测量平差知识点
测量平差知识大全

➢绪论➢测量平差理论➢4种基本平差方法➢讨论点位精度➢统计假设检验的知识➢近代平差概论✧绪论§1-1观测误差测量数据(观测数据)是指用一定的仪器、工具、传感器或其他手段获取的反映地球与其它实体的空间分布有关信息的数据,包含信息和干扰(误差)两部分。
一、误差来源观测值中包含有观测误差,其来源主要有以下三个方面:1. 测量仪器;2. 观测者;3. 外界条件。
二、观测误差分类1. 偶然误差定义,例如估读小数;2. 系统误差定义,例如用具有某一尺长误差的钢尺量距;系统误差与偶然误差在观测过程中总是同时产生的。
3. 粗差定义,例如观测时大数读错。
误差分布与精度指标§2-1 正态分布概率论中的正态分布是误差理论与测量平差基础中随机变量的基本分布。
一、一维正态分布§2-2偶然误差的规律性2. 直方图由表2-1、表2-2可以得到直方图2-1和图2-2(注意纵、横坐标各表示什么?),直方图形象地表示了误差分布情况。
3. 误差分布曲线(误差的概率分布曲线)在一定的观测条件下得到一组独立的误差,对应着一种确定的误差分布。
当观测值个数的情况下,频率稳定,误差区间间隔无限缩小,图2-1和图2-2中各长方条顶边所形成的折线将分别变成如图2-3所示的两条光滑的曲线,称为误差分布曲线,随着n增大,以正态分布为其极限。
因此,在以后的讨论中,都是以正态分布作为描述偶然误差分布的数学模型。
4. 偶然误差的特性第三章协方差传播律及权在测量实际工作中,往往会遇到某些量的大小并不是直接测定的,而是由观测值通过一定的函数关系间接计算出来的,显然,这些量是观测值的函数。
例如,在一个三角形中同精度观测了3个内角L1,L2和L3,其闭合差w和各角度的平差值分别又如图3—1中用侧方交会求交会点的坐标等。
现在提出这样一个问题:观测值函数的精度如何评定?其中误差与观测值的中误差存在怎样的关系?如何从后者得到前者?这是本章所要讨论的重要内容,阐述这种关系的公式称为协方差传播律。
测量平差期末考试公式总结

测量平差期末复习资料1. 将静止的海水面向整个陆地延伸,用所形成的封闭曲面代替地球表面,形成的重力等位面,这个曲面称为大地水准面。
其特点是水准面上任意一点的铅垂线(重力作用线)都垂直于该点的曲面。
2. 6°带中央子午线经度N=L=6N-3, 3°带中央子午线经度L=3n 。
3. 高程系统:确定该点沿铅垂方向到某基准面的距离。
绝对高程(海拔):指某点沿铅垂线方向到大地水准面的距离,用H表示。
相对高程:某点距假定水准面的铅垂距离。
高差:地面上两点间的高程之差。
4. 地形 :a,地物:地面上固定性物体,如河流、房屋、道路、湖泊等; b.地貌:地面的高低起伏的形态,如山岭、谷地和陡崖等。
5. 线性代数补充知识1) 由n m ⨯个数有次序地排列成m 行n 列的表叫矩阵通常用一个大写字母表示, 如:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⨯mn m m n n n m a a a a a a a a a A212222111211 2)若m=n ,即行数与列数相同,称A 为方阵。
元素a11、a22……ann 称为对角元素。
3)若一个矩阵的元素全为0,称零矩阵,一般用O 表示。
4)对于 的方阵,除对角元素外,其它元素全为零,称为对角矩阵。
如:)(00000022112211nn mn n m a a adiag a aa A=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⨯5)对于 对角阵,若a11=a22=……=ann =1,称为单位阵,一般用E 、I 表示。
6)若aij=aji ,则称A 为对称矩阵.矩阵的基本运算:1)若具有相同行列数的两矩阵各对应元素相同,则: 2)具有相同行列数的两矩阵A 、B 相加减,其行列数与A 、B 相同,其元素等于A 、B 对应元素之和、差。
且具有可交换性与可结合性。
3)设A 为m*s 的矩阵,B 为s*n 的矩阵,则A 、B 相乘才有意义,C=AB ,C 的阶数为m*n 。
O A=A O =O ,IA=AI=A ,A (B+C )=AB+AC ,ABC=A (BC )矩阵的转置:对于任意矩阵Cmn:nn ⨯n n ⨯BA =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⨯mn m m n n n m c c c c c c c c c C 212222111211将其行列互换,得到一个nm 阶矩阵,称为C 的转置。
测量平差期末总结

测量平差期末总结一、引言测量平差是地理信息系统(GIS)和工程测量领域非常重要的一部分,它涉及到对测量数据进行处理、分析和计算。
测量平差能够提高测量数据的准确性和精确度,使得测量结果更加可靠和可信。
本文将对测量平差的一些基本概念、方法和步骤进行总结和分析,以期加深对测量平差的理解和应用。
二、测量平差的基本概念1. 测量平差的定义测量平差是指通过一系列的数学模型和计算方法,对原始的测量数据进行处理和分析,以获取更加准确和精确的测量结果的过程。
测量平差的目的是消除测量误差,提高测量数据的可靠性和精度。
2. 测量平差的分类根据测量数据的性质和采集方式的不同,测量平差可以分为直接平差和间接平差。
直接平差是指对直接测量数据进行处理和分析,如经纬度测量、高程测量等;间接平差是指对间接测量数据进行处理和分析,如距离测量、角度测量等。
3. 测量平差的基本原理测量平差的基本原理是基于观测量的合理模型和模型的参数估计。
通过观测量的数学模型,利用最小二乘法或加权最小二乘法等方法,求解模型的未知参数,从而得到测量结果的最优估计。
三、测量平差的方法和步骤1. 校正平差校正平差是指对原始的测量数据进行检验和修正的过程。
校正平差的目的是通过剔除异常观测值和消除系统误差,得到更加准确和可靠的测量数据。
2. 数学模型的建立数学模型是测量平差的基础,它是通过观测量的几何关系和误差模型建立的。
数学模型可以根据测量任务的不同而定,常见的数学模型有三角形测量模型、高程测量模型等。
3. 参数估计参数估计是指根据观测量和数学模型,利用最小二乘法或其他的数学方法,求解模型的未知参数。
参数估计的目的是最小化观测量和模型的差异,得到最优估计。
4. 平差计算平差计算是指根据参数估计的结果,利用平差公式和计算方法,对测量数据进行处理和分析。
平差计算的目的是消除观测量和模型之间的差异,得到平差结果。
四、测量平差的应用1. 地理信息系统(GIS)测量平差在GIS中有广泛的应用。
测量平差知识大全

➢绪论➢测量平差理论➢4种基本平差方法➢讨论点位精度➢统计假设检验的知识➢近代平差概论✧绪论§1-1观测误差测量数据(观测数据)是指用一定的仪器、工具、传感器或其他手段获取的反映地球与其它实体的空间分布有关信息的数据,包含信息和干扰(误差)两部分。
一、误差来源观测值中包含有观测误差,其来源主要有以下三个方面:1. 测量仪器;2. 观测者;3. 外界条件。
二、观测误差分类1. 偶然误差定义,例如估读小数;2. 系统误差定义,例如用具有某一尺长误差的钢尺量距;系统误差与偶然误差在观测过程中总是同时产生的。
3. 粗差定义,例如观测时大数读错。
误差分布与精度指标§2-1 正态分布概率论中的正态分布是误差理论与测量平差基础中随机变量的基本分布。
一、一维正态分布§2-2偶然误差的规律性2. 直方图由表2-1、表2-2可以得到直方图2-1和图2-2(注意纵、横坐标各表示什么?),直方图形象地表示了误差分布情况。
3. 误差分布曲线(误差的概率分布曲线)在一定的观测条件下得到一组独立的误差,对应着一种确定的误差分布。
当观测值个数的情况下,频率稳定,误差区间间隔无限缩小,图2-1和图2-2中各长方条顶边所形成的折线将分别变成如图2-3所示的两条光滑的曲线,称为误差分布曲线,随着n增大,以正态分布为其极限。
因此,在以后的讨论中,都是以正态分布作为描述偶然误差分布的数学模型。
4. 偶然误差的特性第三章协方差传播律及权在测量实际工作中,往往会遇到某些量的大小并不是直接测定的,而是由观测值通过一定的函数关系间接计算出来的,显然,这些量是观测值的函数。
例如,在一个三角形中同精度观测了3个角L1,L2和L3,其闭合差w和各角度的平差值分别又如图3—1中用侧方交会求交会点的坐标等。
现在提出这样一个问题:观测值函数的精度如何评定?其中误差与观测值的中误差存在怎样的关系?如何从后者得到前者?这是本章所要讨论的重要容,阐述这种关系的公式称为协方差传播律。
测量平差的基础理论与实用运算技巧介绍

测量平差的基础理论与实用运算技巧介绍引言:测量平差是测绘学中一项重要的技术,它通过一系列的测量观测与计算,使得测量结果更加准确和可靠。
本文将介绍测量平差的基础理论和实用运算技巧,帮助读者了解和掌握这一领域的知识。
一、测量平差的基础理论1.1 测量误差与精度测量平差的基础理论包括测量误差与精度。
测量误差是测量结果与真实值之间的差异,而精度则是描述测量结果的可靠程度。
了解并控制测量误差是进行测量平差的基础。
1.2 测量观测与定位测量观测是对待测对象进行测量的过程,它是测量平差的基础数据。
而定位则是将观测结果转化为坐标或位置信息的过程,常用的方法包括全站仪测量和GPS 定位等。
1.3 测量平差方法测量平差的方法有很多种,如最小二乘法、参数平差法等。
最小二乘法是一种常用的平差方法,它通过将观测误差最小化,来确定最优的平差结果。
二、实用运算技巧2.1 观测数据处理观测数据处理是进行测量平差的关键步骤,它包括读数转换、数据检查和数据平差等。
在进行数据处理时,需要注意数据的完整性和准确性。
2.2 参数平差法运算参数平差法是一种广泛应用的平差方法,它通过建立参数模型和观测方程,来求解未知量的值。
在进行参数平差法运算时,需要掌握矩阵运算和方程组求解的技巧。
2.3 网平差运算网平差是一种多个点同时进行平差的方法,它适用于有大量观测数据和未知量的情况。
在进行网平差运算时,需要注意观测数据的合理性和平差结果的可靠性。
三、实例分析本节将通过一个实例来展示测量平差的应用。
假设有一个工程项目,需要对地面标志点进行定位测量和平差。
首先进行全站仪观测,并记录观测数据。
然后,将观测数据进行处理和平差计算,得到标志点的实际位置坐标。
最后,根据平差结果进行误差分析和可靠性评估。
四、应用展望随着测绘技术的不断发展,测量平差在各个领域的应用越来越广泛。
未来,随着传感器和数据处理技术的进步,测量平差的精度和效率将进一步提高。
同时,测量平差也将深入到更多新兴领域,如智能交通和环境监测等。
测量平差概要

测量平差概要一、基本概念01、极条件的个数等于中点多边形、大地四边形和扇形的总数。
02、在间接平差中,独立未知量的个数等于必要观测数。
03、协方差与权互为倒数。
04、在测量中产生误差是不可避免的,即误差存在于整个观测过程,称为误差公理。
05、在间接平差中,误差方程的个数等于观测值的个数。
06、协因数阵与权阵互为逆阵。
07、偶然误差的四个统计特性是:有界性、聚中性、对称性和抵偿性。
08、圆周条件的个数等于中点多边形的个数。
09、偶然误差服从正态分布。
10、只有包含中点多边形的三角网才会产生圆周角条件。
11、条件平差的法方程个数等于多余观测个数,间接平差的法方程的个数等于必要观测数。
12、描述偶然误差分布常用的三种方法是:列表法、绘图法、密度函数法。
13、同一个量多次不等精度观测值的最或是值等于其加权平均值。
14、应用权倒数传播律时观测值间应误差独立。
15、极限误差是指测量过程中规定的最大允许误差值,通常取测量中误差的3倍作为极限误差。
16、在平地,水准测量的高差中误差与水准路线长度的算术平方根成正比。
17、在水准测量中要求前后视距相等是为了消除i角产生的系统误差。
18、在测角中正倒镜观测是为了消除系统误差。
19、水准网的必要起算数据为1个,独立测角网的必要起算数据为4个。
20、在水准测量中估读尾数不准确产生的误差是偶然误差。
21、独立测角网的条件方程有图形条件、圆周条件和极条件三种类型。
22、定权时单位权中误差可任意给定,它仅起比例常数的作用。
23、测角精度与角度的大小无关。
24、观测值的权通常是没有量纲的。
25、在山地,水准测量的高差中误差与测站数的算术平方根成正比。
26、测角网的必要观测个数等于待定点个数的2倍。
27、仪器误差、观测者和外界环境的综合影响称为观测条件28、独立水准网的条件方程式只有闭合水准路线。
29、根据误差对观测结果的影响,观测误差可分为系统误差和偶然误差两类。
30、观测值的协因数与方差成正比,观测值的权与方差反比。
测量平差知识大全

➢绪论➢测量平差理论➢4种基本平差方法➢讨论点位精度➢统计假设检验的知识➢近代平差概论✧绪论§1-1观测误差测量数据(观测数据)是指用一定的仪器、工具、传感器或其他手段获取的反映地球与其它实体的空间分布有关信息的数据,包含信息和干扰(误差)两部分。
一、误差来源观测值中包含有观测误差,其来源主要有以下三个方面:1. 测量仪器;2. 观测者;3. 外界条件。
二、观测误差分类1. 偶然误差定义,例如估读小数;2. 系统误差定义,例如用具有某一尺长误差的钢尺量距;系统误差与偶然误差在观测过程中总是同时产生的。
3. 粗差定义,例如观测时大数读错。
误差分布与精度指标§2-1 正态分布概率论中的正态分布是误差理论与测量平差基础中随机变量的基本分布。
一、一维正态分布§2-2偶然误差的规律性2. 直方图由表2-1、表2-2可以得到直方图2-1和图2-2(注意纵、横坐标各表示什么?),直方图形象地表示了误差分布情况。
3. 误差分布曲线(误差的概率分布曲线)在一定的观测条件下得到一组独立的误差,对应着一种确定的误差分布。
当观测值个数的情况下,频率稳定,误差区间间隔无限缩小,图2-1和图2-2中各长方条顶边所形成的折线将分别变成如图2-3所示的两条光滑的曲线,称为误差分布曲线,随着n增大,以正态分布为其极限。
因此,在以后的讨论中,都是以正态分布作为描述偶然误差分布的数学模型。
4. 偶然误差的特性第三章协方差传播律及权在测量实际工作中,往往会遇到某些量的大小并不是直接测定的,而是由观测值通过一定的函数关系间接计算出来的,显然,这些量是观测值的函数。
例如,在一个三角形中同精度观测了3个内角L1,L2和L3,其闭合差w和各角度的平差值分别又如图3—1中用侧方交会求交会点的坐标等。
现在提出这样一个问题:观测值函数的精度如何评定?其中误差与观测值的中误差存在怎样的关系?如何从后者得到前者?这是本章所要讨论的重要内容,阐述这种关系的公式称为协方差传播律。
1、测量平差基础知识复习

2、按照平差准则求解 最小二乘准则; 极大验后、极大似然等准则; 广义最小二乘准则。
测量平差
由含有误差的观测值按一定准则 求未知参数X的估值 求未知参数 的估值 参数分为: 参数分为: 非随机参数 最小二乘估计、 最小二乘估计、极大似然估计 这类平差即经典平差 随机参数 极大验后估计、 极大验后估计、最小方差估计等 这类平差称“滤波、推估“ 这类平差称“滤波、推估“ 随机参数和非随机参数 广义最小二乘原理 这类平差称”配置“ 这类平差称”配置“
θ = lim
[ ∆] n
n→ ∞
极限误差:二倍或三倍中误差。 极限误差:二倍或三倍中误差。
相对误差:相对中误差,是中误差与观测值比, 相对误差:相对中误差,是中误差与观测值比, 例:衡量距离测量误差,土石方测量误差等。表示 为1/N,1/10000。 1/N,1/10000。 方差:中误差的平方,统计学用语,中误差的统 方差:中误差的平方,统计学用语,中误差的统 计学用语为标准差。 或然误差ρ 或然误差ρ 误差出现在区间(ρ 误差出现在区间(ρ,-ρ)的概率为0.5。 )的概率为0.5。 各精度指标的关系: 各精度指标的关系:
平差原理(准则)--平差原理(准则)---最小二乘估计 平差模型
条件平差:AV= 条件平差:AV=W 间接平差:L 间接平差:L+V=BX 附有未知数的条件平差:AV+BX= 附有未知数的条件平差:AV+BX=W 附有约制条件的间接平差: L+V=BX CX-W=0 CX-
原理
按准则V PV= 按准则VTPV=min 确定未知数(最小二乘估计), 估计过程称参数估计。 估计过程称参数估计。
误差的概念或理论 误差的定义
观测值与理论值之间的差异(现象:重 复观测,理论关系的满足)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、测量学的研究内容:测定和测设。
2、测定:将地面上客观存在的物体通过测量的手段将其测成数据或图形。
3、测设:就是将测量的手段标定在地面上。
4、水准面:静止的水面。
5、大地水准面:水准面与静止的平均海水面相重合的闭合水准面。
6、铅垂线:重力方向线,是测量工作的基准线。
7、地球椭球面是测量工作的基准面。
8、地物:地面上人造或天然固定的物体:地貌:地面高低起伏形态。
9、测量上常用坐标系:天文、大地、高斯平面直角、独立平面直角。
10、绝对高程:地面点沿铅垂线到大地水准面的距离。
相对高程:某点到任意水准面的距离。
11、高差:地面上两点之间高程差。
12、半径为10km范围内面积为320km2之内可以用水平面代替水准面时距离产生的误差可忽略不计;测距范围的100km2时,用平面代替水准面时对角度的影响可忽略不计;在高程测量中即使很短的距离也不可忽略。
13、测量工作的原则:a由整体到局部、由控制到碎部;b步步检核。
14、测量的基本工作:测角、量边、测高程。
15、测绘的基本工作:确定地面点的基本位置。
16、施工测量包括:建筑物施工放样、建筑物变形监测、工程竣工测量。
17、高程测量:测量地面上各点高程的工作。
18、水准测量的实质:测量地面上两点之间的高差,是利用水准仪所提供的一条水平视线来实现的。
19、高差计算方法:高差法、仪高法。
20、水准仪按构造可分为:微倾式、自动安平、数字水准仪,及水准尺和尺垫。
21、DS3构造:望远镜、水准器,基座。
22、水准仪轴线之间的几何条件:a圆水准器轴平行于竖轴b十字丝横丝垂直于竖丝c水准管轴平行于视准轴。
23、尺垫的作用:减少水准尺下沉和标志转点。
24、水准尺的使用:粗平、瞄准、精平、读数。
24、水准点的分类:永久性和临时性。
25、测站的检核方法:双面尺法和双仪高法。
26、水准路线检核方法:闭合水准路线、附合水准路线、支水准路线、水准网。
27、误差:仪器误差,观测误差、外界条件的影响。
28、角度测量:水平角和竖直角测量。
29、经纬仪:光学和电子经纬仪。
30、DJ6:基座、水平度盘、照准部(望远镜、竖直度盘、水准管、读数显微镜)31、经纬仪的使用步骤:对中、整平、瞄准、读数。
32、水平角测量方法:测回法,方向观测法。
33、距离测量常用的方法:钢尺直接、视距法、电磁波、卫星测距。
34、钢尺量距的误差:定线、尺长、温度测定、钢尺倾斜、拉力不均、钢尺对准、读数。
35、视距测量:利用望远镜内的视距装置配合视距尺根据几何光学和三角测量原理,同时测定距离高差的方法。
36、全站仪功能:角度测量、距离测量、坐标及高程测量、特殊测量功能。
37、直线定向:选择一个标准方向再根据直线与标志方向之间的关系确定该直线方向。
38、测量常用的标准方向线:真子午线、磁子午线、坐标纵轴方向。
39、误差来源:测量仪器、观测者、外界环境条件。
40、测量误差的种类:粗差、系统误差、偶然误差。
41、系统误差:在相同条件下,在某量进行的一系列观测中,数值大小和正负符号固定不变,或按一定规律变化的误差。
42、偶然误差:在相同条件下,在某量进行的一系列观测中,单个误差的出现没有一定的规律性,其数值的大小和符号都不固定,表现出偶然性,但大量的误差却具有一定统计规律。
43、偶然误差的特性:a在一定观测条件下,偶然误差的绝对值不会超过一定限度,即偶然误差是有界的;b绝对值小的误差比绝对值大的误差出现的机会大;c绝对值相等的正负误差出现的个数大致相等;d偶然误差的算术平均值随着观测次数的无限增加趋与零。
44、控制测量:在一定区域内为地形测图和工程测量建立控制网,所进行的测量工作。
45、平面控制网建立的方法:三角测量、三边测量、边角测量、导线、全球定位系统测量。
46、高程控制网建立方法:水准、三角高程、GNSS高程测量。
47、控制网布设原则:由整体控制,局部加密和高级控制,低级加密。
48、导线布设形式:附合导线、闭合导线、支导线。
49、导线测量的外业工作:踏勘选点、边长测量、角度测量、连接测量。
50、三角高程测量的原理:测站的照准点所观测的竖直角和两点间的水平距离来计算两点间的高差。
51、全球定位系统构成:空间卫星部分,地面监控部分(监测站、主控站、注入站)用户设备部分。
测量平差1、观测量的真值:任何观测量,客观上总存在一个能反映其真正大小的数值。
2、观测误差:观测量的真值与观测值的差。
3、观测条件:仪器误差、观测者和外界环境的综合影响。
4、观测误差分类:系统误差和偶然误差。
5、误差公理:在测量中产生误差是不可避免的,即误差存在于整个观测过程。
6、消除或削弱系统误差:一是在观测过程中采取一定的措施;二是在观测结果中加入改正数。
7、测量平差的任务:⑴求观测值的最或是值(平差值)⑵评定观测值及平差值的精度。
8、偶然误差具有统计特性:(1) 有界性:在一定的观测条件下,误差的绝对值不会超过一定的限值。
(2) 聚中性:绝对值较小的误差比绝对值较大的误差出现的概率要大。
(3) 对称性:绝对值相等的正负误差出现的概率相等。
(4) 抵偿性:偶然误差的数学期望或偶然误差的算术平均值的极限值为0。
9、由偶然误差特性引出的两个测量依据:⑴制定测量限差的依据⑵判断系统误差(粗差)的依据。
10、精度:精度指的是误差分布的密集或离散的程度。
11、观测量的精度指标:(1) 方差与中误差(2) 极限误差(3) 相对误差。
12、极限误差:在一定条件下,偶然误差不会超过一个界值,这个界值就是极限误差。
通常取三倍中误差为极限误差。
当观测要求较严时,也可取两倍中误差为极限误差。
13、水准测量的高差中误差与测站数及水准路线长度关系:当各测站的观测精度相同时,水准测量的高差中误差与测站数的算术平方根成正比;当各测站的距离大致相等时,水准测量的高差中误差与水准路线长度的算术平方根成正比。
14、单位权:权等于1时称为单位权;单位权中误差:权等于1的中误差称15、应用权倒数传播律时注意:观测值间应误差独立。
16、观测值的权与其协因数关系:观测值的权与其协因数互为倒数关系。
17、菲列罗公式作用:根据三角形的闭合差计算测角中误差。
18、测量平差的原则:(1) 用一组改正数来消除不符值;(2) 该组改正数必须满足最小。
19、同精度观测值:在相同的观测条件下所进行的一组观测。
20、测量平差的目的:根据最小二乘法原理,正确消除各观测值间的矛盾,合理地分配误差,求出观测值及其函数的最或是值,同时评定测量结果的精度。
21、条件平差的原理:根据观测值间构成的条件,按最小二乘法原理求观测值的最或是值,消除因多余观测而产生的不符值,并进行精度评定。
22、条件平差中的法方程特点(1) 是一组线性对称方程,系数排列与对角线成对称;(2) 在对角线上的系数都是自乘系数;(3) 全部系数都是由条件方程的系数组成,常数项的条件方程的常数项。
23、条件平差的计算步骤:(1) 根据实际问题,确定条件方程的个数(等于多余观测的个数),列出改正数条件方程;(2) 组成法方程式(等于条件方程的个数);(3) 解算法方程,求出联系数k;(4) 将k代入改正数方程求出改正数v,并计算平差值;(5) 计算单位权中误差;(6) 将平差值代入平差值条件方程式,检核平差值计算的正确性。
24、水准网的必要观测的确定:对于有已知点的水准网,确定一个待定点的高程必须观测一段高差,所以必要观测个数t等于待定点个数p,即;对于无已知点的水准网,只能确定待定点间的相对高程,故必要观测个数t等于待定点个数p减1,即。
25、条件方程的列立应注意:(1) 条件方程的个数必须等于多余观测的个数,不能多也不能少;(2) 条件方程式之间必须函数独立;(3) 尽量选择形式简单便于计算的条件方程式。
26、水准网的条件方程式特点:水准网的条件方程式只有闭合水准路线和附合水准路线两种,当水准网为独立网时,条件方程式只有闭合水准路线。
27、独立测角网的条件方程类型:独立测角网的条件方程有图形条件、圆周条件和极条件三种类型。
圆周条件的个数等于中点多边形的个数,极条件的个数等于中点多边形、大地四边形和扇形的总数,图形条件的个数等于互不重叠的三角形个数加上实对角线的条数。
28、极条件特点:分子是推算路线未知边所对角平差值的正弦函数值的乘积,分母是推算路线已知边所对角平差值的正弦函数值的乘积。
29、求平差值函数的中误差:(1) 列平差值函数式;(2) 求平差值函数的权倒数;(3) 求平差值函数的中误差。
30、间接平差:以最小二乘为平差原则,以平差值方程、误差方差作为函数模型的平差方法。
31、间接平差的计算步骤:(1) 根据平差问题的性质,确定必要观测的个数t,选择t个独立量作为未知参数;(2) 将观测值的平差值表示成未知参数的函数,即平差值方程,并列出误差方程;(3) 由误差方程的系数B与自由项l组成法方程;(4) 解算法方程,求出未知参数,计算未知参数的平差值;(5) 将未知参数代入误差方程求出改正数v,并求出观测值的平差值。
32、按间接平差法列水准网误差方程的步骤:(1) 根据平差问题,确定必要观测的个数t;(2) 选取t个待定点的高程作为未知参数,确定未知参数的近似值;(3) 列立平差值方程、误差方程。
33、坐标平差列立误差方程的步骤:(1) 计算各待定点的近似坐标;(2) 由待定点的近似坐标和已知点的坐标计算各待定边的近似坐标方位角和近似边长;(3) 列出各待定边坐标方位角改正数方程,并求解其系数;(4) 列立误差方程,计算系数和常数。
34、坐标平差:以待定点的坐标为未知参数的间接平差称为坐标平差。