SPC名词解释

合集下载

(完整word)什么是SPC?SPC的作用是什么?SPC运用中应该注意的几个问题

(完整word)什么是SPC?SPC的作用是什么?SPC运用中应该注意的几个问题

(完整word)什么是SPC?SPC的作用是什么?SPC运用中应该注意的几个问题什么是SPC?SPC的作用是什么?SPC运用中应该注意的几个问题SPC即英文“Statistical Process Control"之缩写,意为“统计制程控制” SPC或称统计过程控制。

SPC主要是指应用统计分析技术对生产过程进行实时监控,科学的区分出生产过程中产品质量的随机波动与异常波动,从而对生产过程的异常趋势提出预警,以便生产管理人员及时采取措施,消除异常,恢复过程的稳定,从而达到提高和控制质量的目的。

为什么要用SPC,SPC的作用是什么?重视企业内部外部顾客,以顾客满意作为主要目标,这些目标必须不断地在价值上得以改进,运用SPC,能使我们致力于更有效的改进,同时,我们组织中的每一个人都必须确保不断改进及使用有效的方法.在我们的企业当中,很多都是不重视统计过程控制的,或者只是把统计过程控制当做一个口号或者一个用来通过各种认证用的手段,并没有真正的用到现实生产当中,也没有起到真正的作用.于是就产生了一个问题,如果仔细的审核所有的统计过程,会发现存在很多的问题.1、在作XBar—R图时,数据搜集不准确。

数据的搜集来自于现场,往往我们根据控制计划或者其他文件的要求,到现场察看数据采集情况,会发现现场的数据采集没有按照要求来进行。

有些企业会采用连续测量,100%测量的方式,同时也不做任何的纪录,只要检验人员发现没有问题,也不需要进行任何变动,一旦发现,则进行调整设备参数或采取别的措施。

而采用该方法是与SPC相违背的。

有些公司采用了100%检验不说,根据大体情况,再进行编制控制图,专门用来应付审核或者提交客户用,这样的SPC是没有作用的,同时还浪费更多的人力物力.所以,希望我们运用统计技术的企业,能够真正的将统计技术运用起来,而不仅仅是流露与形式。

2、做控制图时部分或者全部的曲线类似。

这也是数据经过编辑的一种可能。

详细全面的SPC详解

详细全面的SPC详解

详细全面的SPC详解SPC(Statistical Process Control,统计过程控制)是一种用于管理和优化生产过程的方法,它的目的是通过使用统计工具来分析生产过程中的数据,从而控制和改进产品质量。

SPC强调预防原则,即通过预防措施来减少产品缺陷和不良情况的发生,而不是在出现问题后再进行纠正。

SPC的基本概念包括控制图、过程能力指数、规格界限等。

控制图是SPC的核心工具,它用于监控生产过程中的关键变量,并根据统计原理判断生产过程是否处于控制状态。

控制图通常由均值-标准差控制图和极差控制图两种类型组成。

过程能力指数是指生产过程满足产品规格要求的程度,它通常被用来评估生产过程的能力,以便进行改进。

规格界限则是根据产品要求和客户要求设定的界限,用于确定产品是否合格。

SPC的实施方法包括以下几个步骤:1.选择关键变量:首先需要选择需要监控的关键变量,例如产品尺寸、材料特性等。

2.设计控制图:根据选定的关键变量,设计适合的控制图,并确定控制界限。

3.收集数据:按照一定的时间间隔收集生产过程中的数据,并对数据进行记录和整理。

4.分析数据:根据控制图的规则,判断生产过程是否处于控制状态,并找出异常点。

5.采取措施:根据分析结果,采取适当的措施来改进生产过程,例如调整工艺参数、更换设备等。

6.监控和反馈:持续监控生产过程,并及时反馈相关信息,以确保生产过程的质量和稳定性。

SPC的优势在于它可以及时发现生产过程中的异常情况,从而采取措施防止问题的扩大。

此外,SPC还可以提高生产过程的稳定性和产品质量的一致性,减少浪费和成本。

未来,SPC将会在更多的领域得到应用和发展,例如智能制造、医疗保健、金融服务等行业。

总之,SPC是一种有效的过程管理和优化工具,可以帮助企业提高产品质量和生产效率。

学习和掌握SPC技能对于从事质量管理、生产管理、工艺优化等工作的专业人士来说是非常重要的。

SPC的基本概念与特点

SPC的基本概念与特点

SPC的根本概念与特点什么是SPCSPC,即统计过程控制〔Statistical Process Control〕,是一种通过统计方法对过程进行监控和管理的质量管理工具。

它通过收集和分析过程数据,以便实时地监测过程的稳定性和能力,并及时采取纠正措施,以保证产品或效劳的质量符合要求。

SPC基于统计学原理,利用数据分析的手段来判断过程的偏差和稳定性,采取控制图等图形化工具来展示过程变化的规律,并通过数学模型对过程进行预测和改良。

SPC的根本特点1.实时性SPC能够实时地监测过程的稳定性和能力,通过实时收集的数据进行分析,及时发现过程的偏差和异常情况,并及时采取纠正措施。

这使得SPC能够快速响应问题,防止质量问题的扩大和重复出现。

2.统计方法SPC基于统计学原理,利用统计方法对过程数据进行分析和判断。

通过对数据的测量、统计和分析,可以客观地了解过程的状态,并进行准确的判断和决策。

这使得SPC能够防止主观判断和盲目决策的问题,提高质量管理的科学性和准确性。

3.图形化工具SPC采用图形化工具展示过程变化的规律,常用的图形化工具包括控制图、趋势图、直方图等。

这些图形化工具直观地展示了过程的状态和变化趋势,使人们能够快速地理解和分析数据,辅助决策和改良。

图形化工具还能够帮助人们发现隐藏在数据中的规律和关联性,进一步优化和改良过程。

SPC通过数据的分析和建模,能够对过程进行预测和改良。

通过建立数学模型和趋势分析,可以预测过程的开展方向和变化趋势,为及时调整和改良提供依据。

这使得SPC能够提前发现潜在问题和缺陷,及时采取措施进行预防和纠正,确保产品或效劳的质量稳定。

5.过程稳定性SPC关注过程的稳定性,即过程的变异是否在可接受的范围内。

通过对数据的统计和分析,可以判断过程的稳定性,并得到稳定性指标,如均值、标准差、过程能力指数等。

这使得SPC能够帮助人们了解过程的状态和品质能力,及时调整和改良过程,提高产品或效劳的稳定性和一致性。

SPC的定义及应用范围

SPC的定义及应用范围

SPC的定义及应用范围什么是SPC?SPC(统计过程控制)指的是一种通过统计方法来监控和控制过程的质量的方法。

它旨在通过分析过程中的数据,以便更好地了解和理解过程的变异性,并采取适当的措施来控制和改进过程的稳定性和能力。

SPC是一种基于数据的方法,它使用统计技术来分析过程中的变异,并通过控制图和其他工具来监控过程的表现。

通过及时识别和解决问题,SPC可以帮助组织提高质量、降低成本,并提高客户满意度。

SPC的应用范围SPC可以应用于各种类型的过程和行业。

无论是制造业还是服务业,SPC都可以用来监控和改进过程的稳定性和能力。

以下是一些常见的应用范围:制造业在制造业中,SPC可以用来监控和控制生产过程中的关键参数。

通过采集和分析实时数据,可以及时发现过程中的异常和变异,并采取相应的纠正措施,以确保产品的一致性和质量。

SPC可以应用于各种制造领域,如汽车制造、电子制造、医疗设备制造等。

例如,在汽车制造中,SPC可以用来监控关键指标,如车身尺寸、涂装厚度等,以确保生产出符合规格的汽车。

服务业尽管SPC最初是为制造业设计的,但它同样适用于服务业。

在服务业中,过程的稳定性和能力同样重要。

通过收集客户反馈和关键指标数据,可以使用SPC来监控和改进服务过程。

例如,在酒店业中,可以使用SPC来检测房间清洁时间、客户满意度等指标,以确保提供高质量的服务。

在银行业中,SPC可以应用于监控关键指标,如服务等待时间、客户投诉率等,以提高客户满意度。

医疗在医疗行业中,SPC可以用于监控和改进各种过程,如手术过程、药品配制过程等。

通过收集和分析相关数据,可以及时发现问题并采取适当的措施,以确保病人的安全和满意度。

SPC在医疗行业中的应用可以帮助医院提供更高质量的医疗服务,减少手术错误和药物错误等。

总结SPC是一种通过统计方法来监控和控制过程质量的方法。

它适用于各种类型的过程和行业,包括制造业、服务业和医疗行业。

通过采集和分析数据,SPC可以帮助组织提高过程的稳定性和能力,从而提高质量、降低成本,并提高客户满意度。

SPC(统计过程控制)知识要点

SPC(统计过程控制)知识要点

SPC(统计过程控制)知识要点SPC是英文Statistical Process Control的字首简称,即统计过程控制。

SPC就是应用统计技术对过程中的各个阶段收集的数据进行分析,并调整制程,从而达到改进与保证质量的目的。

SPC强调预防,防患於未然是SPC的宗旨。

1- What:什么是SPCSPC:统计过程控制SPC说到底,就是一个图表,把生产过程中的数据,收集起来用图表的形式展现出来。

它的作用可以大致总结为:•方便大家从图表中,找出有异常的数据。

•跟进数据趋势,预见异常发生的可能。

•数据异常后,做出相应的改善对策SPC本质上就是一种特殊的趋势图,不过SPC给他们起一个更有气质的名字:控制图。

当然了,控制图还要和普通的趋势图有差异的,具体表现为以下几点:1.控制图都有上下控制线和中心线,UCL和LCL(具体会在6-How里面说明)2.控制图的数据收集规则、数据分析的规则,更加的繁琐,更加的严格3.控制图一定要有相应的改善输出2- Why:为什么要用SPC为了及时发现生产过程中,由特殊原因导致的异常,及时改善。

为了深入分析系统中的普通原因,进一步提高产品品质,为客户提供更好的产品。

(当成为一个工厂的品质副总时,如何将一线数据浮上来,你会自然而然的想到SPC)在思考为什么要用SPC时,我们的观点和认知,是随着职位不断成长的。

不要硬逼着自己去理解SPC手册里,那十几页鸡汤式的SPC 概述。

格局到了,自然就理解了。

但是SPC的作用是不会发生变化的,做就对了。

3- When:在什么时候用SPCSPC手册里面说,SPC只有在过程受控状态下,才能使用。

但是实际上,SPC就是一个图表,任何情况,任何产品,只要有数据就可以用SPC控制图。

只是它所体现出来的信息不同,使用者透过SPC发现问题的程度不一样。

举个通俗一点的例子。

张飞和关羽出征沙场,张飞去探路。

张飞趴在地上,用听音识距离之术,听了半晌得出一个结论:敌人距离我们还有250米。

SPC基本概念

SPC基本概念
X R
判稳、判异,可以通过应用不合格数npT图替代。 ●计点控制图:当样本大小n变化时,由于u图、c图的
控制界限都呈凹凸状,不但作图不方便,更无法判 稳、判异,可以应用通用不合格数cT图替代。 ●有用的控制图: X s 、X R 、npT图、cT控制图
X R 控制图的两个阶段
分析用控制图 ●判断过程是否稳定不稳定,调至稳定 ●过程的过程能力指数是否满足要求,过 程能力指数满足要求称之为技术稳态
●中位极差图 X~ R 图, X~ 表示中位值。现在由于 计算机应用普及,故已淘汰,被均值-标准差图替代。
两种错误
一.第一种错误:虚发警报(false alarm)
UCL
α
β
LCL 二.第二种错误:漏发警报(alarm missing)
控制图的第二类错误
三、减少两种错误所造成的损失: ●UCL、LCL距离间隔大,α减小 β增大 ●UCL、LCL距离间隔小,α增大 β减小 ●UCL、LCL距离间隔3σ,α=0.27%
统计控制状态
●概念:只有偶因而无异因产生的变异的状态 ●优点:
----对产品的质量有完全把握 ----生产也是最经济的 ----在控制状态下,过程的变异最小
常用的控制图
分布 控制图代号 控制图名称
备注
正态
分布
(计 X R
量值)
均值—极差控制 图
X S
X~ R
均值—标准差控 制图
中位值—极差图
C C
B
LCL A
判异准则
4.连续3点中有2点落在中心线同一侧的B区以外
UCL A
B
CL
C C
B
LCL A
判异准则
5.连续5点中有4点落在中心线同一侧的C区以外

什么是SPC

什么是SPC

概括SPC (统计过程控制)
SPC就是利用统计方法去:
1.分析过程的输出并指出其特性。 2.使过程在统计控制情况下成功地进行和维持。 3.有系统地减少该过程主要输出特性的变异。 SPC是以预防代替检验,制造业与其他行业一样,预防发生 错误永远比事后矫正为好,而且简单得多.
总结 SPC (统计过程控制)
这些波动源对加工的影响最后都集中反映在直径 测量值
Seite 21
变差种类
普通原因与特殊原因 普通原因:过程中变异因素是在统计的控制状态
下,其产品之特性有固定的分配。
特殊原因:过程中变异因素不在统计的控制状态
下,其产品之特性没有固定的分配。
12
普通原因
随着时间的推移具有稳定性的可重复的分布过程中许多 变差的原因。
n
xi
x i1 n

SPC – Introduction
基本统计概念
• Md 中位数(median) 顺序数列中的中心项的数值
• Mo 众数(mode) 资料中出现最多的数值
SPC – Introduction
基本统计概念
• 2 方差/变异(variance)
n
n2
(xi x)2
i 1
n
作用
原料
人 机 法 环 测量

PROCESS
测量 结果
不好
不要等产品做出來后再去看它好不好!! 而是在制造的時候就要把它制造好!!!
品质失败的结果
外部成本
维护成本升高 返工
过程波动引 起品质不良
内部成本
报废返工停工 加强检验
市场份额下降 资金周转期长
客户失望
高的检验成本 重复修理 存货增多

spc什么意思

spc什么意思

spc什么意思SPC是英文“Statistical Process Control”的缩写,直译为“统计过程控制”。

SPC是一种在质量管理中使用的统计方法,用于监控和控制产品和过程的质量变异。

SPC的目标是通过对过程进行实时监测和分析,从而及时发现异常和变异,并采取适当的措施来纠正问题,确保产品的质量符合要求。

SPC方法最早在20世纪20年代由质量管理专家Walter A. Shewhart提出,并在20世纪50年代由W. Edwards Deming进一步发展和推广。

SPC方法在当时对于工业部门来说是一个重大的突破,因为它打破了传统的质量检查和产品抽样测试的模式,引入了统计分析和实时监控的思想。

SPC方法的应用使得生产过程更加可控和稳定,并帮助企业提高产品的质量并降低成本。

SPC方法的核心概念是“过程可控性”和“异常检测”。

过程可控性指的是通过对过程中的关键参数进行实时监测和统计分析,确保过程在可控的范围内。

如果过程处于可控状态,那么产品的质量就有较高的稳定性。

异常检测是指通过对过程中的数据进行分析,发现异常点和变异,并及时采取控制措施,防止质量问题的扩大。

SPC方法使用统计工具如控制图、直方图和散点图来帮助分析数据,识别异常和变异,并帮助质量管理人员做出决策。

SPC方法通过实时监测和分析数据,可以帮助企业及时发现质量问题,并采取纠正措施。

这有助于降低产品缺陷率,提高产品质量。

同时,SPC方法的应用还可以优化生产过程,提高生产效率和产能利用率。

通过实时监测和控制关键过程参数,企业可以预防和减少质量异常和制程缺陷,降低生产成本和废品率。

除了对产品质量的监控和控制,SPC方法还可以用于改进过程。

通过对过程数据的分析,企业可以识别并改进生产中的瓶颈和不良环节,进一步提高产品质量和生产效率。

此外,SPC方法还可以用于优化供应链管理。

通过实时监控关键指标和指标的变异性,企业可以更好地控制供应链中的质量问题,并与供应商进行合作,共同提高产品质量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SPC名词解释
准确度Accuracy
成品改善ActiononOutput
制程中对策ActionontheProcess
人员变异AppraiserVariation
计数值AttributeData
平均数Average
中位数平均AverageofMedian
全距平均AverageofRange
标准差平均AverageofStandardDeviation
平均数-全距管制图Average-RangeControlChart
二项分配BinomialDistribution
平均数-标准差制图Average-StandardDeviationControlChart 中心线CenterLine;CL
中央极限定理CentralLimitTheorem
管制界限ControlLimITS
持续改善ContinualImprovement
管制图ControlChart
分散Dispersion
管制计划ControlPlan
计件CountbyPieces
计点CountbyPoints
关键制程特性CriticalProcessCharacteristics
共同原因CommonCause
每百万缺点数管制图DefectPartsPerMillionControlChart
分配Distribution
关键产品特性CriticalProductParameter
仪器变异EquipmentVariation
连续随机变数ContinuousRandomVariable
估计平均数EstimatedAverage
离散随机变数DiscreteRandomVariable
单位缺点数DefectsPerUnit
单位缺点数管制图DefectsPerUnitControChart
指数分配ExponentialDistribution
估计不良率EstimatedProcessPercentDefectives
次数分配FrequencyDistribution
估计标准差EstimatedStandardDeviation
漏斗实验FunnelExperiment
高级统计方法(Advanced Statistical Methods):
比基本的统计方法更复杂的统计过程分析及控制技术,包括更高级的控制图技术、回归分析、试验设计、先进的解决问题的技术等。

计数型数据(Attributes Data):
可以用来记录和分析的定性数据,例如:要求的标签出现,所有要求的紧固件安装,经费报告中不出现错误等特性量即为计数型数据的例子。

其他的例子如一些本来就可测量(即可以作为计量型数据处理)只是其结果用简单的“是/否”的形式来记录,例如:用通过/不通过量规来检验一根轴的直径的可接受性,或一张图样上任何设计更改的出现。

计数型数据通常以不合格品或不合格的形式收集,它们通过p、np、c和u控制图来分析(参见计量型数据)。

均值(Average)(参见平均值Mean):
数值的总和被其个数(样本容量)除,在被平均的值的符号上加一横线表示。

例如,在一个子组内的x值的平均值记为X,X(X两横)为子组平均值的平均值,X(X上加一波浪线)为子组中位数的平均值。

R为子组极差的平均值。

认知(Awareness):
个人对质量和生产率相互关系的理解,把注意力引导到管理义务的要求和达到持续改进的统计思想上。

基本的统计方法(Basic Statistical Methods):
通过使用基本的解决问题的技术和统计过程控制来应用变差理论,包括控制图的绘制和解释(适用于计量型数据和计数型数据)和能力分析。

二项分布(Binomial Distribution):
应用于合格和不合格的计数型数据的离散型概率分布。

是p和np控制图的基础。

因果图(Cause-Effect Diagram):
一种用于解决单个或成组问题的简单工具,它对各种过程要素采用图形描述来分析过程可能的变差源。

也被称作鱼刺图(以其形状命名)或石川图(以其发明者命名)。

中心线(Central Line):
控制图上的一条线,代表所给数据平均值。

特性(Characteristic):
一个过程或其输出的明显特性,可按这个特性收集计量型或计数型数据。

普通原因(Common Cause):
造成变差的一个原因,它影响被研究过程输出的所有单值;在控制图分析中,它表现为随机过程变差的一部分。

连续的(Consecutive):
连续生产的产品单元,是选择子组样本的基础。

质量和生产率持续改进(Continual Improvement in Quality and Productivity):一种可操作的宗旨,它充分利用公司内的人才,用不断提高效率的方式来为顾客生产质量不断提高的产品,从而归还受益者投资。

这是一个动态的战略,使公司提高现在及未来市场条件中的能力。

与任何静态的战略不同,它认为2(显然地或隐含地)一些特殊的不合格中不可避免的。

控制(Control):
用来表示一个过程特性的图象,图上标有根据那个特性收集到的一些统计数据,如一条中心线,一条
或两条控制限。

它能减少I尖错误和II类错误的净经济损失。

它有两个基本的用途:一是用来判定一个过程是否一直受统计控制;二是用来帮助过程保持受控状态。

控制图(Control Limit):
控制图上的一条线(或几条线),作为制定一个过程是否稳定的基础。

如有超出了控制极限变差存在,则证明过程受特殊因素的影响。

控制限是通过过程数据计算出来的,不要与工程的技术规范相混淆。

累计和(CUSUM):
一种先进的统计方法,它利用当前的和最近的过程数据来检验过程均值中不大的变化或变异性,CUSUM代表偏离目标值的变差的“累积和”,它把当前和最近的数据看得同等重要。

探测(找出)(Detection):
一种被动(事后)型的策略,它企图在产品生产出来后发生不能接受的输出,并将其与好的输出分开(参见预防)。

分布(Distrbution):
描述具有稳定系统变差的输出的一种方式,其中单个值是不可预测的,但一组单值就可形成一种图形,并可用位置、分布宽度和形状这些术语来描述。

位置一般用均值来表示,或者用中位数表示。

分布宽度用样本的标准差或样本极差表示,形状包括许多特性,比如对称性及峰度,但经常使用常见分布的名称来概括,如:正态分布,二项分布,或泊松分布。

单值(Individual):
一个单个的产品或一个特性的一次测量,通常用符号X表示。

位置(Location):
分布中心趋势典型值的一般概念。

平均值(Mean):
一组测量值的均值。

中位数(Median):
将一组测量值从小到大排列后,中间的值即为中位数。

如果数据库的个数为偶数,一般将中间两个数的平均值作为中位数。

子组中位数是构成简单的有关过程位置的控制图的基础。

中位数加波浪号(~)的符号表示;如X就是一分组的中位数。

移动极差(Moving Range):
两个或多个连续样本值中最大值与最小值之差,这种差是按这样方式计算的:每当得到一个额外的数据点时,就在样本中加上这个新的点,同时删除其中时间上“最老的”点,然后计算与这点有关的极差,因此每个极差的计算至少与前一个极差的计算共用一个点的值。

一般说来,移动极差用于单值控制图,并且通常用两点(连续的点)来计算移动极差。

不合格品(Nonconformity):
一个具体出现的不符合规范要求或其他检验标准的情况,有时称为缺陷。

一个不合格品中能有多处不合格。

例如:一扇门也许有几处凹痕和缝,对化油器进行功能检验可发现一些潜在的不合格。

分析产品不合格的系统,用c和u控制图。

正态分布(Normal Distribution):
靠近均数分布的频数最多,离开均数越远,分布的数据越少,左右两侧基本对称,这种中间多、两侧逐渐减少的基本对称的分布,称为正态分布。

操作性定义(Operational Definition):
根据可观察、可测量、可操作的特征来界定变量含义的方法。

即从具体的行为、特征、指标上对变量的操作进行描述,将抽象的概念转换成可观测、可检验的项目。

相关文档
最新文档