浅析特殊二元一次方程组的巧妙解法

合集下载

二元一次方程组解题技巧讲义(补课用)

二元一次方程组解题技巧讲义(补课用)

⼆元⼀次⽅程组解题技巧讲义(补课⽤)⼆元⼀次⽅程组解题技巧讲义(补课⽤)⼀、⼆元⼀次⽅程组的有关概念:1.⼆元⼀次⽅程:含有两个未知数,并且含有未知数的项的次数都是1?的整式⽅程叫做⼆元⼀次⽅程.它的⼀般形式:)0,0(≠≠=+b a c by ax ,如6713,245=-=-n m y x 等是⼆元⼀次⽅程。

2.⼆元⼀次⽅程的解集:适合⼀个⼆元⼀次⽅程的每⼀对未知数的值,叫做这个⼆元⼀次⽅程的⼀个解.对于任何⼀个⼆元⼀次⽅程,令其中⼀个未知数取任意⼀个值,都能求出与它对应的另⼀个未知数的值.因此,任何⼀个⼆元⼀次⽅程都有⽆数多个解.由这些解组成的集合,叫做这个⼆元⼀次⽅程的解集.3.⼆元⼀次⽅程组及其解:两个⼆元⼀次⽅程合在⼀起就组成了⼀个⼆元⼀次⽅程组.⼀般地,能使⼆元⼀次⽅程组的两个⽅程左右两边的值都相等的两个未知数的值,叫做⼆元⼀次⽅程组的解.它的⼀般形式为:=+=+.,222111c y b x a c y b x a 其中2121,,,b b a a 不全为零,如:?==;2,3y x =+=-;5,3n m n m =-=+-;2,53q p q p 都是⼆元⼀次⽅程组。

4.⼆元⼀次⽅程组的解法:代⼊消元法:在⼆元⼀次⽅程组中选取⼀个适当的⽅程,将⼀个未知数⽤含另⼀个未知数的式⼦表⽰出来,再代⼊另⼀个⽅程,消去⼀个未知数得到⼀元⼀次⽅程,求出这个未知数的值,进⽽求得这个⼆元⼀次⽅程组的解,这种⽅法叫做代⼊消元法。

加减消元法:两个⼆元⼀次⽅程中同⼀未知数的系数相反或相等时,将两个⽅程的两边分别相加或相差,从⽽消去这个未知数,得到⼀个⼀元⼀次⽅程,这种求⼆元⼀次⽅程组的解的⽅法叫做加减消元法,简称加减法.例题精析:例1.⽅程ax-4y=x-1是⼆元⼀次⽅程,则a 的取值为() A 、≠0 B 、≠-1 C 、≠1 D 、≠2 解题思路:含有两个未知数,并且含有未知数的项的次数都是1?的整式⽅程叫做⼆元⼀次⽅程.选B变式题1:如果(a -2)x+(b+1)y=13是关于x ,y 的⼆元⼀次⽅程,则a ,b 满⾜什么条件?解题思路:∵(a -2)x+(b+1)y=13是关于x ,y 的⼆元⼀次⽅程,∴a -2≠0,b+1≠0,?∴a ≠2,b ≠-1例2.若⼆元⼀次⽅程3x-2y=1有正整数解,则x 的取值应为()A 、正奇数B 、正偶数D 、0 解题思路:由312x y -=,x 、y 都是正整数,选A变式题1:.⽅程组2528x y x y +=??-=?的解是否满⾜2x -y=8?满⾜2x -y=8的⼀对x ,y 的值是否是⽅程组2528x y x y +=??-=?的解?解:满⾜,不⼀定.∵2528x y x y +=??-=?的解既是⽅程x+y=25的解,也满⾜2x -y=8,?∴⽅程组的解⼀定满⾜其中的任⼀个⽅程,但⽅程2x -y=8的解有⽆数组,如x=10,y=12,不满⾜⽅程组2528x y x y +=??-=?.例3.已知⼆元⼀次⽅程组45ax by bx ay +=??+=? 的解是21x y =??=?,则a+b 的值为____。

数学二元一次方程组解法讲解和实例分析的完整教案

数学二元一次方程组解法讲解和实例分析的完整教案

数学二元一次方程组解法讲解和实例分析的完整教案:大家好!今天来给大家讲解一下数学中的二元一次方程组解法,并且使用实例展示这个解法的具体应用情况。

一、二元一次方程组的概念二元一次方程组是指由两个含有两个未知数的线性方程所组成的方程组。

一般形式为:$$\begin{cases} ax+by=c \\ dx+ey=f \end{cases}$$其中,a、b、c、d、e、f都是已知数,x、y是未知数。

解方程组就是求出x和y的值,使得这两个方程组成立。

二、二元一次方程组的解法1、代数法采用代数方法解二元一次方程组,我们可以先通过其中一个方程将其中一个未知数表示成另一个未知数的函数。

将这个函数式代入另一个方程中,就会得到只含有一个未知数的一元一次方程,从而可以解出这个未知数的值。

接着,将求解出的值代入函数式中,可以得到另一个未知数的值。

二元一次方程组的代数解法具有操作简单、过程规范等特点。

我们可以通过实例来解释这个方法的正确性。

例1:用代数法解下列方程组:$$\begin{cases} 3x+5y=12 \\ 4x+2y=10 \end{cases}$$解:由第二个方程式得:$$y=\frac{10-4x}{2}=5-2x$$于是,方程组变成为:$$\begin{cases} 3x+5(5-2x)=12 \\ \\ 4x+2y=10\end{cases}$$将y=5-2x带入第一个方程式,可以消去y,得到:$$x=1$$将x=1代入y=5-2x,可以得到:$$y=3$$所以,这个方程组的解是(1,3)。

2、消元法消元法也是解二元一次方程组的一种方法。

它的核心思想是将两个含有两个未知数的方程中的一个未知数系数相等再作差,通过消元得到一个一元一次方程。

最后代入到其中一个方程,解出另一个未知数。

消元法解方程组的步骤如下:1)将其中一个方程两边同乘以一个数,使得两个未知数的系数相等或相反(决定于方便操作,一般情况下选择系数小的未知数)2)将两个方程加起来,消去某个未知数,从而得到另一个未知数的值3)代入其中一个方程式中,求出另一个未知数的值通过实例来解释这个方法的正确性。

二元一次方程组知识点归纳及解题技巧

二元一次方程组知识点归纳及解题技巧

二元一次方程组知识点归纳及解题技巧一,基本定义:二元一次方程定义:一个含有两个未知数,并且未知数的都指数是1的整式方程,叫二元一次方程。

二元一次方程组定义:两个结合在一起的共含有两个未知数的一次方程,叫二元一次方程组。

二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

二元一次方程组的解:二元一次方程组的两个公共解,叫做二元一次方程组的解。

二,解的状况:二元一次方程组的解有三种状况:1.有一组解如方程组x+y=5①6x+13y=89②x=-24∕7y=59∕7为方程组的解2.有多数组解如方程组x+y=6①2x+2y=12②因为这两个方程事实上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有多数组解。

3.无解如方程组x+y=4①2x+2y=10②,因为方程②化简后为x+y=5 这与方程①相冲突,所以此类方程组无解。

三,二元一次方程的解法:1,一般解法,消元:将方程组中的未知数个数由多化少,逐一解决。

消元的方法有两种:1,代入消元法2,加减消元法3,教科书中没有的几种解法(一)加减•■代入混合运用的方法.例:i3x+14y=41(1)^14x+13y=40(2)解:(2)-⑴得x-y=-1x=y-1(3)把(3)代入⑴得13(y-1)+14y=41y=2把y=2代入⑶得x=1所以:x=1,y=2特点:两方程相加减,单个X或单个y,这样就适用接下来的代入消元.(二)换元法例3:rx:y=1:4>5x+6y=29令X=1y=41 则方程2可写为:5t+6×4(=2929t=29t=1所以x=1,y=4四,列方程(组)解应用题(一),其详细步骤是:⑴审题。

理解题意。

弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。

⑵设元(未知数)。

①直接未知数②间接未知数(往往二者兼用)。

一般来说,未知数越多,方程越易列,但越难解。

⑶用含未知数的代数式表示相关的量。

二元一次方程组的解法

二元一次方程组的解法

二元一次方程组的解法在代数学中,二元一次方程组是指由两个未知数和两个方程组成的方程组。

解决二元一次方程组的问题是解决两个未知数之间关系的常见数学问题之一。

本文将介绍几种常用的解法。

方法一:代入法代入法是解决二元一次方程组的常用方法之一。

假设我们有以下二元一次方程组:方程一:ax + by = c方程二:dx + ey = f我们可以通过以下步骤使用代入法解决该方程组:1. 将方程一解出其中一个未知数,例如将方程一解出 x:x = (c - by) / a2. 将 x 的值代入方程二,得到:d * ((c - by) / a) + ey = f3. 将方程二化简,整理未知数 y 的项:(bc - b^2y) / a + ey = f4. 合并同类项,整理为关于 y 的一元一次方程:(be + a) * y = af - bc5. 解一元一次方程得到 y 的值。

6. 将 y 的值代入方程一中,解出 x 的值。

这样,我们就得到了方程组的解。

方法二:消元法消元法是解决二元一次方程组的另一种常用方法。

假设我们有以下二元一次方程组:方程一:ax + by = c方程二:dx + ey = f我们可以通过以下步骤使用消元法解决该方程组:1. 将方程一的两边乘以 e,方程二的两边乘以 b,得到:aex + bey = cebdx + bey = bf2. 将以上两个方程相减,消去未知数 y:(aex - bdx) + bey - bey = ce - bf3. 合并同类项,化简为关于 x 的一元一次方程:(ae - bd) * x = ce - bf4. 解一元一次方程得到 x 的值。

5. 将 x 的值代入方程一或方程二中,解出 y 的值。

这样,我们也得到了方程组的解。

方法三:克拉默法则克拉默法则是解决二元一次方程组的另一种解法。

假设我们有以下二元一次方程组:方程一:ax + by = c方程二:dx + ey = f我们可以通过以下步骤使用克拉默法则解决该方程组:1. 计算方程组的系数行列式 D:D = |a b||d e|2. 计算 x 的系数行列式 Dx:Dx = |c b||f e|3. 计算 y 的系数行列式 Dy:Dy = |a c||d f|4. 计算 x 和 y 的值:x = Dx / Dy = Dy / D这样,我们也得到了方程组的解。

二元一次方程组的概念及解法

二元一次方程组的概念及解法

第四讲 二元一次方程组的概念及解法考点梳理考点一 二元一次方程组的概念含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程。

把两个二元一次方程合在一起就组成了一个方程组,像这样的方程组叫做二元一次方程组。

使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

典例分析 例1、在方程组、、、、、中,是二元一次方程组的有 个;例2、已知二元一次方程2x -y =1,若x =2,则y = ;若y =0,则x = . 练习:1、方程x +y =2的正整数解是__________. 2、在方程3x -ay =8中,如果是它的一个解,那么a 的值为例3、方程组⎩⎨⎧=+=-521y x y x 的解是( )A 、 ⎩⎨⎧=-=21y xB 、⎩⎨⎧-==12y x C 、⎩⎨⎧==21y x D 、⎩⎨⎧==12y x例4、有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,设原两位数的个位数字为,十位数字为,则用代数式表示原两位数为 ,根据题意得方程组。

例5、我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十头,下有九十四足。

问鸡兔各几何。

”你能用二元一次方程组表示题中的数量关系吗?使找出问题的解。

考点二 解二元一次方程⎩⎨⎧==13y x(一)消元解二元一次方程⎧⎨⎩代入消元法加减消元法典例分析例1、把方程2x -y -5=0化成含y 的代数式表示x 的形式:x = , 化成含x 的代数式表示y 的形式:y = . 练习:用含一个未知数的代数式表示另一未知数 (1)5x-3y=x+2y (2)2(3y-3)=6x+4 (3)1223=+y x (4)24741=+y x例2、用代入消元法解下列方程 (1)⎩⎨⎧-=-=+54032y x y x (2)⎩⎨⎧=-=+15234932y x y x(3)23328x y x y -=-⎧⎨+=⎩(4)25342x y x y -=⎧⎨+=⎩例3、用加减消元法解下列方程 (1)⎩⎨⎧-=-=+54032y x y x (2)⎩⎨⎧=-=+15234932y x y x(3)23328x y x y -=-⎧⎨+=⎩ (4)25342x y x y -=⎧⎨+=⎩(二)二元一次方程组的特殊解法 1、整体代入法例4、解方程组y x x y +=+-=⎧⎨⎪⎩⎪14232313、设参代入法例6、解方程组⎩⎨⎧==-3:4:23y x y x2、先消常数法 例5、解方程组⎩⎨⎧=-=+1523334y x y x4、换元法例7、解方程组()()x y x yx y x y +--=+=-⎧⎨⎪⎩⎪236345、简化系数法 例8、解方程组⎩⎨⎧=-=-443334y x y x练习:解下列方程(1)⎩⎨⎧-=-+=-85)1(21)2(3y x x y (2)⎪⎩⎪⎨⎧=+=184332y x y x(3)⎩⎨⎧=--=--023256017154y x y x (4)⎪⎩⎪⎨⎧=-=+234321332y x y x(5)⎪⎩⎪⎨⎧=-+=+1323241y x x y (6)⎩⎨⎧=+=+24121232432321y x y x考点三 二元一次方程组解的应用 例1、若,则= ,= 。

解二元一次方程组的方法

解二元一次方程组的方法

解二元一次方程组的方法二元一次方程组是由两个未知数的一次方程组成的方程组,通常形式为:ax + by = c。

dx + ey = f。

其中,a、b、c、d、e、f为已知数,x、y为未知数。

解二元一次方程组的方法有多种,下面将介绍几种常用的方法。

1. 代入法。

代入法是一种比较直观的解方程组的方法。

首先,我们可以利用其中一个方程,将其中一个未知数表示成另一个未知数的函数,然后将其代入另一个方程中,从而得到只含有一个未知数的方程,然后求解即可。

举个例子,对于方程组:2x + 3y = 7。

x y = 1。

我们可以将第二个方程中的x表示成y的函数,得到x = y + 1,然后将其代入第一个方程中,得到2(y + 1) + 3y = 7,化简得到2y + 2 + 3y = 7,进一步化简得到5y = 5,最终解得y = 1。

将y的值代入x = y + 1中,得到x = 2。

因此,方程组的解为x = 2,y = 1。

2. 消元法。

消元法是通过适当的加减消去其中一个未知数,从而得到只含有一个未知数的方程,然后求解即可。

对于方程组:2x + 3y = 7。

x y = 1。

我们可以通过将第二个方程乘以2,然后与第一个方程相加消去x的系数,得到2x + 3y + 2x 2y = 7 + 2,化简得到4x + y = 9。

然后可以利用这个新的方程和原来的第一个方程,采用代入法或者继续消元,最终求得x和y的值。

3. 克莱姆法则。

克莱姆法则是一种利用行列式的方法来解二元一次方程组的方法。

对于方程组:ax + by = c。

dx + ey = f。

如果行列式D = ae bd不等于0,那么方程组有唯一解,且x = (ce bf)/D,y = (af cd)/D。

这三种方法是解二元一次方程组常用的方法,通过这些方法,我们可以比较轻松地解决二元一次方程组的问题。

当然,在实际应用中,根据具体情况选择合适的方法来解方程组是非常重要的。

学而思初一数学寒假班第2讲.二元一次方程组的特殊解法.教师版

学而思初一数学寒假班第2讲.二元一次方程组的特殊解法.教师版

方程7级二元一次方程的实际应用方程6级 方程组巅峰突破含参方程组 方程5级二元一次方程组的特殊解法五百只鸭子漫画释义满分晋级阶梯2二元一次方程组的特殊解法题型切片(两个) 对应题目题型目标方程组的基本解法例1;例2;例3;例4; 解复杂、特殊的方程组 例5;例6;例7;例8;考点一:知道代入、加减消元法的意义1、解方程组:4316x y x y -=⋅⋅⋅⋅⋅⋅⎧⎨+=⋅⋅⋅⋅⎩①②.【解析】①+②得,420x =,解得5x =,把5x =代入①得,54y -=,解得1y =, 故此方程组的解为:51x y =⎧⎨=⎩.考点二:选择适当方法解方程组2、已知24328a b a b +=⎧⎨+=⎩,则a b +等于( )A 、3B 、83C 、2D 、1考点剖析知识互联网题型切片【解析】24328a b a b +=⎧⎨+=⎩①②∵①+②得:4412a b +=,∴3a b +=故选A【点评】本题考察了解二元一次方程组的应用,关键是检查学生能否运用巧妙的方法求出答案,题目比较典型,是一道比较好的题目.【例1】二元一次方程及二元一次方程的解概念【例2】基本的代入、加减消元法解二元一次方程组 【例3】解复杂的二元一次方程组【例4】含有字母系数的二元一次方程组,先理解题意再进行计算 【例5】叠加叠减法 【例6】换元法 【例7】倒数法【例8】探索方程组中未知数满足的关系式.定 义示例剖析二元一次方程定义:通过化简后,只有两个未知数,并且未知数的项的次数都是1,系数都不是0的整式方程.23x y =,5x y +=,1a b -=,35m n=;二元一次方程的解:使二元一次方程左右两边的值相等的一对未知数的值,叫做这个二元一次方程的一个解.14x y =⎧⎨=⎩是方程5x y +=的一个解; 二元一次方程组定义:一般地,含有相同的未知数的两个二元一次方程合在一起,就组成一个二元一次方程组.41x y x y +=⎧⎨-=⎩二元一次方程组的解:使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值(即两个方程的公共解),叫做二元一次方程组的解.31x y =⎧⎨=⎩是二元一次方程组41x y x y +=⎧⎨-=⎩的解.基本方法:⑴ 代入消元法:把方程组中的一个方程进行变形,写出用一个未知数x (或y )编写思路模块一 方程组的基本解法知识导航表示另一个未知数y (或x )的代数式,然后把它代入另一个方程中,消去未知数y (或x ),得到关于x (或y )的一元一次方程,通过解这个一元一次方程,再来求二元一次方程组的解.我们把这种通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法.⑵ 加减消元法:当二元一次方程组中两个方程的某个未知数的系数互为相反数或相等时,可以把方程的两边分别相加(当某个未知数的系数互为相反数时)或相减(当某个未知数的系数相等时)来消去这个未知数,得到一个一元一次方程,进而求得二元一次方程组的解.像上面这种解二元一次方程组的方法叫做加减消元法,简称加减法.易错点:二元一次方程有无数组解,二元一次方程组只有唯一一组解或无数组解.【例1】 ⑴ 已知关于x 、y 的方程()12mm x y ++=是二元一次方程,则m =______.⑵ 当m =_____时,方程220x my +=是关于x 的一元一次方程. ⑶ 写出方程342x y -=的三组解.【解析】 ⑴1;⑵ 0;⑶ 2610147,,x x x y y y ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩等.【例2】 解方程组 ⑴2127y x x y =-⎧⎨+=-⎩(北京五中期中)⑵233511x y x y +=⎧⎨-=⎩【解析】 ⑴ 13x y =-⎧⎨=-⎩;⑵21x y =⎧⎨=-⎩【例3】 ⑴ 解方程组121232132x y y x -+⎧-=⎪⎪⎨⎪+=⎪⎩⑵ 若关于x ,y 的方程组18mx ny nx my -=⎧⎨+=⎩的解是21x y =⎧⎨=⎩,则m n -为 .【解析】 ⑴ 32x y =⎧⎨=-⎩;⑵ 1.夯实基础能力提升【例4】 ⑴ m 为何值时,方程组522312x y mx y m -=⎧⎨+=-⎩的解x y 、互为相反数?⑵ 已知方程组2420x my x y +=⎧⎨-=⎩有解1x ny n =⎧⎨=+⎩,求m n 、的值.【解析】 ⑴ 9m =;⑵ 将1x n y n =⎧⎨=+⎩代入20x y -=中,即2(1)0n n -+=,解得2n =-,故有21x y =-⎧⎨=-⎩,代入24x my +=中,即44m --=,解得8m =-.定 义示例剖析当二元一次方程组比较复杂时,应先化简,利用去分母、去括号、合并同类项等将其变为简单的二元一次方程组后再选择合适的消元法求解.方程组()110.5142335x y x y +⎧--=⎪⎪⎨++⎪=⎪⎩化简得25531x y x y +=⎧⎨-=-⎩易错点:含绝对值的方程组要分类讨论.【例5】 解方程组:⑴ 199519975989199719955987x y x y +=⎧⎨+=⎩⑵ 361463102463361102x y x y +=-⎧⎨+=⎩⑶ 201020092008200820072006x y x y -=⎧⎨-=⎩(北京四中期中)【解析】 ⑴ 12x y =⎧⎨=⎩;⑵ 11x y =⎧⎨=-⎩;⑶ 12x y =-⎧⎨=-⎩.【点评】 本题尽管可以用常规方法求解,但未知数的系数较大,无论是代入法还是加减法,运算量都很大.选择方法时要根据方程的特点,具体问题具体分析.仔细观察本题系数的特殊规律,大胆地将两个方程分别相加、相减形成新的方程组,进而求得方程组的解.【例6】 运用适当的方法解下列方程组夯实基础知识导航模块二 解复杂、特殊的方程组⑴()()()()4513453x y x yx y x y⎧++-=⎪⎨+--=⎪⎩(北京十一学校期中)⑵解关于x、y的二元一次方程组3223232232x a y b ax a y b a+-⎧+=⎪⎪⎨+-⎪-=⎪⎩(北京十二中期中)【解析】⑴3212xy⎧=⎪⎪⎨⎪=⎪⎩;提示:令x y u x y v+=-=,⑵22x ay b=-⎧⎨=⎩;提示:令3223x a y bu v+-==,【点评】此题为整体换元法求解. 【例7】解下列方程组⑴1215b aabb aab+⎧=⎪⎪⎨-⎪=⎪⎩⑵13281237xyx yxyx y⎧=⎪+⎪⎨⎪=⎪+⎩【解析】⑴原式可化简为11121115a ba b⎧+=⎪⎪⎨⎪-=⎪⎩,所以207203ab⎧=⎪⎪⎨⎪=⎪⎩⑵取倒数得328237x yxyx yxy+⎧=⎪⎪⎨+⎪=⎪⎩,化简得238327x yx y⎧+=⎪⎪⎨⎪+=⎪⎩得1112xy⎧=⎪⎪⎨⎪=⎪⎩解得112xy=⎧⎪⎨=⎪⎩.【点评】此题为倒数法求解.【例8】 1.(2011年人大附中期中)已知x、y满足方程组2524x yx y+=⎧⎨+=⎩,则x y-的值为 .能力提升真题赏析2.(2013年一六一中学期中)由方程组213x m y m+=⎧⎨-=⎩可得出x 与y 的关系是 .3.(2013年首师大附中期中)已知关于x 、y 的方程组343x y ax y a +=-⎧⎨-=⎩,给出下列结论:①51x y =⎧⎨=-⎩是方程组的解;②当2a =-时,x ,y 的值互为相反数;③当1a =时,方程组的解也是方程4x y a +=-的解; ④,x y 满足的关系式是23x y +=其中正确的是( )A .①②B .②③C .①③④D .②③④【解析】1. 1x y -=2. 24x y +=3. D.训练1. 如果2223n m n x y ---=是关于x y 、的二元一次方程,那么m = ,n = . 【解析】 根据定义得2121n m n -=⎧⎨-=⎩,解得73m n =⎧⎨=⎩.训练2. 解方程组233119,253323.x y x y -=⎧⎨-=⎩①②【解析】 ②-①,得224x y -=,即2x y =+。

专训4 二元一次方程组的五种特殊解法

专训4 二元一次方程组的五种特殊解法

2.
解方程组:ìïïíïïî
2 2
015 016
x+2 x+2
016 017
y=2 y=2
017,① 018.②
解:②-①,得x+y=1.③
由③,得x=1-y.④
把④代入方程①,得2 015(1-y)+2 016y=2 017.
解这个方程,得y=2.
把y=2代入方程③,得x=-1.
所以原方程组的解为
- 24 y2 6
=
-
44 y2
=
. 11
本题不能直接求出x,y,z的值,这时可以把其 中一个未知数当成一个常数,然后用含这个未知 数的式子去表示另外两个未知数.

1. 用代入法解方程组:
ìïïïíïïïî
x + y =0,① 34 (2 x+y)-(3 2
y-x)=62.②
解:由①,得 x = 3
y 4.
设 x = - y =k,则x=3k,y=-4k. 34
将x=3k,y=-4k代入方程②,
得2(3k-4k)-3[2×(-4k)-3k]=62.
解这个方程,得k=2.所以x=6,y=-8.
ìïïíïïî
x=-1, y=2.
观察方程①和②的系数特点,数值都比较大,如 果用常规的代入法或加减法来解,不仅计算量大, 而且容易出现计算错误.根据方程组中的两个未 知数的对应系数之差的绝对值相等,先化简,再 用代入法或加减法求解,更为简便.
类型2 方程组中两未知数系数之和的绝对值相等
3.
解方程组:ìïïíïïî
018的值.
解:依题意有(1)
ìïïíïïî
3 x-y=5, 4x-7 y=1,(2)
ìïïíïïî
ax-by=4, ax+by=16.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅析特殊二元一次方程组的巧妙解法
云南省曲靖市宣威市羊场镇初级中学 张荣芝
【摘要】 解二元一次方程组最常用的方法是代人法和加减法,但对于一些特殊的二元一次方程组,若能根据方程组的特征,灵活运用一些技巧,不仅可以简化解题过程,而且有助于培养同学们的创新意识。

【关键词】二元一次方程组 巧解 创新意识 加减法
二元一次方程组的解题思路就是消元,通过消元把二元转化为一元。

消元分代入消元法和加减消元法,这是解二元一次方程组的基本方法。

解题时常遇到一些特殊形式的方程(组),它们结构巧妙而富有规律性。

此时应仔细观察题目的特点,抓住方程的结构特征或某种规律,联想一些解题方法与技巧,往往能避免常规解法带来的繁杂运算,找到较为简便的解法。

这两种方法都是从“消元”这个基本思想出发,先把“二元”转化为“一元”把解二元一次方程组的问题归结为解一元一次方程,在“消元”法中,包含了“未知”转化到“已知”的重要数学化归思想。

整体代入法
例1 解方程组y x x y +=+-=⎧⎨⎪⎩⎪1423231
解:原方程组可变形为435231
x y x y -=--=⎧⎨⎩
继续变形为 2 x -3y+2 x=-5
2 x -3y=1
(2)代入(1)得:125+=-x x =-3
解得:y =-73 方程组的解为x y =-=-⎧⎨⎪⎩⎪373 再如:
2a +b =3 (1)
3a +b =4 (2)
解: (2)式变形为(2a +b )+a =4 (3)
,ax by m bx ay n +=⎧⎨+=⎩ 把(1)代入(3)得 3+a =4
∴ a =1
把a =1代入(1)得b =1
∴原方程组的解是 a =1
b =1
二、直接加减法 a x+by =m
当方程组中未知数的系数具有轮换特点时,即类似于 bx + ay=n 的形式,可以直接将两个方程相加、减,反复两次,然后联立得到新方程,从而巧妙地迅速求解,我们称之谓反复加减法.
例2 解方程组 4x -3y =3 (1)
3x -4y =4 (2)
解: (1)+(2)得 7x -7y =7
∴x-y=1 (3)
(3)-(2)得x+y=﹣1 (4)
由(3),(4)得x=0 x=0
∴y=﹣1
再如:
9779212,
7997140.
x y
x y
+=


+=



可用此种方法快速求解
三、整体叠加法
例3 解方程组
35()36, 34()36. x x y
y x y
++=


++=



分析:两个方程的第一项未知数x、y的系数相同,并且都含有x y
+的倍数,故可将x y
+视为一个整体,把两方程相加,先求出x y
+的值,尔后将x y
+的值分别代入两方程即可得解.
解:(1)+(2)得
3(x+y)+9(x+y)=72 x+y=6(3)
把(3)代入(1)(2)得3x+30=36 x=2
3y+24=36 y=4
所以原方程组的解为x=2
y=4
四、消常数项法
例4 解方程组
2x-5y=﹣3 (1)
﹣4x+y=﹣3 (2)
解:(1)-(2)得
6x -6y =0 化简得x =y (3)
把(3)代入(1)得y =1 把y =1代入(1)
得x =1
所以原方程组的解为 x =1
y =1
再如:解方程组73890,2367180.x y x y -=⎧⎨-=⎩

② 五、设参数代入法
例5 解方程组 x -3y =2(1)
x:y=4:3(2)
解:由(2)得:x y 43=
设x y k 43==,则x=4k,y=3k(3)
把(3)代入(1)得:492k k -=
解得:
k =-25 把
k =-25代入(3),得:x y =-=-8565, 所以原方程组的解是x y =-=-⎧⎨⎪⎪⎩⎪⎪
856
5 六、换元法
所谓换元法,就是把一个数学式子或者其中的一部分看作一个整体,用一个中间变量去代换,从而达到简化式子的目的。

例6 解方程组
2323
7,
43
2323
8.
32
x y x y
x y x y
+-

+=
⎪⎪

+-
⎪+=
⎪⎩


分析:从该方程组的特点可以看出,把23,23
x y x y
+-各视为一个整体,利用换元法较为简捷。

解:设2x+3y=a, 2x-3y=b 则原方程组可变形为
3a+4b=84
2a+3b=48
解得a=60
b=-24
2x+3y=60 x=9
代入得2x-3y=-24 解得这个方程组,得y=14
用换元法解方程组可化繁为简,不仅可减少运算量,还可以又快又准地解出方程。

七、对称方程组的解法
例7解方程组x/5+y/7=12
y/5+x/7=12
分析:观察方程组不难发现,把期中任意一个方程中的两个未知数互换位置,得到的方程恰为另一个方程。

不难验证,在这种情况下将原方程组中任一方程与y=x联立求得的解即为原方程组的解。

解:原方程组与下列方程组的解相同
x/5+y/7=12 (1)
y=x (2)
把(2)代入(1)得x=35,把x=35代入(2)得y=35
所以原方程的解为x=35
y=35
八、简化系数法
例8解方程组4x-3y=3(1)
3x-4y=4(2)
解:( 1)+(2)得:7x-7y=7
所以x-y=1(3)
(1)-(2)得:x+y=-1(4)
由(3)(4)得:
x
y
=
=-⎧


1
其实解二元一次方程组的方法远远不止以上几种,有些二元一次方程组有特殊的结构,选择适当的方法可以使方程组的求解变得简单易行。

【参考文献】七年级下册数学《教材1+1》;
七年级下册数学《完全解读》
简介:
姓名:张荣芝;性别:女;民族:汉族
地址:宣威市羊场镇初级中学手机号:。

相关文档
最新文档