1.2 1.5节水户数52 30 18那么,8月份这100户平均节约用水的吨数为(精确到0.01t) ( )A.1.5tB.1.20tC.1.05tD.1t3.某校把学生的纸笔测试、实践能力、成长纪录三项成绩分别按50%、20%•、•30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、•丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是( )纸笔测试实践能力成长记录甲 90 83 95乙 98 90 95丙 80 88 90A.甲B.乙丙C.甲乙D.甲丙4.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是( )A.15.5,15.5B.15.5,15C.15,15.5D.15,155.如图所示为根据某市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和众数分别是( )A.30 ℃,22 ℃B.26 ℃,22 ℃C.28 ℃,22 ℃D.26 ℃,26 ℃6.“保护水资源,节约用水”应成为每个公民的自觉行为.下表是某小区随机抽查到的10户家庭的月用水情况,则下列关于这10户家庭的月用水量说法错误的是( )月用水量(吨) 4 5 6 9户数(户) 3 4 2 1A.中位数是5吨B.众数是5吨C.极差是3吨D.平均数是5.3吨7.已知A组四人的成绩分别为90、60、90、60,B组四人的成绩分别为70、80、80、70,用下列哪个统计知识分析区别两组成绩更恰当( )A.平均数B.中位数C.众数D.方差8.2022年将在北京﹣张家口举办冬季奥运会,很多学校开设了相关的课程.如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差s2:队员1 队员2 队员3 队员4平均数(秒)51 50 51 50方差s2(秒2) 3.5 3.5 14.5 15.5)A.队员1B.队员2C.队员3D.队员49.甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后结果如下表:班级参加人数中位数方差平均数甲 55 149 191 135乙 55 151 110 135(1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数;(每分钟输入汉字≥150个为优秀)(3)甲班成绩的波动情况比乙班成绩的波动小上述结论中正确的是( )A.(1)(2)(3)B.(1)(2)C.(1)(3)D.(2)(3)二、填空题10.某日天气预报说今天最高气温为8℃,气温的极差为10℃,则该日最低气温为_____.11.一组数据2,4,a,7,7的平均数x=5,则方差s2=.12.某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于 .13.一家公司打算招聘一名英文翻译,对甲、乙两名应试者进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:应试者听说读写甲85 83 78 75乙73 80 85 82如果这家公司想招一名口语能力较强的翻译,听、说、读、写成绩按照3∶3∶2∶2的比确定,则甲的得分为,乙的得分为,应该录取 .14.春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为.15.将5个整数从大到小排列,中位数是4;如果这个样本中的惟一众数是6,则这5个整数可能的最大的和是_____.三、解答题16.饮料店为了了解本店罐装饮料上半年的销售情况,随机调查了8天该种饮料的日销售量,结果如下(单位:听):33,32,28,32,25,24,31,35.(1)这8天的平均日销售量是多少听?(2)根据上面的计算结果,估计上半年(按181天计算)该店能销售这种饮料多少听?17.某公司招聘人才,对应聘者分别进行了阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的测试成绩(百分制)如下表:(单位:分)(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将被录用?(2)若将阅读能力、思维能力和表达能力三项测试得分按1:3:1的比确定每人的最后成绩,谁将被录用?18.某中学对全校学生60秒跳绳的次数进行了统计,全校学生60秒跳绳的平均次数是100次,某班体育委员统计了全班50名学生60秒跳绳的成绩,列出的频数分布直方图如图所示(每个分组包括左端点,不包括右端点).(1)该班学生60秒跳绳的平均次数至少是多少?是否超过全校平均次数?(2)该班一个学生说:“我的跳绳成绩在我班是中位数.”请你给出该生跳绳成绩所在的范围.19.某校举办“校园唱红歌”比赛,选出10名同学担任评委,并事先拟定从如下四种方案中选择合理的方案来确定演唱者的最后得分(每个评委打分最高为10分).方案一:所有评委给分的平均分;方案二:在所有评委中,去掉一个最高分和一个最低分,再计算剩余评委的平均分;方案三:所有评委给分的中位数;方案四:所有评委给分的众数.为了探究上述方案的合理性,先对某个同学的演唱成绩进行统计实验,下图是这个同学的得分统计图:(1)分别按上述四种方案计算这个同学演唱的最后得分.(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合用来确定这个同学演唱的最后得分?20.某中学的国旗护卫队需从甲、乙两队中选择一队身高比较整齐的队员担任护旗手,每队中每个队员的身高(单位:cm)如下表及图1所示:甲队178 177 179 179 178 178 177 178 177 179图1分析数据:两组样本数据的平均数、中位数、众数、方差如表所示:整理、描述数据:平均数中位数众数方差甲队178 178 b 0.6乙队178 a 178 c=,=,=;(2)根据表格中的数据,你认为选择哪个队比较好?请说明理由.21.今年五一旅游黄金周期间,某旅游区的开放时间为每天10小时,并每小时对进入旅游区的游客人数进行一次统计,下表是5月2日对进入旅游区人数的7次抽样统计数据.记数的次数第1次第2次第3次第4次第5次第6次第7次每小时进入旅游区的人318 310 310 286 280 312 284 数(1)(2)若旅游区的门票为60元/张,则5月2日这一天门票收入是多少?(3)据统计,5月1日至5月5日,每天进入旅游区的人数相同,5月6日和5月7日这两天进入旅游区的人数分别比前一天减少10%和20%,那么从5月1日至5月7日旅游区门票收入是多少?22.某年级共有150名女生,为了解该年级女生实心球成绩(单位:米)和一分钟仰卧起坐成绩(单位:个)的情况,从中随机抽取30名女生进行测试,获得了他们的相关成绩,并对数据进行整理、描述和分析.下面给出了部分信息.a.实心球成绩的频数分布如表所示:分组 6.2≤x<6.6 6.6≤x<7.07.0≤x<7.47.4≤x<7.87.8≤x<8.28.2≤x<8.6频数 2 m 10 6 2 1b.实心球成绩在7.0≤x<7.4这一组的是:7.0,7.0,7.0,7.1,7.1,7.1,7.2,7.2,7.3,7.3c.一分钟仰卧起坐成绩如图所示:根据以上信息,回答下列问题:(1)①表中m的值为;②一分钟仰卧起坐成绩的中位数为;(2)若实心球成绩达到7.2米及以上时,成绩记为优秀.①请估计全年级女生实心球成绩达到优秀的人数;②该年级某班体育委员将本班在这次抽样测试中被抽取的8名女生的两项成绩的数据抄录如表所示:女生代码A B C D E F G H实心球8.1 7.7 7.5 7.5 7.3 7.2 7.0 6.5一分钟仰卧起坐* 42 47 * 47 52 * 49其中有3名女生的一分钟仰卧起坐成绩未抄录完整,但老师说这8名女生中恰好有4人两项测试成绩都达到了优秀,于是体育委员推测女生E的一分钟仰卧起坐成绩达到了优秀,你同意体育委员的说法吗?并说明你的理由.参考答案1.【答案】B2.【答案】C3.【答案】C4.【答案】D.5.【答案】B6.【答案】C7.【答案】D.8.【答案】B9.【答案】B. 10.【答案】﹣2•℃ 11.【答案】3.6. 12.【答案】mx +nym +n13.【答案】81,79.3,甲 14.【答案】23.4. 15.【答案】21,20.16.【答案】解:(1)18×(33+32+28+32+25+24+31+35)=30(听).(2)181×30=5 430(听). 17.【答案】解:(1)∵=(85+90+80)÷3=85(分),=(95+80+95)÷3=90(分)∴<,∴乙将被录用;(2)根据题意得:==87(分),==86(分);∴>,∴甲将被录用.18.【答案】解:(1)该班学生60秒跳绳的平均次数至少是:(60×4+80×13+100×19+120×7+140×5+160×2)÷50=100.8(次). 因为100.8>100 所以超过全校平均次数.(2)这个学生的跳绳成绩在该班是中位数由4+13+19=36,可知该生跳绳成绩一定在100~120次范围内.19.【答案】解:(1)方案一最后得分为110(3.2+7.0+7.8+3×8+3×8.4+9.8)=7.7(分);方案二最后得分为18(7.0+7.8+3×8+3×8.4)=8(分);方案三最后得分为8分;方案四最后得分为8分或8.4分.(2)因为方案一中的平均数受极端数值的影响,不能反映这组数据的“平均水平”,所以方案一不适合用来确定最后得分.因为方案四中的众数有两个,众数失去了实际意义所以方案四也不适合用来确定最后得分.20.解:(1)乙队共10名队员,中位数落在第3组,为178,即a=178;甲队178出现的次数最多,故众数为178,即b=178;c=110×[(176﹣178)2×2+(177﹣178)2+(178﹣178)2×4+(179﹣178)2+(180﹣178)2×2]=1.8;(2)选甲队好.∵甲队的方差为0.6,乙队的方差为1.8∴甲队的方差小于乙队的方差∴甲队的身高比乙队整齐,故选甲队比较好.21.【答案】解:(1)=17(318+310+310+286+280+312+284)=300(人);(2)300×10×60=180 000(元);(3)5月1日至5月5日每天进入旅游区的人数为300×10=3 000(人);5月6日进入旅游区的人数为3 000×90%=2 700(人);5月7日进入旅游区的人数为2 700×80%=2 160(人);5月1日至5月7日进入旅游区的人数共为3 000×5+2 700+2 160=19 860(人);门票收入为19 860×60=1 191 600(元)22.【答案】解:(1)①m=30﹣2﹣10﹣6﹣2﹣1=9,故答案为:9;②由条形统计图可得,一分钟仰卧起坐成绩的中位数为45,故答案为:45;(2)①∵实心球成绩在7.0≤x<7.4这一组的是:7.0,7.0,7.0,7.1,7.1,7.1,7.2,7.2,7.3,7.3∴实心球成绩在7.0≤x<7.4这一组优秀的有4人∴全年级女生实心球成绩达到优秀的人数是:65答:全年级女生实心球成绩达到优秀的有65人;②同意理由:如果女生E的仰卧起坐成绩未到达优秀,那么只有A、D、F有可能两项测试成绩都达到优秀,这与恰有4个人两项成绩都达到优秀,矛盾,因此,女生E的一分钟仰卧起坐成绩达到了优秀.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十章数据的分析测试卷一、选择题。
1.一组数据:5,7,10,5,7,5,6,这组数据的众数和中位数分别是 ( ) A.10,7 B.5,7 C.6,7 D.5,62.某校举办歌唱比赛,其中三名选手的成绩统计如下表(单位:分):若唱功、音乐常识、综合知识按6:3:1的加权平均分决定冠军、亚军、季军,则冠军、亚军、季军分别是 ( )A.王飞、李真、林杨 B.王飞、林杨、李真C.李真、王飞、林杨 D.李真、林杨、王飞3.已知一组数据2,3,4,x,1,4,3有唯一的众数4,则这组数据的平均数、中位数分别是 ( )A.4,4 B.3,4 C.4,3 D.3,34.甲、乙、丙、丁四位同学五次数学测验成绩统计如下表(单位:分).如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选( ) A.甲 B.乙 C.丙 D.丁5.某体育用品商店一天卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如下表所示:则这15双鞋的尺码组成的一组数据中,众数和中位数分别为 ( )A.24.5 ,24.5 B.24.5,24 C.24,24 D.23.5,246.某公司全体员工的工资如下表,最能代表这个公司工资一般水平的数据是( )A.2000 B.2500 C.4000 D.50007.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲、乙两组数据,如下表:关于以上数据,下列说法正确的是 ( ) A .甲、乙的众数相同 B .甲、乙的中位数相同 C .甲的平均数小于乙的平均数 D .甲的方差小于乙的方差8.为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果,那么关于这10户居民月用电量(单位:度),下列说法错误的是( )A .中位数是55B .众数是60C .方差是29D .平均数是549.李大伯有一片果林,共80棵果树,某日,李大伯开始采摘今年第一批成熟的果子,他随机选取2棵果树共摘得10个果子,质量分别为(单位:kg):0.28,0.26,0.24,0.23,0.25 ,0.24,0.26,0.26,0.25,0.23,以此计算,李大伯收获的这批果子的单个平均质量和总质量分别约为 ( ) A .0.25 kg,200 kg B .2.5 kg,100 kg C .0.25 kg,100 kg D .2.5 kg,200 kg10.小勇投镖训练的结果如图所示,他利用所学的统计知识对自己10次投镖的成绩进行了评价,其中错误的是 ( )A .平均数是(10+8×4+7×2+6×2+5)÷10=7.3(环),成绩还不错B .众数是8环,投中8环的次数占40%C .中位数是8环,比平均数高0.7环D .方差是1.81,稳定性一般二、填空题11.某校举办“成语听写大赛”,15名学生进入决赛,他们所得分数互不相同,比赛共设8个获奖名额,某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是________(填“平均数”或“中位数”).12.某市号召居民节约用水,为了解居民用水情况,随机抽查了20户家庭某月的用水量,结果如下表,则这20户家庭这个月的平均用水量是________吨. 13某同学对甲、乙、丙、丁四个市场二月份每天的白菜价格进行调查,计算后发现这个月四个市场的价格平均数相同,方差分别为2甲s =8.5,2乙s =2.5,2丙s =10.1,2丁s =7.4,则二月份白菜价格最稳定的市场是________.14.某居民小区为了了解本小区100户家庭平均每户每月使用塑料袋的数量情况,随机调查了10户居民,结果如下(单位:只):65 70 85 74 86 78 74 92 82 94根据统计情况,估计该小区这100户家庭平均每户每月使用塑料袋_______只. 15.有七个数由小到大依次排列,其平均数是38,若这组数中前四个数的平均数是33,后四个数的平均数是42,则这七个数的中位数是_______.16.跳远运动员李刚对训练效果进行测试,6次跳远的成绩(单位:m)如下:7.6,7.8,7.7,7.8,8.0,7.9,这六次成绩的平均数为7.8,方差为601,如果李刚再跳两次,成绩分别为7.7,7.9,则李刚这8次跳远成绩的方差_______.(填“变大”“不变”或“变小”) 三、解答题17.某学校抽查了某班级某月10天的用电量,数据如下表(单位:度):(1)这10天用电量的众数是______度,中位数是______度; (2)求这个班级平均每天的用电量;(3)已知该校共有20个班级,该月共计30天,试估计该校该月总的用电量. 18.某班实行小组量化考核制,为了了解同学们的学习情况,王老师对甲、乙两个小组连续六周的综合评价得分进行了统计,并将得到的数据制成如下的统计表(单位:分):(1)请根据上表中的数据完成下表.(方差的计算结果精确到0.1)(2)根据综合评价得分统计表中的数据,请在下图中画出甲、乙两组综合评价得分的折线统计图.(3)由折线统计图中的信息,请分别对甲、乙两个小组连续六周的学习情况进行简要评价.19.某校九年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100个)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):经统计发现两班总分相等,此时有学生建议,可以用数据中的其他信息作为参考来确定冠军.请你回答下列问题: (1)计算两班的优秀率; (2)求两班比赛数据的中位数; (3)两班比赛数据的方差哪一个较小?(4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述理由.20.NBA 总决赛第五场金州勇士队129:120战胜克利夫兰骑士队,赢得了总冠军,凯文·杜兰特表现抢眼,荣膺总决赛MVP ,总决赛中凯文·杜兰特和勒布朗·詹姆斯每场得分数据如图所示(单位:分):(1)求两名队员得分的平均数;(2)求凯文·杜兰特五场比赛得分的中位数;(3)篮球迷小明同学已经求出了勒布朗·詹姆斯五场比赛得分的方差为s ²=28.64.凯文·杜兰特五场比赛得分的方差为s ²=8.96,请帮他说明哪位运动员发挥更稳定.21.某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:请你根据上述内容,解答下列问题: (1)该公司“高级技工”有_________名;(2)所有员工月工资的平均数x =2500,中位数为_________ ,众数为_________; (3)小张到这家公司应聘普通工作人员,请你回答图中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些.(4)去掉四个管理人员的工资后,请你计算出其他员工的月平均工资y (结果保留整数).并判断y 能否反映该公司员工的月工资实际水平.参考答案 一、选择题1.D 因为在这组数据中,数据5出现了3次,出现次数最多,所以这组数据的众数是5;因为数据按照从小到大的顺序排列为5,5,5,6,7,7,10,所以这组数据的中位数为6.2.C 王飞:136180380698++⨯+⨯+⨯=90.8(分);李真:136190390695++⨯+⨯+⨯=93(分);林杨:13611003100680++⨯+⨯+⨯=88(分).因此冠军、亚军、季军依次为李真、王飞、林杨.3.D ∵数据2,3,4,x ,1,4,3有唯一的众数4,∴x=4,∴71=x ×(2+3+4+4+1+4+3)=3,这组数据按从小到大的顺序排列为1,2,3,3,4,4,4,则中位数是3,故选D . 4.B 应选平均数大、方差小的同学参赛.由题表可知乙的平均数较大、方差较小,应选乙,故选B .5.A 由表可知众数为24.5,将这组数据从小到大排列,可知中位数为24.5.故选A . 6.A 该组数据中出现次数最多的是2000,所以最能代表这个公司工资一般水平的数据是2000.故选A .7.D 由表中数据知,甲的众数是7,乙的众数是8,选项A 错误;甲的中位数是7,乙的中位数是4,选项B 错误;51=甲x ×(2+6+7+7+8)=6,51=乙x ×(2+3+4+8+8)=5,选项C 错误;512=甲s ×[(2-6)²+(6-6)²+…+(8-6)²]=4.4, 512=乙s ×[(2-5)²+(3-5)²+…+(8-5)²]=6.4,选项D 正确.故选D .8.C 易知该组数据的众数是60,中位数是55.101=x ×(40×1+50×3+55×2+60×4)=54, 1012=s ×[(40-54)²+(50-54)²×3+(55-54)²×2+(60-54)²×4]=39.故选C .9.C 这10个果子的平均质量为101×(0.28+0.26+0.24+0.23+0.25+0.24+0.26+0.26+0.25+0.23)=0.25(kg),则从80棵果树上摘得的果子的总质量约为0.25×210×80=100(kg),故选C . 10.C 观察题图知小勇10次投镖的结果分别为1次10环、4次8环、2次7环、2次6环、1次5环,因此中位数为7.5环,故选C . 二、填空题 11.答案 中位数解析由于15名学生所得分数互不相同,而这组数据的中位数是第8名的分数,故知道第8名学生的分数和自己的分数就可以判断自己能否获奖. 12.答案 5.8解析根据题意得,这20户家庭这个月的平均用水量为2058468534⨯+⨯+⨯+⨯=5.8(吨).13.答案 乙解析 ∵2甲s =8.5,2乙s =2.5,2丙s =10.1,2丁s =7.4,∴2乙s <2丁s <2甲s <2丙s ,∴二月份白菜价格最稳定的市场是乙. 14.答案80 解析101×(65+70+85+74+86+78+74+92+82+94)=80(只).所以估计该小区这100户家庭平均每户每月使用塑料袋80只. 15.答案34解析设这七个数由小到大依次为x ₁,x ₂,x ₃,x ₄,x ₅,x ₆,x ₇,则中位数为x ₄, 由已知可得77654321x x x x x x x ++++++=38,即x ₁+x ₂+x ₃+x ₄+x ₅+x ₆+x ₇=38×7=266.又44321x x x x +++=33,即x ₁+x ₂+x ₃+x ₄=33×4=132,47654x x x x +++=42,即x ₄+x ₅+x ₆+x ₇=42×4=168,所以x ₄=(x ₁+x ₂+x ₃+x ₄)+(x ₄+x ₅+x ₆+x ₇)-(x ₁+x ₂+x ₃+x ₄+x ₅+x ₆+x ₇)=132+168-266=34,即这七个数的中位数是34. 16.答案 变小解析 ∵李刚6次成绩的平均数为7.8,再跳两次,成绩分别为7.7,7.9,∴8次成绩的平均数为89.77.768.7++⨯=7.8,∴8次成绩的方差为s ²=81×[(7.6-7.8)²+(7.8-7.8)²+(7.7-7.8)²+(7.8-7.8)²+(8.0-7.8)²+(7.9-7.8)²+(7.7-7.8)²+(7.9-7.8)²]=81×(0.04+0+0.01+0+0.04+0.01+0.01+0.01) =81×0.12=2003.∵6012003<, ∴李刚这8次跳远成绩的方差变小. 三、解答题17.解析(1)13;13. (2)∵101=x ×(8+9+10×2+13×3+14+15×2)=12(度), ∴这个班级平均每天的用电量为12度. (3)∵12×20×30=7200(度),∴估计该校该月总的用电量为7200度.18.解析(1)填表如下:(2)如图:(3)从折线图可以看出:甲组成绩相对稳定,但进步不大,且略有下降趋势;乙组成绩不够稳定,但进步较快,呈上升趋势.19.解析(1)甲班的优秀率为53×100%=60%;乙班的优秀率为52×100%=40%. (2)甲班比赛数据的中位数为100;乙班比赛数据的中位数为97.(3)由题表中的数据计算,得甲、乙两班比赛数据的平均数均为100,故甲班比赛数据的方差为512=甲s ×[(100-100)²+(98-100)²+(110-100)²+(89-100)²+(103-100)²]=46.8,乙班比赛数据的方差为512=乙s ×[(89-100)²+(100-100)²+(95-100)²+(119-100)²+(97-100)²]=103.2.因为46.8<103.2,所以甲班比赛数据的方差较小. (4)应该把冠军奖状发给甲班.因为从平均数来看,两个班级平均成绩相同,但是从优秀率、中位数、方差三个方面作比较,甲班都比乙班优秀. 20.解析(1)凯文·杜兰特的平均分为(38+33+31+35+39)÷5=35.2(分);勒布朗·詹姆斯的平均分为(28+29+39+31+41)÷5=33.6(分).(2)凯文·杜兰特五场比赛得分的五个分数按从小到大排序为31,33,35,38,39,故中位数是35.(3)方差越小,波动越小,说明发挥越稳定.凯文·杜兰特的方差较小,因此他的发挥比较稳定.21.解析(1)该公司“高级技工”的人数为50-1-3-2-3-24-1=16.(2)工资数从小到大排列,第25和第26个数分别是1600和1800,因而中位数是21800+1600=1700;在这些数据中1600出现的次数最多,因而众数是1600.(3)这个经理的介绍不能反映该公司员工的月工资实际水平.用中位数1700元或众数1600元来介绍更合理些.(4)463 840021000502500⨯--⨯=y≈1713元.故y能反映该公司员工的月工资实际水平.。