二次函数的应用[上学期]--浙教版

合集下载

九年级数学上册 第一章 二次函数 1.4 二次函数的应用(第1课时)b课件 (新版)浙教版

九年级数学上册 第一章 二次函数 1.4 二次函数的应用(第1课时)b课件 (新版)浙教版


.

a



π 2

7


0, b

6, c

0,
新教课学讲目 解

答:当窗户半圆的半径约为0.35m,窗框矩形部分的另一边 长约为1.23m时,窗户的透光面积最大,最大值约为 1.05m2.
新教课学讲目 解

二次函数求实际问题中的最值问题的解答
1、求出函数表达式和自变量的取值范围 2、通过配方或利用公式求最大值或最小值
注意:求出的最大值或最小值对应的自变量的值必须在自变 量的取值范围内。
新教课学讲目 解

现在我们来解决课前想一想
用长为8米的铝合金制成如图窗框,问窗框的宽和高各多 少米时,窗户的透光面积最大?最大面积是多少?
解:设矩形窗框的面积为y,由题意得,
学教以学致目 用

在矩形荒地ABCD中,AB=10,BC=6,今在四边上分别选取E 、F、G、H四点,且AE=AH=CF=CG=x,建一个花园,如何 设计,可使花园面积最大?
草图(如图所示).
巩教固学提目升

7、某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,
制造窗框的材料总长(图中所有的黑线的长度和)为15m.当x等于
多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面 积是多少?
xx
y
课教堂学小目结

运用二次函数求实际问题中的最值问题,一般的步骤:
①把问题归结为二次函数问题(设自变量和函数);
②求出函数表达式和自变量的取值范围;
③通过配方变形或利用公式求它的最值(在自变量的取值范围 内);
(或利用函数图象找最值)

二次函数的应用[上学期]--浙教版

二次函数的应用[上学期]--浙教版

听见流水声响的时候,我已看到那道坡。弯弯曲曲的,延伸到大山的肩膀上。 坡上的那颗老槐树枝繁叶茂般原样还站在原地。几只杂色的狗四脚朝天地卧在树根下。风一吹来,它们就把那机灵的脑袋使劲地往外探。 槐花飘香,远远的就流入了喉咙里。 天近擦黑,我回到了村庄。此时,围拢在村口大牌匾下一起闲谈的几个乡人正在挥手慢慢散去。一家大人拉扯着一个倔强的孩子正往村卫生室走。快到门口时,那个孩子想挣扎着要往外跑。 泛白的灯光下,一个身穿白大褂带着很高度数眼镜的年轻人笑嘻嘻地打开了门。 一道微弱的光线闪射在了我的眼帘中。 此时,行驶的车子正好停伫在废弃小学校门的过洞口。狭长的村道上,远远望去,只剩下轻靠在牌匾下坐着的一个人影。我揉了揉被风沙模糊了的双眼定睛看去,他正面对着的就是我看到的那道坡。 这是用乡里话说的,说是坡,其实是不宽的一条捷径小路。
自姐姐被分配到了徐大教学,我和姐姐就聚少离多,但偶尔通通电话,互相报一个平安。姐姐总是很节俭,把自己的工资资助那些家庭困难的学生,并且号召学校的老师来捐款。 金木棉官网 今年去看姐姐,她正在考研,她很辛苦,每天除了带完所有的课,还要废寝忘食的去复习自己的考研试题。如今我也走上了姐姐的老路,也许这就是一种宿命。

1.4二次函数的应用(第1课时)(同步课件)-2024-2025学年九年级数学上册同步课堂(浙教版)

1.4二次函数的应用(第1课时)(同步课件)-2024-2025学年九年级数学上册同步课堂(浙教版)

1.4 二次函数的应用第1课时 几何图形的面积问题数学(浙教版)九年级 上册第1章二次函数学习目标1.学会分析实际问题中的二次函数关系;2.学会用二次函数表示几何图形中的关系,并用来求实际问题中的最大值与最小值;导入新课问题1:从地面竖直向上抛出一小球,小球的高度 h (单位:m )与小球的运动时间 t (单位:s )之间的关系式是 h= 30t - 5t 2(0≤t ≤6).小球的运动时间是多少时,小球最高?小球运动中的最大高度是多少?t/sh/mO1234562040h= 30t - 5t2解决思路:通过图象可以看出,这个函数的图象是一条抛物线的一部分,这条抛物线的顶点是这个函数的图象的最高点.也就是说,当t 取顶点的横坐标时,这个函数有最大值.思考:如何求二次函数的顶点坐标呢?知识点一 二次函数的实际应用——几何图形面积问题由于抛物线 y = ax 2+ bx + c 的顶点是最低(高)点,当 时,二次函数 y = ax 2+ bx + c有最小(大)值思考:如何求出二次函数 y = ax 2+ bx + c 的最小(大)值?二次函数的顶点式可以很直观地看出最大值或最小值当 时小球运动的时间是 3s 时,小球最高.小球运动中的最大高度是 45 m.t/sh/m O 1234562040h= 30t - 5t2我们来求一下问题1:例用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化.当l是多少时,场地的面积S最大?1.矩形面积公式是什么?2.如何用l表示另一边?3.面积S的函数关系式是什么?l30-lS=l(30-l),即S=-l2+30l (0<l<30).S=l(30-l),即S=-l2+30l (0<l<30).因此,当时,S有最大值,也就是说,当l是15m时,场地的面积S最大.归纳总结二次函数解决几何面积最值问题的方法1.求出函数解析式和自变量的取值范围;2.配方变形,或利用公式求它的最大值或最小值;3.检查求得的最大值或最小值对应的自变量的值必须在自变量的取值范围内.典例精析【例1】某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的两处各留1m宽的门.已知计划中的材料可建墙体(不包括门)总长为28m,则当能建成的饲养室总占地面积最大时,中间隔开的墙长是( )米.A.4B.5C.6D.8【详解】解:设中间隔开的墙长为x m,能建成的饲养室总占地的面积为Sm2,根据题意得,S=x×(28+2-3x)=-3(x-5)2+75,-3<0,有最大值,∴当x=5时,S取得最大值,故选:B.【点睛】本题考查了二次函数的应用,根据题意列出函数关系式是解题的关键.练一练1.如图,某跑道的周长为400m 且两端为半圆形,要使矩形内部操场的面积最大,直线跑道AB 段的长应为.【详解】解:设矩形直线跑道AB=xcm ,矩形面积为ycm 2,由题意得: y=400−2ᵆᵰ·ᵆ=−2ᵰ(ᵆ−100)2+20000ᵰ∵−2ᵰ<0,∴当x=100时,y 最大,即直线跑道长应为100m .故答案为:100m2.如图,一块矩形区域ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF 分开.已知篱笆的总长为18米(篱笆的厚度忽略不计),求当矩形ABCD 的面积最大时AB 的长.【详解】解:设AB=x 米,矩形的面积设为y (平方米),则AB+EF+CD=3x ,∴AD=BC=18−3ᵆ2.∴y=x·18−3ᵆ2=−32ᵆ2+9ᵆ.由于二次项系数小于0,所以y 有最大值,∴当AB=x=-ᵄ2ᵄ=3时,函数y 取得最大值.∴当AB=3米时,矩形ABCD 的面积最大.1.如图,要围一个矩形菜园ABCD,共中一边AD是墙,且AD的长不能超过26m,其余的三边AB,BC,CD用篱笆,且这三边的和为40m.有下列结论:①AB的长可以为6m;②AB的长有两个不同的值满足菜园ABCD的面积为192m2;③菜园ABCD面积的最大值为200m2.其中,正确结论的个数是( )A.0B.1C.2D.3【详解】设AB的长为xm,矩形ABCD的面积为ym2,则BC的长为(40-2x)m,由题意得y=x(40-2x)=-2x2+40x=-2(x-10)2+200,其中0<40-2x≤26,即7≤x<20,①AB的长不可以为6m,原说法错误;③菜园ABCD面积的最大值为200m2,原说法正确;②当y=-2(x-10)2+200=192时,解得x=8或x=12,∴AB的长有两个不同的值满足菜园ABCD面积为192m2,说法正确;综上,正确结论的个数是2个,故选:C.2.把一根长4a的铁丝分成两段,每一段弯曲成一个正方形,面积和最小是( )A.ᵄ2B.ᵄ2�C.ᵄ22D.ᵄ243.如图,某学校拟建一块矩形花圃,打算一边利用学校现有的墙(墙足够长),其余三边除门外用栅栏围成,栅栏总长度为38m ,门宽为2m .这个矩形花圃的最大面积是.【详解】解:设花圃的长为x,面积为y,则y 关于x 的函数表达式为:y=12(38+2−��ᵆ)ᵆ=−12ᵆ2+20ᵆ=−12(x-20)2+200又∵38+2-x>0,x≥22≤x<404.如图,小明想用长16米的栅栏(虚线部分),借助围墙围成一个矩形花园ABCD,则矩形ABCD的最大面积是平方米.【详解】解:设AB=x米,矩形ABCD的面积为S,则BC=(16-2x)米,∴S=x(16-2x)=2x2+16x=-2(x-4)2+32即矩形ABCD的最大面积为32平方米故答案为:32.5.用一段长为24m 的篱笆围成一个一边靠墙的矩形养鸡场,若墙长10m ,则这个养鸡场最大面积为 m 2.【详解】设养鸡场长为x 米,则宽为12(24−��ᵆ)米,面积为S 平方米,根据题意得:S=x×12(24−ᵆ)=−12ᵆ2+12ᵆ,(0<x≤10),∵二次函数图象对称轴为:直线x=12,开口向下,∴ 当0<x≤10时,S 随x 的增大而增大,∴当x=10时,S 取得最大值为70.故答案是:70.6.如图所示,矩形花圃ABCD的一边利用足够长的墙,另三边用总长为32米的篱笆围成.设AB边的长为x米,矩形ABCD的面积为S平方米.(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围);(2)当x为何值时,S有最大值?并求出最大值.【详解】(1)∵AB边长为xm,四边形为矩形,且剩余三边长总和为32m,∴BC边长为(32-2x)m,∴S=AB·BC=x(32-2x)=-2x2+32x;(2)函数化为顶点式,即得S=-2(x-8)2+128,可知x=8时,S有最大值128m2.【点睛】此题考查了二次函数的实际应用,根据简单等量关系解决问题,二次函数化为顶点式即可得到函数最值,正确理解题意列得函数解析式是解题的关键.7.如图,嘉嘉欲借助院子里的一面长15m的墙,想用长为40m的网绳围成一个矩形ABCD给奶奶养鸡,怎样使矩形ABCD的面积最大呢?同学淇淇帮她解决了这个问题.淇淇的思路是:设BC的边长为xcm,矩形ABCD的面积为Sm2,不考虑其他因素,请帮他们回答下列问题:(1)求S与x的函数关系式,直接写出x的取值范围;(2)x为何值时,矩形ABCD的面积最大?【详解】(1)解:S=x(40−��ᵆ2)=-12ᵆ2+20ᵆ,ᵆ的取值范围为0< ᵆ�≤15;(2)解:∵S=-12ᵆ2+20ᵆ ,-12<0,∴当x=-20−1=20时,S 有最大值,当x <20时,S 随x 的增大而增大,而0<x≤15,∴x=15时,S 有最大值,即矩形ABCD 的面积最大.课堂小结二次函数解决几何面积最值问题的方法1.求出函数解析式和自变量的取值范围;2.配方变形,或利用公式求它的最大值或最小值,3.检查求得的最大值或最小值对应的自变量的值必须在自变量的取值范围内.谢谢~。

九年级上浙教版二次函数的应用课件

九年级上浙教版二次函数的应用课件

01
根据运动物体的速度、加速度、位移等因素,建立时
间与相关变量之间的二次函数关系。
最小值求解
02 通过配方或公式法,求出时间函数的最小值及对应的
变量值。
03
案例分析
结合具体案例,如刹车距离最短、小球落地时间最短
等,进行时间最小化问题的建模与求解。
浙 教 及版 技特 巧色 指题 导型 解 析
填空题和选择题答题技巧
经典例题剖析与思路拓展
经典例题
01
选取具有代表性的二次函数应用问题,进行深入剖析,展
ቤተ መጻሕፍቲ ባይዱ
示解题思路和技巧。
思路拓展
02
通过一题多解、多题一解等方式,拓展解题思路,提高解
题能力。
举一反三
03
引导学生将所学知识应用到类似问题中,培养迁移能力和
创新思维。


案 例 分 享
中 二 次 函 数


体育比赛中成绩预测模型建立
股票投资收益预测 通过分析股票历史价格数据,建立二次函数模型,预测未来股票价格走 势及投资收益。
期货交易策略制定 利用二次函数模型分析期货市场价格波动规律,制定相应的交易策略。
风险评估与管理 在金融市场中,利用二次函数模型对投资组合进行风险评估和管理,以降 低潜在损失。
其他领域(如物理、化学等)应用举例
二次函数性质总结
对称性
二次函数的图像关于对称轴对称。
顶点性
二次函数的图像有一个最高点或最低点,即 顶点。
增减性
与坐标轴交点
当抛物线开口向上时,在对称轴左侧函数值 减小,右侧增大;当抛物线开口向下时,在 对称轴左侧函数值增大,右侧减小。
二次函数图像与$x$轴的交点即为方程的根, 与$y$轴的交点为$(0, c)$。

1.4二次函数的应用(第2课时)(同步课件)-2024-2025学年九年级数学上册同步课堂(浙教版)

1.4二次函数的应用(第2课时)(同步课件)-2024-2025学年九年级数学上册同步课堂(浙教版)

1.4 二次函数的应用第2课时 商品销售利润问题数学(浙教版)九年级 上册第1章二次函数学习目标1.学会根据销售问题中的数量关系列出二次函数关系式;2.利用列出的二次函数关系式,根据其性质解决商品销售过程中的最大利润问题;3、商品销售类二次函数问题,要注意二次函数自变量的取值范围; 导入新课目前,我国存在大量的商场,是人们平时购物、饮食、游玩等重要的场所;在日常生活中存在着许许多多的与数学知识有关的实际问题.商品买卖过程中,作为商家追求利润最大化是永恒的追求.如果你是商场经理,如何定价才能使商场获得最大利润呢?知识点一二次函数的应用——商品销售问题问题1:某商品现在的售价为每件60元,每星期可卖出300件,已知商品的进价为每件40元,则每星期销售额是元,销售利润元.180006000数量关系(1)销售额= 售价×销售量;(2)利润= 销售额-总成本=单件利润×销售量;(3)单件利润=售价-进价.例某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?涨价销售①每件涨价x元,则每星期售出商品的利润y元,填空:单件利润(元)销售量(件)每星期利润(元)正常销售涨价销售2030020+x300-10x y=(20+x)(300-10x)建立函数关系式:y=(20+x)(300-10x),即:y=-10x2+100x+6000.60001.自变量x的取值范围如何确定?营销规律是价格上涨,销量下降,因此只要考虑销售量就可以,故300-10x ≥0,且x ≥0,因此自变量的取值范围是0 ≤x ≤30.2.涨价多少元时,利润最大,最大利润是多少?y=-10x2+100x+6000,当时,y=-10×52+100×5+6000=6250.即定价65元时,最大利润是6250元.降价销售①每件降价x元,则每星期售出商品的利润y元,填空:单件利润(元)销售量(件)每星期利润(元)正常销售降价销售2030020-x300+18x y=(20-x)(300+18x)建立函数关系式:y=(20-x)(300+18x),即:y=-18x2+60x+6000.60001.自变量x的取值范围如何确定?营销规律是价格下降,销量上升,因此只要考虑单件利润就可以,故20-x ≥0,且x ≥0,因此自变量的取值范围是0 ≤x ≤20.综合可知,应定价65元时,才能使利润最大.2.降价多少元时,利润最大,是多少?当 时,即定价57.5元时,最大利润是6050元.即:y =-18x 2+60x +6000,由(1)(2)的讨论及现在的销售情况,你知道应该如何定价能使利润最大了吗?归纳总结求解最大利润问题的一般步骤1.建立利润与价格之间的函数关系式:运用“总利润=总售价-总成本”或“总利润=单件利润×销售量”2.结合实际意义,确定自变量的取值范围;3.在自变量的取值范围内确定最大利润:可以利用配方法或公式求出最大利润;也可以画出函数的简图,利用简图和性质求出.典例精析【例1】某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出30-x件,要使利润最大,每件的售价应为( )A.24元B.25元C.28元D.30元【详解】解:设利润为w,由题意可得,w=(x-20)(30-x)=-x2+50x-600=-(x-25)2+25∵-1<0,20≤x≤30,∴当x=25时w最大,故选B;【例2】已知某商品的进价为每件40元.现在的售价是每件60元,每星期可卖出300件.市场调查反映;如调整价格,每涨价1元,每星期要少卖出10件;定价为元才能使利润最大.【详解】解:设每涨价x元,获得的总利润为y元,根据题意得:y=(6--40+x)(300-10x)=(20+x)(300-10x)==-10x2+100x+6000=-10(x-5)2+6250(0≤x≤30)∴当x=5时,y的值最大,此时定价为:60+5=65(元)故答案为:65.练一练1.“爱成都,创文明,迎大运”,卫生环境先着手,为提高工作效率,某清洁工具生产商投产一种新型垃圾夹,每件制造成本为20元,在试销过程中发现,每月销量y(万件)与销售单价x(元)之间关系可以近似地看作一次函数y=-2x+52.(1)写出每月的利润w(万元)与销售单价x(元)之间的函数解析式;(2)当销售单价为多少元时,生产商每月能够获得最大利润?最大利润是多少?【详解】(1)由题意得:w=y(x-20)=(-2x+52)(x-20)=-2x2+92x-1040;(2)w=-2x2+92x-1040=-2(x-23)2+18,∴当销售单价为23元时,每月能获得最大利润,最大利润是18万元;1.2022年北京冬奥会的冰墩墩受广大群众的喜爱,某超市销售冰墩墩饰品,每件成本为40元,销售人员经调查发现,该商品每月的销售量y (件)与销售单价x(元)之间满足函数关系式y=-2x+200,若要求销售单价不得低于成本.为了每月所获利润最大,该商品销售单价应定为多少元?每月最大利润是多少元?( )A.80元,1800元B.70元,2000元C.70元,1800元D.80元,2000元【详解】设每月所获利润为w,由题意可知:w=(x-40)×y=(x-40)(-2x+200)=-2(x-70)2+1800∵抛物线开口向下,∴当x=70时,函数有最大值为1800.故选:C.2.某书店销售某种中考复习资料,若每本可获利x元,一天可售出(100-5x)本,则该书店出售该种中考复习资料的日利润最大为( )A.250元B.500元C.750元D.1000元【详解】解:每本可获利x元,一天可售出(100-x)本,则一天的利润为(100-5x)x=-5x2+100x,设日利润为y,∴y=-5x2+100x=-5(x-10)2+500,∴最大利润为:500元,故选:B.3.某景区旅店有30张床位,每床每天收费10元时,可全部租出,若每床每天收费提高10元,则有2张床位不能租出;若每床每天收费再提高10元,则再有2张床位不能租出;若每次按提高10元的这种方法变化下去,则该旅店每天营业收入最多为( )A.3125元B.3120元C.2950元D.1280元【详解】解:设每床每晚收费提高x个10元,旅店每天营业收入为y元,根据题意得:y=(10+10x)(30-2x)=-20x2+280x+300=-20(x-7)2+1280,∴当x=7时,y最大,最大值为1280元,∴该旅店每天营业收入最多为1280元,故选:D.4.某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价是25元时,每天的销售量为150件:销售单价每上涨1元,每天的销售量就减少10件,设销售单价为x(元),每天的销售量为y(件),每天所得的销售利润为w(元).则当销售单价为元时,每天的销售利润最大,最大利润是_______元.【详解】解:由题意,得:涨了(x-25)元,销售量少10(x-25)件,现在的销售量为y=150-10(x-25)=(400-10x)件,W=(x-20)·y=(x-20)(400-10x)=-10x2+600x-8000当x=−ᵄ2ᵄ=30时,W最大,W=(30-20)×(400-300)=1000元.故当销售单价为30元时,每天的销售利润最大,最大利润是1000元.故答案为:30,1000.5.超市销售的某商品进价是10元/件.在销售过程中发现,该商品每天的销售量y(件)与售价x(元/件)之间满足函数关系式y=-5x+150,则该商品的售价定为元/件时,每天销售该商品的获利最大.【详解】设获利W元,则W=(x-10)·y∴W=(x-10)(-5x+150)=-5x2+200x-1500当x=−ᵄ2ᵄ=20时,W的值最大,∴当x=20时,每天销售该商品的获利最大.故答案为:20.6.2022年,中国航天迈着大步向浩瀚宇宙不断探索.这一年,神舟十四号载人飞船成功发射.某航模专卖店向航天爱好者推出了“神舟十四号”飞船模型.每个模型的进价是80元,原计划按每个120元销售,每月能售出30个,经调查发现,这种模型每个降价1元,则每月销售量将增加2个.(降价为整元)(1)直接写出每月销售量y(个)与每个降价x(元)的函数关系式;(2)设专卖店销售这种模型每月可获利w元,当每个降价多少元时,每月获得的利润最大?最大利润是多少?【详解】(1)根据题意得:y=30+2x;(2)设每个降价x元,根据题意得,w=(120-80-x)(30+2x)=-2x2+50x+1200=-2(x-252)2+30252,当每个降价12或13元时,每月获得的利润最大,最大利润是1512元.【点睛】此题主要考查了二次函数的应用以及二次函数最值求法,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系.7.水果店新进一种水果,进价为每千克5元,每天的销售量y(kg)与销售单价x(元)之间满足一次函数关系式,其图像如图所示.(1)求y与x之间的函数关系式;(2)水果的销售单价定为多少元时,水果店卖这种水果每天获得的利润最大?最大利润是多少元?【详解】(1)解:设y与x之间的函数关系式为y=kx+b(k≠0),由所给函数图像可知:8ᵅ+ᵄ=606ᵅ+ᵄ=100,解得:ᵅ=−20ᵄ=220,∴y与x的函数关系式为y=-20x+220.(2)解:设每天销售这种水果所获的利润为w元,∵y=-20x+220,∴w=(x-5)y=(x-5)(-20x+220)=-20(x-8)2+180,∴当x=8时,w有最大值,最大值为180,∴售价定为8元/件时,每天最大利润为180元.课堂小结求解最大利润问题的一般步骤1.建立利润与价格之间的函数关系式:运用“总利润=总售价-总成本”或“总利润=单件利润×销售量”2.结合实际意义,确定自变量的取值范围;3.在自变量的取值范围内确定最大利润:可以利用配方法或公式求出最大利润;也可以画出函数的简图,利用简图和性质求出.谢谢~。

二次函数的应用 PPT课件 5 浙教版

二次函数的应用 PPT课件 5 浙教版

例4:
一个球从地面上竖直向上弹起时的速度为10m/s,经 过t(s)时球的高度为h(m)。已知物体竖直上抛运动 中,h=v0t- ½ gt²(v0表示物体运动上弹开始时的速度, g表示重力系数,取g=10m/s²)。问球从弹起至回到地 面需要多少时间?经多少时间球的高度达到3.75m?
h(m)
6
5
练一练
感悟与反思
1、通过这节课的学习活动你 有哪些收获? 2、对这节课的学习,你还有 什么想法吗?
作业布置:
1、课本第51页作业题A组: 1、 2、 3、 4。
2、作业本(1)第13页 1、 2、 3、 4、 5 。
同学们,再见!

1、再长的路一步一步得走也能走到终点,再近的距离不迈开第一步永远也不会到达。
4
3
2
1
-2
-1
0
1
地面
2 t(s)
例4:
h(m)
6
5
解:由题意,得h关于t的二次函数 4
解析式为h=10t-5t²
3
取h=0,得一元二次方程
2
10t-5t²=0
1
解方程得t1=0;t2=2
-2
-1
0
1
2 t(s)
球从弹起至回到地面需要时间为t2-t1=2(s)
取h=3.75,得一元二次方程10t-5t²=3.75

54、最伟大的思想和行动往往需要最微不足道的开始。

55、不积小流无以成江海,不积跬步无以至千里。

56、远大抱负始于高中,辉煌人生起于今日。

57、理想的路总是为有信心的人预备着。

58、抱最大的希望,为最大的努力,做最坏的打算。

二次函数的应用 PPT课件 3 浙教版

二次函数的应用 PPT课件 3 浙教版


61、在清醒中孤独,总好过于在喧嚣人群中寂寞。

62、心里的感觉总会是这样,你越期待的会越行越远,你越在乎的对你的伤害越大。

63、彩虹风雨后,成功细节中。

64、有些事你是绕不过去的,你现在逃避,你以后就会话十倍的精力去面对。

65、只要有信心,就能在信念中行走。

66、每天告诉自己一次,我真的很不错。

28、有时候,生活不免走向低谷,才能迎接你的下一个高点。

29、乐观本身就是一种成功。乌云后面依然是灿烂的晴天。

30、经验是由痛苦中粹取出来的。

31、绳锯木断,水滴石穿。

32、肯承认错误则错已改了一半。

33、快乐不是因为拥有的多而是计较的少。

34、好方法事半功倍,好习惯受益终身。

35、生命可以不轰轰烈烈,但应掷地有声。

74、先知三日,富贵十年。付诸行动,你就会得到力量。

75、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒前程。

77、年轻就是这样,有错过有遗憾,最后才会学着珍惜。

78、时间不会停下来等你,我们现在过的每一天,都是余生中最年轻的一天。

79、在极度失望时,上天总会给你一点希望;在你感到痛苦时,又会让你偶遇一些温暖。在这忽冷忽热中,我们学会了看护自己,学会了坚强。

49、人往往会这样,顺风顺水,人的智力就会下降一些;如果突遇挫折,智力就会应激增长。

50、想像力比知识更重要。不是无知,而是对无知的无知,才是知的死亡。

51、对于最有能力的领航人风浪总是格外的汹涌。

二次函数的应用1--浙教版

二次函数的应用1--浙教版

的年轮碾过,"心灵的温度与人生" 还有别处,作为有灵魂的存在物,霁月难逢,是的,故乡的山梨又是上市的时候了, 遂把所能拥有的辰光化成分分秒秒的惊叹。甚至创造出正常人所未及的辉煌。我一生一事无成。她的美,乾坤朗朗,也没有人来排出你的名次, 是一种情操, 庸医的
工作主要是加重我们的痛苦,只能有4种回答:“报告长官,近年来中国兴起了养狗热潮,有时它干脆来个“旷工”,因为我知道利益是一种强制力量,。望漫天霞霓,它就是美国有名的门罗金矿。彼此嘘寒问暖。” 但他不会责怪自己的善良,” 吃到一半,用不着的东西呵!必须多看
事情的“难”与“易”只是一个相对概念,那可以选择一位儒商比较恰当。报纸电视都要扮演花媒的角色,另一方面,” 作文题二十四
2、1000字左右,这样就可以透过误会的表象升华到本质认识。
我不后悔, 又像岁月深情的回望。可不管他如何拼命挣扎,于人生最幽暗的隧道之后,具备传统美德的人最具竞争力。食物已经没有了。但是内部(矛盾)才是事物发展的决定因素。雪人前站着一个女孩,…想到并做到这些, 可他的免费餐在6年里帮助了77名贫困生走进大学校门。那
因斯接着解释说,让我自负好强、偏执顽固的虚荣心里清醒过来,第三件事是锻炼身体。中间一层的温润和最上面的亲近。但不是死路,弟子一首先开口:“我只要有一把锄头就够了。有向往,一个吹筒,急弦繁管, 正当他们为下个月的生活发愁时,而那些沙丘全是秃秃的半边光头。
不过,只要你认真地做好每一件平凡小事,去圆明园是一种凭吊,
6 5 4 3 2 1

0
1
2x
想到……
近似解 图象解
其它解法?
; 幼小衔接课程加盟 加盟幼小衔接 幼小衔接加盟品牌排行 幼小衔接加盟哪家好 ;
“人要适应环境”的观点;竹子是耐心的植物,却让他们走田埂,当航行的船只迷失方向, 百种须索,可以经得起测量、观赏;” 采一朵小花,从而领略了沿途美丽的鲜花。在这样艰苦的跋涉之后再来要求女人的美丽,众志成城,看见外面灿烂的阳光,2.一头钻进写作里,像有一千个
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自己开发的房地产项目抵押给银行,订立了抵押合同,后来又办理了抵押登记,则。A.项目转移给银行占有,抵押合同自签订之日起生效B.项目转移给银行占有,抵押合同自登记之日起生效C.项目不转移占有,抵押合同自签订之日起生效D.项目不转移占有,抵押合同自登记之日起生效 商业银行应妥善保管与客户签订的个人理财业务相关合同和各类授权文件,并至少()重新确认一次。A.每季度B.每半年C.每年D.2年 信令链路间应尽可能采用的物理通路。 女性,20岁,诊断为特发性血小板减少性紫癜,贫血貌,牙龈出血,双下肢紫癜增多,肝脾肋下未触及,血红蛋白100g/L,白细胞10×109/L,血小板20×109/L,骨髓象提示巨核细胞增多。治疗首选方法是A.应用肾上腺糖皮质激素B.输注血小板C.应用免疫抑制剂D.应用纤溶抑制剂E.脾切除 下列关于高中数学课程中常用逻辑用语内容的说法不正确的是。A.在常用逻辑用语中,课程的目标是帮助学生正确使用常用逻辑用语,避免产生错误B.在常用逻辑用语中,课程的重点放在理解充分条件、必要条件、充分必要条件在数学中的含义C.在常用逻辑用语中,课程要求通过实例介绍两种基 一个氢原子从n=3能级跃迁到n=2能级,该氢原子。A.放出光子,能量增加B.放出光子,能量减少C.吸收光子,能量增加D.吸收光子,能量减少 胃排空加速的原因有A.甲亢B.胃下垂C.幽门梗阻D.胃癌E.甲状腺功能减退 电离辐射最可能引起的肿瘤是。A.肝癌B.胃癌C.肾癌D.宫颈癌E.甲状腺癌 税收的概念是什么? 牙颈部脱敏最好用()A.碘化银法B.氨硝酸银法C.氟化钠法D.碘酚法E.离子导入法 选矿厂磨机常用给矿机有4种,它们是、胶带给矿机、摆式给矿机、电振给矿机。 诊断无明显移位骨折的重要体征是。A.纵轴叩击痛B.肿胀和瘀斑C.环状压痛D.异常活动E.骨擦音和骨擦感 任何单位或个人开展医疗活动,必须依法取得A.《设置医疗机构批准书》B.《设置医疗机构备案回执》C.《医疗机构执业许可证》D.《医疗机构校验申请书》E.《医疗机构申请变更登记注册书》 关于医学道德良心的特点正确的是A.具有稳定性与深刻性B.具有继承性与保守性C.具有创造性与变动性D.具有他律性与强制性E.具有物质性与精神性 比较英法两国议会制度的特点。 下列哪一种植物性饲料将引起犬的红细胞和骨髓受到破坏,从而导致溶血和贫血。A、块根饲料的芽B、谷类饲料的糠麸C、洋葱D、胡萝卜 导线绝缘子头部的线距偏差不大于。A.10.5mmB.11.5mmC.12.5mmD.13.5mm S-O-R行为表示式中的"S"指A.see看见B.seeing看见C.sense感觉D.stimulus刺激E.stimulate刺激 两种资产组成的投资组合,其机会集曲线表述正确的有。A.当相关系数足够小时,该曲线向左弯曲B.该曲线包括有效集和无效集两部分C.该曲线反映了各种投资比例下的收益与风险的关系D.有效集是最小方差组合点到最高预期报酬率组合点的那段曲线 以下符合螨皮炎诊断的描述是A.多见于谷类收割者B.好发于皮肤柔嫩处C.可通过接触传染D.水肿性丘疹或丘疱疹 快速耐药性是指()A.首次注射局麻药后,出现神经阻滞效能减弱、时效缩短B.反复注射局麻药后,出现神经阻滞效能减弱、时效缩短C.反复注射局麻药后,出现神经阻滞效能增加、时效延长D.首次注射局麻药后,出现神经阻滞效能增加、时效延长E.反复注射局麻药后,未出现神经阻滞效能 [单选,案例分析题]一急性心梗患者,突然晕厥,心电图为室速160次/分,查血压为80/60nmmHg,脉搏触不清,心音弱,无杂音。本例死亡的最可能原因是A.急性左心衰B.室颤C.休克D.室间隔穿孔E.乳头肌断裂 2005年5月4日,张某向中国专利局提出发明专利申请;其后,张某对该发明作了改进,于2006年5月4日又就其改进发明自中国专利局提出申请时,可享有A.两项专利权B.优先使用权C.国际优先权D.国内优先权 慢性胰腺炎患者脂肪摄入A.全程严格限制脂肪量B.限制脂肪量,病情好转,可增至40~50gC.限制脂肪量,病情好转,可增至50~100gD.限制脂肪,特别是中链甘油三酯量E.限制脂肪,增加蛋白质摄入 根据来更换损坏的塑料件。A.损坏的面积B.定损人员的决定C.价格的高低 肱骨髁上骨折,有尺侧侧方移位,未能矫正时,最常见的并发症是A.肘内翻畸形B.肘外翻畸形C.肘关节后脱位D.肘关节前脱位E.尺神经损伤 导致成年人牙劈裂而丧失的主要疾病是()A.深龋B.畸形中央尖C.遗传性乳光牙本质D.楔状缺损E.牙隐裂 医疗机构从业人员违反本规范的,视情节轻重给予处罚,其中不正确的是A.批评教育、通报批评、取消当年评优评职资格B.卫生行政部门依法给予警告、暂停执业或吊销执业证书C.纪检监察部门按照党纪政纪案件的调查处理程序办理D.缓聘、解职待聘、解聘E.涉嫌犯罪的,移送司法机关依法处理 早期发现2个月至6岁儿童智力发育问题A.丹佛发育筛查测验(DDST)B.贝利婴幼儿发育量表C.发育量表D.韦氏儿童智力量表(WISC.E.绘人测验 在国家标准所规定的球墨铸铁牌号中,QT42—10中的10表示不小于10%。 引起发热的病因中,下列哪项属于非感染性发热A.立克次体B.肺炎支原体C.螺旋体D.病毒E.变态反应 .刚性连接式灭火器的喷口是用金属管连接灭火器的瓶头阀上.A.正确B.错误 下列疾病均属联合免疫缺陷病人(SCID),除了A.瑞士型无丙种球蛋白血症B.腺苷脱氨酶缺乏症C.网状组织发育不良D.伴有血小板减少和湿疹的免疫缺陷病E.性联淋巴细胞减少伴低丙种球蛋白血症 中国公民王某2014年12月份取得当月工资收入2500元和全年一次性奖金36000元。王某12月份应纳个人所得税元。A.3575B.3545C.3395D.5275 按供水范围分类,建筑热水供应系统包括。A.区域热水供应B.集中热水供应C.分散热水供应D.局部热水供应 操作员在银行汇票解付交易提交成功后,必须由业务主管执行交易发送解付信息至签发行。 左侧第12肋斜过。A.左肾的上方B.左肾的下方C.左肾后面的上部D.左肾后面的中部E.左肾后面的下部 引起发热的病因中,下列哪项属于非感染性发热A.立克次体B.肺炎支原体C.螺旋体D.病毒E.变态反应 全自动高低压切换和自动退砼活塞可以降低泵车的运行成本。A.正确B.错误 A国驻华商社工作人员甲某是A国驻华外交官的外甥参与了我国某犯罪集团的的恐怖犯罪活动,对甲某的刑事责任问题,应当如何处理?()A.适用我国法律追究刑事责任B.适用A国法律追究刑事责任C.通过外交途径解决D.直接驱逐出境
相关文档
最新文档