简易数字频率计的设计.docx

合集下载

毕业设计简易数字频率计的设计

毕业设计简易数字频率计的设计

毕业论文论文题目简易数字频率计的设计系部电信工程学院专业通信技术班级09通信技术2班姓名于银玲指导教师刘丽华2020年4 月1. 引言 (1)2. 数字频率计方案设计 (1)2.1 测量频率的方案分析 (1)2.2 本次设计采纳的方案 (2)3. 设计原理分析(硬件部份) (2)3.1 信号放大整形电路 (3)3.2 分频电路 (3)3.3 四选一电路 (3)3.4 51单片机部份 (4)3.5 显示电路 (4)4. 系统程序设计(软件部份) (5)4.1 测频软件实现原理 (5)4.2 软件流程图 (5)4.3 系统的仿真和调试 (6)4.4 系统的改善 (6)5. 总结与体会 (6)参考文献 (7)附录一:系统整体电路图 (8)附录二:系统整体程序.................................................................... 错误!未定义书签。

简易数字频率计的设计一摘要在电子技术中,频率是最大体的参数之一,而且与许多电参量的测量方案、测量结果都有十分紧密的关系,因此频率的测量就显得更为重要。

测量频率的方式有多种,其中电子计数器测量频率具有精度高、利用方便、测量迅速,和便于实现测量进程自动化等优势,是频率测量的重要手腕之一。

电子计数器测频有两种方式:一是直接测频法,即在必然闸门时刻内测量被测信号的脉冲个数;二是间接测频法,如周期测频法。

直接测频法适用于高频信号的频率测量,间接测频法适用于低频信号的频率测量。

传统的频率计通常采纳组合电路和时序电路等大量的硬件电路组成,产品不但体积较大,运行速度慢,而且测量范围低,精度低。

因此,随着对频率测量的要求的提高,传统的测频的方式在实际应用中已不能知足要求。

因此咱们需要寻觅一种新的测频的方式。

随着单片机技术的进展和成熟,用单片机来做为一个电路系统的操纵电路慢慢显示出其无与伦比的优越性。

因此本论文采纳单片机来做为电路的操纵系统,设计一个能测量高频率的数字频率计。

简易数字频率计的设计

简易数字频率计的设计

实验按键和LED控制1、实验目的:熟悉MCS-51单片机的指令系统,掌握单片机系统中按键和LED的基本编程方法,了解单片机I/O口的简单应用,了解位地址单元作为标志位的编程方法,了解子程序的应用。

2、实验设备及器件:280U 编程器一台计算机一台单片机实验板一块AT89C51单片机一片3、实验原理:按键是电子系统中最为常见的器件之一,因为有按键数目、触点数目、电参数和按键控制类型等方面的不同,按键有很多不同的品种。

单片机系统中常用的按键是轻触开关。

轻触开关与MCS-51单片机的接口如下。

按键与单片机的接口显然,按键电路是单片机系统中的输入设备。

理想情况下,按键释放(状态)时,A点为高电平;按下键时,A点为低电平。

单片机若检测到I/O口(即A点)的电平为低电平,可判断键已按下。

但实际按键在按下和释放(动作)时,输出都会产生几毫秒的抖动,即可能为高电平亦可能为低电平的不确定状态。

因此,单片机程序在读键时,至少应读两次,且两次读之间应加上适当延时,以确认可靠的键动作。

发光二极管(LED)是常用的显示器件,LED显示电路在单片机系统中是输出设备。

根据I/O口驱动能力的不同,单片机驱动LED的方法也不同。

若I/O 口具有6-8mA(或更大)的驱动能力,可以直接驱动LED,否则需在片外加驱动电路。

AT89C51驱动能力有限(参阅Datasheet),故另加驱动电路。

单片机实验板提供的驱动电路如下。

当I/O口输出低电平时,LED熄灭;I/O口输出高电平时,LED亮起。

I/O口LED驱动电路一个单片机系统中,由两个按键KEY1和KEY2来控制两个发光管LED1和LED2。

KEY1键的功能是使LED1取反(即由灭变亮,或由亮变灭),KEY2键的功能是使LED2取反。

且两个键功能之间互不干扰,一个键按下不放时,另一个键功能仍能完成。

程序流程如下。

为使程序更为简洁,键检测的过程以子程序的形式出现。

键检测子程序的流程如下。

简易数字频率计设计 完整版

简易数字频率计设计     完整版

河南科技大学课程设计说明书课程名称现代电子系统设计题目简易数字频率计设计学院__电信学院_____班级_______学生姓名____________________指导教师_________日期__2010-01-10______课程设计任务书(指导教师填写)课程设计名称现代电子系统课程设计学生姓名刘轮辉专业班级电信科071 设计题目简易数字频率计设计一、课程设计目的掌握高速AD的使用方法;掌握频率计的工作原理;掌握GW48_SOPC实验箱的使用方法;了解基于FPGA的电子系统的设计方法。

二、设计内容、技术条件和要求设计一个具有如下功能的简易频率计。

(1)基本要求:a.被测信号的频率范围为1~20kHz,用4位数码管显示数据。

b.测量结果直接用十进制数值显示。

c.被测信号可以是正弦波、三角波、方波,幅值1~3V不等。

d.具有超量程警告(可以用LED灯显示,也可以用蜂鸣器报警)。

e.当测量脉冲信号时,能显示其占空比(精度误差不大于1%)。

(2)发挥部分a.修改设计,实现自动切换量程。

b.构思方案,使整形时,以实现扩宽被测信号的幅值范围。

三、时间进度安排布置课题和讲解:1天查阅资料、设计:4天实验:3天撰写报告:2天四、主要参考文献何小艇《电子系统设计》浙江大学出版社2008.1潘松黄继业《EDA技术实用教程》科学出版社2006.10指导教师签字:2009年12月14日目录一、摘要 (4)二、系统方案论证 (4)2.1频率测量方案 (5)三、数字频率频率计的基本原理 (6)四、各个模块设计 (7)4、1 A/D模数转换模块 (8)4、2 比较模块 (9)4、3 频率和占空比测量模块 (10)五、各个模块仿真波形 (12)六、心得体会 (14)七、参考文献 (15)附录一 (16)附录二 (22)一.摘要频率计是数字电路中的一个典型应用,是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器,频率测量在科技研究和实际应用中的作用日益重要。

简易数字频率计设计报告

简易数字频率计设计报告

简易数字频率计设计报告目录一.设计任务和要求 (2)二.设计的方案的选择与论证 (2)三.电路设计计算与分析 (4)四.总结与心得..................................... 错误!未定义书签。

2五.附录........................................... 错误!未定义书签。

3六.参考文献....................................... 错误!未定义书签。

8一、 设计任务与要求1.1位数:计4位十进制数。

1.2.量程第一档 最小量程档,最大读数是9.999KHZ ,闸门信号的采样时间为1S. 第二档 最大读数是99.99KHZ ,闸门信号采样时间为0.1S.第三档 最大读数是999.9KHZ ,闸门信号采样时间为10mS.第四档 最大读数是9999KHZ ,闸门信号采样时间为1mS.1.3 显示方式(1)用七段LED 数码管显示读数,做到能显示稳定,不跳变。

(2)小数点的位置随量程的变更而自动移动(3)为了便于读数,要求数据显示时间在0.5-5s 内连续可调1.4具有自检功能。

1.5被测信号为方=方波信号二、设计方案的选择与论证2.1 算法设计频率是周期信号每秒钟内所含的周期数值。

可根据这一定义采用如图 2-1所示的算法。

图2-2是根据算法构建的方框图。

被测信号图2-2 频率测量算法对应的方框图 输入电路 闸门 计数电路 显示电路闸门产生整体方框图及原理频率测量:测量频率的原理框图如图2-3.测量频率共有3个档位。

被测信号经整形后变为脉冲信号(矩形波或者方波),送入闸门电路,等待时基信号的到来。

时基信号有555定时器构成一个较稳定的多谐振荡器,经整形分频后,产生一个标准的时基信号,作为闸门开通的基准时间。

被测信号通过闸门,作为计数器的时钟信号,计数器即开始记录时钟的个数,这样就达到了测量频率的目的。

周期测量:测量周期的原理框图2-4.测量周期的方法与测量频率的方法相反,即将被测信号经整形、二分频电路后转变为方波信号。

简易数字频率计课程设计精编WORD版

简易数字频率计课程设计精编WORD版

简易数字频率计课程设计精编W O R D版IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】简易频率计设计摘要在数字电路中,数字频率计属于时序电路,它主要由具有记忆功能的触发器构成。

在计算机及各种数字仪表中,都得到了广泛的应用。

在CMOS电路系列产品中,数字频率计是用量最大、品种很多的产品,是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器,并且与许多电参量的测量方案、测量结果都有十分密切的关系,在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得更为重要。

测量频率的方法有多种,其中电子计数器测量频率具有精度高、使用方便、测量迅速,以及便于实现测量过程自动化等优点,是频率测量的重要手段之一。

常用的频率测量方法有测频法、测周法、测周期/频率法、F/V与A/D法。

本文阐述了用测频法构成的数字频率计关键字:时序控制频率,数字频率计,555电路目录1 绪论 ................................................................... 1.1 课题描述 ............................................................ 1.2 设计任务与要求 ......................................................1.3 基本工作原理及框图 ..................................................2 相关芯片及硬件电路设计.................................................. 2.1 放大整形电路 ........................................................2.2 时基电路 ............................................................2.3 控制电路 ............................................................2.4 计数,锁存,译码,显示电路 ..........................................2.5 电路元件清单 ........................................................3 整体电路设计............................................................ 总结 .................................................................. 参考文献 .................................................................1 绪论1.1 课题描述频率是周期信号每秒钟内所含的周期数值。

简易数字频率计设计

简易数字频率计设计

简易数字频率计设计简易数字频率计是一种统计计算工具,用于频率统计,使用适当的算法来测量特定序列中给定元素或者元素组合出现的频率,主要用于数据分析和统计工作,帮助使用者深入分析数据,得到较为精准的结果。

本文将详细说明一种简易的数字频率计的设计实现过程和分步流程。

设计步骤第一步:准备设计简易数字频率计所需要的硬件设备设计简易数字频率计需要的硬件设备有:计算机、网络设备、数据存储器、输入输出设备等。

计算机配备相应的硬件设备和软件,网络设备用于连接多台计算机,数据存储器用于存储数据,输入输出设备允许输入和输出各种不同类型的数据。

第二步:制定相应的算法根据具体情况,应制定出相应的算法,用于计算数据序列中给定元素或者元素组合出现的频率,主要包括排序算法,查找算法,求和算法,概率分布算法等。

比如:可以使用冒泡排序或者快速排序对数据序列进行排序,使用二分查找等技术快速查找元素,在运算时可以使用求和、乘法、平方等算法来计算数据,使用贝叶斯理论等方法来求取概率分布。

第三步:实现数据处理根据设计上的算法,使用计算机及其相应的软件和硬件设备,进行数据处理,对相关的数据序列进行相应的操作,实现频率的统计计算,得到精准的统计结果。

第四步:测试并可视化在完成简易数字频率计的设计之后,应当对数据处理过程进行测试,以验证所编写算法的正确性和可靠性。

完成测试之后,可以通过图表和表格的方式可视化频率计算结果,更加直观地显示出数据之间的关系以及频率变化趋势。

以上就是一种简易数字频率计的设计实现过程,它可以为使用者提供准确的统计数据和频率结果,促进数据深入分析等工作,为企业的发展带来重要的帮助。

简易数字频率计的设计

电子技 术 ・ E l e c t r o n i c T e c h n o l o g y
简 易数 字频率计的设计
文/ 廖颖民
— —



‘ ———来自———



时钟 的上升沿触 发工作脉 冲信号。7 4 L S 1 2 3可 完成该部分功能,其脉冲宽度由电路的时间常 成计数器要求的脉冲信号。设计 中采用 的是 由 数决定 ,但为保证系统正常工作,单稳电路产 5 5 5定时器构成 的施 密特触 发器对波形进 行整 生的脉冲宽度不能大于该量程分频器输出信号 形。其工作原理为:当输 入信号电压逐 步升高 的周 期 。 时 ,>施 密特上 的 . 内部触发器 发生翻转 ;当 2 . 5计 数 器 电路 逐步下 降到 < ,电路会再次发生翻转 。施 密特 触发器不仅可将缓变的输入信号转换为边沿陡 计 数器 对经 整形 ( 分 频 ) 后 的 待 测 信 号 峭的矩形波 ,同时在输入信号的上升过程中, 进行脉冲计数 , 计数完毕后送入锁存译码 电路 , 【 关键词 】数字 频率计 时基 电路 闸 门电路 输 出状态转换时对应的输入 电平,与输 入信号 并在 显示器上显示 。电路采用 4位十进制计数 逻 辑 控 制 电路 计 数 器 电路 锁存 译 码 电路 下降过程中输 出状态转换时对应的输入电平数 器 级 联 而 成 ,十 进 制 计 数 器 使 用 7 4 L S 9 0 ,其 值是不 同的 , 亦即存在 所谓的“ 回差 ” 。 利用“ 回 中计数器的清零 由清零脉冲加手动复位开关实 差”可以排 除干扰 的影响 ,得到正确的波 形。 现。 数字 频率 计是用 来测 量频 率 与周期 ,并 2 . 2时基 电路 2 进行计数、测时的重要仪器,在使用上较示波 6锁存译 码 电路 器经 济、便 利,现 已在 许 多领域 得到 广泛 应 时基 电路用 来产 生一个 标准 的时 间信号 锁存 译码 电路 由锁 存器 和译码 器构 成, 用。在产品的研发、实验、生产过程中,许多 以控 制计数器 的计数标准 时间。它可 由定时器 本 设计 采用 C D4 5 1 l来 实现 。C D 4 5 1 1具有锁 情况下并不需要购置贵重的专用测频计数器, 5 5 5构 成 的 多 谐 振 荡 器 、 晶 体 振 荡 器 等 产 生 。 存 、译码和和驱动功能,可直接驱动数码管。 而可灵活采用 自行设计的测频计数电路,这不 由于时钟信 号是控制 计数 器计数 的标准时 间信 若计数器输 出直接接译码显示,则在闸门信号 仅方便工作 需要 、还可 降低成本 。本文论述采 号 , 其 精度 在 很 大程 度上 决 定 了频 率 计 的测 量 为高 电平期 间、频率 的显示将会随着计数值的 用小规模集成块设计数字频率计的方法及相应 精度 。因而要求方波的宽度准确 且稳定。由定 增加而不断变化 。为 防止该现象产生,须在计 电路 ,对于 电子产 品开发 、测试人员具有参考 时器 5 5 5构成的多谐振荡器精度 不高且难 以调 数和 显示之 间加入锁存 。只有当计数器停止计 及应用价值 。 节 ,故本设计采用晶体振荡器经分频获得。设 数后 ( 闸门信 号由高电平变低 电平后 ),才将 计 中时钟 电路采 用 3 2 . 7 6 8 k H z石 英 晶体和 1 4 计 数值锁存 并输 出译码显示 ,锁存信号 由逻辑 1数字频率计测频的基本原理 级 分频 器 C D4 0 6 0构 成 晶 体 振 荡 器 。CD 4 0 6 0 控制电路提供。因 C D4 5 1 1为上升沿锁存 ,低 频 率 的定义 就是周 期性信 号在 单位 时间 内含有 1 4级 的二进 制串行计数 器,可进 行分 电平导通、高 电平保持 ,因而 C D4 5 1 l 的锁存 ( 1 s )内变化 的次数。若在一定 时间间隔 t 内 频 ,3 2 . 7 6 8 k Hz 谐 振 频率 经 内部 1 4级计 数 器 端⑤ 脚接锁存信 号的非端 , 即7 4 L S 1 2 3的④脚 。 测 得这个周期性 信号重复变化的次数 为 n ,则 1 6 3 8 4分 频 后在 CD 4 0 6 0输 出端 可 输 出 2 Hz 这样在跳变的瞬问,锁存器导通,计数 器的数 其 频率可表示为:f - n / t 。本数字频率计 的工作 脉 冲 信 号 , 产 生 脉 冲 宽 度 为 1 s的 方 波 f = l / 值输入锁存器锁存 、并对计数器清零。为防止 原理为:被测信号经放大整形电路转 换成计数 T = I / ( I +I ) = O . 5 Hz 。所 以 2 H z的 信 号 经 两 级 D 显示时出现 闪烁现象,锁存信号的周期必须大 器 所要求 的脉冲信 号, 其频率与被测信号相 同。 触 发器构 成的 四分频可获得 高 电平 为 1 s的脉 于人眼的视觉滞留时间。 时基 电路提供标准 时间信 号 T,其 高电平持续 冲 信号 。D触发器 可 由 7 4 L S 7 4构成 。要注意 时间 =1 s ,当 1 s 信 号到来时 ,闸 门开通 ,被测 在 电路中 C D 4 0 6 0的清零端必须接地 ,否则计 3 设 计 总 结 脉冲信号通过闸门,计数器开始计数 。直到 1 s 数器清零 、同时振荡器停振。 本 简 易数字 频率计 由 多个子 电路 组成, 信 号 结 束 时 闸 门关 闭、 停 止 计 数 ,同 时 保 持 原 2 . 3 闸 门 电路 为保证 电路达到设计的精准度, 电路制作过程 有 的状 态 不 变 。 若 在 闸 门 时 间 1 s内 计 数 器 记 中要注意对元器件兼容性 的检查 ,电路制作完 得 的脉冲 个数为 N,则被测 信号频率 = NHz 。 闸 门电路用 来控 制计 数时 间, 由一个与 成后还应使用示波器等仪器对其进行必要的检 逻辑控制电路的作用有 二: 非门构成。与非门的一端 由时基 电路提供 的秒 查 调 试 。 ( 1 )产生锁 存脉冲 ,使 显示器上 的数 字 脉冲输入,另一端由待测 信号整 形后输 入。电

简易数字频率计(数字电路课程设计)

数字电路课程设计报告1)设计题目简易数字频率计2)设计任务和要求要求设计一个简易的数字频率计,测量给定信号的频率,并用十进制数字显示,具体指标为:1)测量范围:1H Z—9.999K H Z,闸门时间1s;10 H Z—99.99K H Z,闸门时间0.1s;100 H Z—999.9K H Z,闸门时间10ms;1 K H Z—9999K H Z,闸门时间1ms;2)显示方式:四位十进制数3)当被测信号的频率超出测量范围时,报警.3)原理电路和程序设计:(1)整体电路数显式频率计电路(2)单元电路设计;(a)时基电路信号号(b)放大逻辑电路信号通信号(c)计数、译码、驱动电路号(3)说明电路工作原理;四位数字式频率计是由一个CD4017(包含一个计数器和一个译码器)组成逻辑电路,一个555组成时基电路,一个9014形成放大电路,四个CD40110(在图中是由四个74LS48、四个74LS194、四个74LS90组成)及数码管组成。

两个CD40110串联成一个四位数的十进制计数器,与非门U1A、U1B构成计数脉冲输入电路。

当被测信号从U1A输入,经过U1A、U1B两级反相和整形后加至计数器U13的CP+,通过计数器的运算转换,将输入脉冲数转换为相应的数码显示笔段,通过数码管显示出来,范围是1—9。

当输入第十个脉冲,就通过CO输入下一个CD40110的CP+,所以此四位计数器范围为1—9999。

其中U1A与非门是一个能够控制信号是否输入的计数电路闸门,当一个输入端输入的时基信号为高电平的时候,闸门打开,信号能够通过;否则不能通过。

时基电路555与R2、R3,R4、C3组成低频多谐振荡器,产生1HZ的秒时基脉冲,作为闸门控制信号。

计数公式:]3)2243[(443.1CRRRf++=来确定。

与非门U2A与CD4017组成门控电路,在测量时,当时基电路输出第一个时基脉冲并通过U2A反相后加至CD4017的CP,CD4017的2脚输出高电平从而使得闸门打开。

简易数字频率计设计报告

根据系统设计要求, 需要实现一个 4 位十进制数字频率计, 其原理框 图如图 1 所示。

主要由脉冲发生器电路、 测频控制信号发生器电路、 待测 信号计数模块电路、 锁存器、 七段译码驱动电路及扫描显示电路等模块组 成。

由于是4位十进制数字频率计, 所以计数器CNT10需用4个,7段显示译 码器也需用4个。

频率测量的基本原理是计算每秒钟内待测信号的脉冲个 数。

为此,测频控制信号发生器 F_IN_CNT 应设置一个控制信号时钟CLK , 一个计数使能信号输出端EN 、一个与EN 输出信号反 向的锁存输出信号 LOCK 和清零输出信号CLR 。

若CLK 的输入频率为1HZ ,则输出信号端EN 输出 一个脉宽恰好为1秒的周期信号, 可以 作为闸门信号用。

由它对频率计的 每一个计数器的使能端进行同步控制。

当EN 高电平时允许计数, 低电平时 住手计数,并保持所计的数。

在住手计数期间,锁存信号LOCK 的上跳沿 将计数器在前1秒钟的计数值锁存进4位锁存器LOCK ,由7段译码器译出 并稳定显示。

设置锁存器的好处是: 显示的数据稳定, 不会由于周期性的标准时钟 CLKEN待测信号计数电路脉冲发 生器待测信号F_INLOCK锁存与译 码显示驱 动电路测频控制信 号发生电路CLR扫描控制数码显示清零信号而不断闪烁。

锁存信号之后,清零信号CLR对计数器进行清零,为下1秒钟的计数操作作准备。

时基产生与测频时序控制电路主要产生计数允许信号EN、清零信号CLR 和锁存信号LOCK。

其VHDL 程序清单如下:--CLK_SX_CTRLLIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY CLK_SX_CTRL ISPORT(CLK: IN STD_LOGIC;LOCK: OUT STD_LOGIC;EN: OUT STD_LOGIC;CLR: OUT STD_LOGIC);END;ARCHITECTURE ART OF CLK_SX_CTRL ISSIGNAL Q: STD_LOGIC_VECTOR(3 DOWNTO 0);BEGINPROCESS(CLK)BEGINIF(CLK'EVENT AND CLK='1')THENIF Q="1111"THENQ<="0000";ELSEQ<=Q+'1';END IF;END IF;EN<=NOT Q(3);LOCK<=Q(3)AND NOT(Q(2))AND Q(1);CLR<=Q(3)AND Q(2)AND NOT(Q(1));END PROCESS;END ART;测频时序控制电路:为实现系统功能,控制电路模块需输出三个信号:一是控制计数器允许对被测信号计数的信号EN;二是将前一秒计数器的计数值存入锁存的锁存信号LOCK;三是为下一个周期计数做准备的计数器清零信号CLR。

简易数字频率计课程设计报告

一、课题名称与技术要求<1>名称:简易数字频率计<2>主要技术指标和要求:1. 被测信号的频率X围100HZ~100KH2. 输入信号为正弦信号或方波信号3. 四位数码管显示所测频率,并用发光二极管表示单位4. 具有超量程报警功能二、摘要以门电路,触发器和计数器为核心,由信号输入、放大整形、闸门电路、计数、数据处理和数据显示等功能模块组成。

放大整型电路:对被测信号进行预处理;闸门电路:由与门电路通过控制开门关门,攫取单位时间内进入计数器的脉冲个数;时基信号:周期性产生一秒高电平信号;计数器译码电路:计数译码集成在一块芯片上,计单位时间内脉冲个数,把十进制计数器计数结果译成BCD码;显示:把BCD码译码在数码管显示出来。

关键字:比较器,闸门电路,计数器,锁存器,逻辑控制电路三、方案论证与选择<1>频率测量原理与方法对周期信号的测量方法,常用的有下述几种方法。

1、测频法(M法)对频率为f的周期信号,测频法的实现方法,是用以标准闸门信号对被测信号的重复周期数进行计数,当计数结果为N时,其频率为:f1=N1/TG。

TG为标准闸门宽度,N1是计数器计出的脉冲个数,设在TG期间,计数器的精确计数值为N,根据计数器的技术特性可知,N1的绝对误差是△N1=N ±1,N1的相对误差为&N1=(N1-N)/N=(N±1-N)/N=±1/N,由N1的相对误差可知,N(或N1)的数值愈大,相对误差愈小,成反比关系。

因此,在f已确定的条件下,为减小N1的相对误差,可通过增大TG的方法来降低测量误差。

但是,增大TG会使频率测量的响应时间长。

当TG为确定值时(通常取TG=1s),则有f=N,固有f1的相对误差:&f1=(f1-f)/f=(f±1-f)/f=±1/f由上式可知,f1的相对误差与f成反比关系,即信号频率越高,误差越小;而信号频率越低,则测量误差越大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

沈阳航空航天大学北方科技学院课程设计说明书课设题目简易数字频率计的设计专业电子信息工程班级B141201学号B04120119学生姓名- 刘胤麟指导教师_ 赵婷婷日期2014.12.5沈航北方科技学院课程设计任务书教学系咅B _____ 信息工程系 _____________ 专业电子信息工程课程设计题目_____________ 简易数字频率计的设计 __________________班级B141201 学号B04120119 姓名刘胤麟课程设计时间:14年11月4日至14年_ VL月5_日课程设计的内容及要求:(一)主要内容根据题目及基本要求(技术指标)查阅相关资料和书籍,设计(计算)电路,确定元器件参数(五天)。

待电路设计完成后,上机进行电路仿真(使用MultiSim )。

仿真过程中用到的仪器、调试方法、排故过程及电路技术指标的测量要做记录,最终写到报告中(十天)。

报告正文按目录要求撰写,其他内容见格式说明(五天)。

(二)基本要求1•电路供电电源为单相交流市电。

2. 每次频率检测时间为1s。

3. 用四位LED数码显示0-9999HZ。

(三)主要参考书《低频电子线路》张肃文高等教育出版社《电子线路集》人民邮电出版社《电子技术基础数字部分》康华光高等教育出版社(四)评语(五)成绩指导教师 _________________ 负责教师_________________ _________ 年_____ 月____ 日_________ 年—月—日摘要本次课设是针对简易数字频率计的设计。

数字频率计主要由四个部分组成:时基电路, 整形电路,控制电路和显示电路组成。

在一个测量周期过程中,由时基电路产生一标准时间信号控制阀门,调节时基电路中的电阻可产生需要的标准时间信号。

信号输入整形电路中,经过整形,输出一方波,通过阀门后,计时器对其计数。

当计数完毕,时基电路输出一个上升沿,使锁存器打开,计数器计数结果输入译码器,从而让显示器显示,达到测量频率的目的。

关键词:频率计;译码器;锁存器;计数器;目录1、绪论------------------------------------------------------------------------------ 12、方案设计与论证 -------------------------------------------------------------------- 22.1计数法------------------------------------------------------------------------ 22.2计时法------------------------------------------------------------------------ 22.3方案的确定-------------------------------------------------------------------- 33、工作原理、硬件电路的设计或参数的计算 --------------------------------------------- 33.1工作原理及框图--------------------------------------------------------------- 33.2时基电路的设计与仿真--------------------------------------------------------- 43.3 直流稳压电路设计与仿真------------------------------------------------------- 63.4控制电路设计------------------------------------------------------------------ 73.5计数器电路-------------------------------------------------------------------- 93.6锁存器电路------------------------------------------------------------------ 113.7译码显示电路---------------------------------------------------------------- 133.8系统的工作原理分析---------------------------------------------------------- 144、总体电路的仿真分析 -------------------------------------------------------------- 175、实验心得体会 -------------------------------------------------------------------- 20参考文献---------------------------------------------------------------------------- 20附录I:元器件清单-------------------------------------------------------------------- 21附录U:总体电路图------------------------------------------------------------------- 221绪论随着电子技术的发展,当前数字系统的设计正朝着速度快、容量大、体积小、重量轻的方向发展。

推动该潮流迅猛发展的引擎就是日趋进步和完善的设计技术。

目前数字频率计的设计可以直接面向用户需求,根据系统的行为和功能要求,自上至下的逐层完成相应的描述、综合、优化、仿真与验证,直到生成器件。

上述设计过程除了系统行为和功能描述以外,其余所有的设计过程几乎都可以用计算机来自动地完成,也就是说做到了电子设计自动化(EDA。

这样做可以大大地缩短系统的设计周期,以适应当今品种多、批量小的电子市场的需求,提高产品的竞争能力。

电子设计自动化(EDA的关键技术之一是要求用形式化方法来描述数字系统的硬件电路,即要用所谓硬件描述语言来描述硬件电路。

所以硬件描述语言及相关的仿真、综合等技术的研究是当今电子设计自动化领域的一个重要课题。

硬件描述语言的发展至今已有几十年的历史,并已成功地应用到系统的仿真、验证和设计综合等方面。

到本世纪80年代后期,已出现了上百种的硬件描述语言,它们对设计自动化起到了促进和推动作用。

但是,它们大多各自针对特定设计领域,没有统一的标准,从而使一般用户难以使用。

广大用户所期盼的是一种面向设计的多层次、多领域且得到一致认同的标准的硬件描述语言。

80年代后期由美国国防部开发的VHDL( VHSlC HardWare DeSCriPtiOn Lan guage )语言恰好满足了上述这样的要求,并在1987年12月由IEEE标准化(定为IEEE Std 1076--1987 标准,1993 年进一步修订,被定为ANSI/IEEE Std 1076--1993 标准)。

它的出现为电子设计自动化(EDA的普及和推广奠定了坚实的基础。

据1991年有关统计表明,VHDL语言业已被广大设计者所接受。

另外,众多的CAD厂商也纷纷使自己新开发的电子设计软件与VHDL语言兼容。

由此可见,使用VHDL语言来设计数字系统是电子设计技术的大势所趋。

2、方案设计与论证所谓频率,就是周期性信号在单位时间(Is)内变化的次数。

若在一定时间间隔T内测得这个周期性信号的重复变化次数为N,则其频率可表示为f=N∕T。

其中f为被测信号的频率,N为计数器所累计的脉冲个数,T为N个脉冲所产生的时间。

计数器所记录的结果就是被测信号的频率。

测量频率的基本方法有两种:计数法和计时法,或称为测频法与测周法。

2.1计数法计数法又称测频法,是将被测信号通过一个定时闸门加到计数器进行计数的方法,如果闸门打开的时间为τ,计数器得到的计数值为N1,则被测频率为f=N1∕T。

改变时间T,则可改变测量频率范围。

设在T期间,计数器的精确计数值应为N,根据计数器的计数特性可知,N1的绝对误差是N仁N+1,N1的相对误差为Δ N仁(NI-N)∕N=1∕N。

由N1的相对误差可知,N的数值愈大,相对误差愈小,成反比关系。

因此,在f以确定的条件下,为减少N的相对误差,可通过增大T的方法来降低测量误差。

当T为某确定值时(通常取1s),则有f1=N1,而f=N,故有f1的相对误差:Δ f1=(f1-f)∕f=1∕f从上式可知f1的相对误差f成反比关系,即信号频率越高,误差越小;而信号频率越低,则测量误差越大。

因此测频法适合用于对高频信号的测量,频率越高,测量精度也越高。

2.2计时法计时法又称为测周期法,测周期法使用被测信号来控制闸门的开闭,而将标准时基脉冲通过闸门加到计数器,闸门在外信号的一个周期内打开,这样计数器得到的计数值就是标准时基脉冲外信号的周期值,然后求周期值的倒数,就得到所测频率值。

2.3方案的确定根据本设计要求的性能与技术指标,首先需要确定能满足这些指标的频率测量方法。

有上述频率测量原理与方法的讨论可知,计时法适合于对低频信号的测量,而计数法则适合于对较高频信号的测量。

但由于用计时法所获得的信号周期数据,还需要求倒数运算才能得到信号频率,而求倒数运算用中小规模数字集成电路较难实现,因此,计时法不适合本实验要求。

测频法的测量误差与信号频率成反比,信号频率越低,测量误差就越大,信号频率越高,其误差就越小。

但用测频法所获得的测量数据,在闸门时间为一秒时,不需要进行任何换算,计数器所计数据就是信号频率。

因此,本实验所用的频率测量方法是测频法。

3、工作原理、硬件电路的设计或参数的计算3.1工作原理及框图数字频率计的主要功能是测量周期信号的频率。

频率是单位时间(1s)内信号发生周期变化的次数。

如果我们能在给定的Is时间内对信号波形计数,数值保持及自动清零,并将计数结果在显示器上显示出来,就能读取被测信号的频率。

数字频率计首先必须获得相对稳定的时间,同时将被测信号转换成幅度与波形均能被数字电路识别的脉冲信号。

然后通过计数器计算这一段时间间隔内的脉冲个数,将其转换后显示出来。

被测信号VX经放大整形电路变成计数器所要求的脉冲信号1,其频率与被测信号的频率f X相同。

时基电路提供标准时间基准信号2,具有固定宽度T的方波时基信号2作为闸门的一个输入端,控制闸门的开放时间,被测信号1从闸门另一端输入,被测信号频率为f X ,闸门宽度为T,若在闸门时间内计数器计得的脉冲个数为N,则被测信号频率为fχ =;Hz。

相关文档
最新文档