有理数加减乘除四则混合运算

合集下载

有理数的四则混合运算

有理数的四则混合运算

有理数的四则混合运算板块一有理数的加减法【知识导航】有理数的加法法则:①同号两数相加,取相同的符号,并把绝对值相加;3 + 5 = 8 (-3)+(-5)= -8②绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;(-5)+ 3 = -(5 - 3)= - 25 +(-3)= +(5 - 3)= + 2③一个数同0相加,仍得这个数。

④绝对值相等的异号两数相加为0。

(既互为相反数两数相加)有理数加法的运算步骤:①确定和的符号;②求和的绝对值,即确定是两个加数的绝对值的和或差。

【例1】⑴、计算3(7.5)(3)5+++⑵、3(7.5)(3)5-+-⑵、753() 66 +-(初中阶段一般将带分数化为假分数)有理数减法法则:(将减法当加法计算)减去一个数,等于加这个数的相反数。

7 – 3 = 4 7 - (-3)= 7 + 3 = 10●-7 – 3 = ❍-7 -(-3)有理数减法的运算步骤:(减数为正,直接减,减数为负化为加法)①把减号变为加号(改变运算符号)②把减数变为它的相反数(改变性质符号)③把减法转化为加法,按照加法运算的步骤进行运算。

【例2】⑴、计算20(15)(28)17-+----⑶、计算2113()() 3838 ---+-⑷、计算1132 223 4343 -+-有理数加减混合运算的步骤:①把算式中的减法转化为加法;②省略加号与括号;③利用运算律及技巧简便计算,求出结果。

【例3】⑴ 、计算()()434185353.618100555⎛⎫⎛⎫⎛⎫-+++-+++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⑵ 、计算111133334444⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫-------⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⑶ 、计算1111111[()()][()][()]261220304256--+-++--+--+【例4】有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的纪录如下:1.5 -3 2 -0.5 1 -2 -2 -2.5回答下列问题:⑴ 这8筐白菜中,最接近25千克的那筐白菜为 千克; ⑵ 以每筐25千克为标准,这8筐白菜总计超过多少千克或不足多少千克?⑶ 若白菜每千克售价2.6元,则出售这8筐白菜可卖多少元?【例5】a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,d 是绝对值等于2的数,则a +(-b) + c + d =_____。

数学人教版七年级上册有理数四则混合运算

数学人教版七年级上册有理数四则混合运算

1.4.2 有理数的除法(第二课时)教学目标1.知识与技能①掌握有理数加、减、乘、除运算的法则、运算顺序,能够熟练运算.②能解决实际问题.2.难点:过程与方法经历探索有理数运算的过程,获得严谨,认真的思维习惯和解决问题的经验.3.情感、态度与价值观敢于面对数学活动中的困难,有解决问题的成功经验.教学重点难点重点和难点:如何按有理数的运算顺序,正确而合理地进行计算.教与学互动设计(一)创设情境,导入新课想一想观察式子115×(13-12)×311÷54里有哪种运算,应该按什么运算顺序来计算?(二)合作交流,解读探究引导首先计算小括号里的减法,然后再按照从左到右的顺序进行乘除运算,这样运算的步骤基本清楚了.另外带分数进行乘除运算时,必须化成假分数.学生活动:板演,其他学生做在练习本上.注意 有理数混合运算的步骤:先乘除,后加减,有括号先算括号.(三)应用迁移,巩固提高例1 (1)-313÷213÷(-2) (2)-34×(-112)÷(-214) (3)-34÷38×(-49)÷(-23) (4)20÷(-4)×5+5×(-3)÷15-7 解答略.例2 某公司去年1~3月平均每月亏损1.5万元,4~6月平均每月盈利2万元,•7~10月平均每月盈利1.7万元,11~12月平均每月亏损2.3万元.•这个公司去年总的盈亏情况如何?【提示】 记盈利额为正数,亏损额为负数,这个公司去年全年亏盈额(单位:万元)为:(-1.5)×3+2×3+1.7×4+(-2.3)×2=-4.5+6+6.8-4.6=3.7 即:这个公司去年全年盈利3.7万元.例3 某商店先从每件10元的价格,购进某商品15件,又从每件12•元的价格购进35件,然后从相同的价格出售,如果商品销售时,至少要获利10%,•那么这种商品每件售价不应低于多少元. 【提示】 先求出在不获得利润的情况下这种商品的售价,然后再计算提高利润后的售价. 由题意得:151235⨯+⨯1050×(1+10%)=12.54(元)【答案】 这种商品每件售价不应低于12.54元.例4 小明在计算(-6)÷(12+13)时,想到了一个简便方法,计算如下:(-6)÷(12+13) =(-6)÷12+(-6)÷13=-12-18 =-30请问他这样算对吗?试说明理由.【分析】 不对,因为除法没有分配律,应该是:-6÷56=-6×65=-365备选例题 (2004·淮安)在如图1-4-1所示的运算流程中,若输出的数y=3,则输入的数x=_________.【提示】这是一道选择结构的程序计算题,需分情况讨论:如果输入数据为偶数,则根据输出结果可判断该数为6;如果输入数据不是偶数,•则根据输出结果可判断该数为5.故正确答案为5和6. (四)总结反思,拓展延伸引导学生一起小结:①有理数的运算顺序:先乘除,后加减,有括号的先算括号;②要注意认真审题,根据题目,正确选择途径,仔细运算,注意检查,使结果无误.“二十四点”游戏中的加减乘除四则运算.有一种“二十四点”的游戏,其游戏规则是这样的:任取四个1是否偶数否 加1输出y除以2是输入x至13•之间的自然数,将这四个数(每个数用且只用一次)进行加减乘除四则运算,使其结果等于24,如对1、2、3、4,可作运算:(1+2+3)×4=24.(注意上述运算与4×(2+3+1)•应视作相同方法的运算)现有四个有理数3,4,6,10,运用上述规则可以写出多种不同方法的运算式,使其结果等于24.(1)3×(4+10-6)(2)(10-4)+3×6 (3)4+6÷3×10…活动设计:初一(5)班有48名同学,将其分成12组,每组准确一副写有1至13数字的13张纸牌.活动开始,同一组内每一位同学任意抽取1张纸牌,•然后四人手中纸牌的示数(每人用且只用一次)用加减乘除四则运算,使其结果等于24.比一比,30分钟内,哪一个小组得到的算式最多.【点评】通过这种游戏,激发同学们的兴趣,解决开放性问题,训练发散思想能力.(五)课堂跟踪反馈夯实基础1.选择题(1)下列各数中互为倒数的是(B)A.-512和211B.-0.75和-43C.-1和1 D.-51 2和211(2)若a<b<0,那么下列式子成立的是(C)A .1a <1bB .ab<1C .a b >1D .a b<1 (3)已知数a<0,ab<0,化简│a-b-3│-│4+b-a │的结果是(A )A .-1B .1C .7D .7 2.填空题(1)直接写出运算结果:(-9)×23= -6 ,-112÷0.5= -3 ,(12+13)÷(-6)= -536(2)若一个数的相反数是15,这个数的倒数是 –5 . (3)若a 、b 互为倒数,c 、d 互为相反数,m 为最大的负整数,则3m +ab+4c d m += 23(4)当x= ±3 时,1||3x -无意义. (5)若>0,<0,则│ac │=-ac .(6)若a=25.6,b=-0.064,c=0.1,则(-a )÷(-b )÷c=-4 000. 提升能力 3.计算题(1)(-423)÷(-213)÷(-117)= -74(2)(-5)÷(-127)×45×(-214)÷7= -1(3)1÷(-1)+0÷(-5.6)-(-4.2)×(-1)= -5.2(4)118÷(23+16-12)= 16(5)(-1223)÷1.4-(-813)÷(-1.4)+(+1013)÷1.4= -16021(6){223-[(1.5×223)÷16-117]}÷89= -22574.已知a 、b 互为相反数,c 、d 互为倒数,x 的绝对值为1,求3x-(a+b+cd )-x . 【答案】 1或-3 开放探究5.已知a 、b 、c 在数轴上的位置如图所示:(1)求||a ab +1||b -2||bc bc(2)比较a+b ,b+c ,c-b 的大小,并用“〈”将它们连接起来. 【答案】 (1)可知b<0,a<0,c>0,∴ab>0,bc<0 原式=a ab +1b --2bc bc -=-1b -1b +2=2-2b(2)可知a+b<0,b+c>0,c-b>0,且│c-b │>│b+c │,∴a+b<b+c<c-b 6.新中考题(2004·山西)联欢会上,小红按照4个红气球,3个黄气球,2•个绿气球的顺序把气球串起来装饰会场,第52个气球的颜色是 黄色 .cba。

七年级上册数学有理数加减乘除混合运算

七年级上册数学有理数加减乘除混合运算

七年级上册数学有理数加减乘除混合运算一、有理数混合运算的基本概念有理数混合运算是基于有理数的加、减、乘、除四则运算,以及乘方和开方的运算。

有理数包括正数、负数和0。

在混合运算中,我们需要注意运算的顺序和法则。

二、数的加减法数的加减法遵循以下法则:1. 加法交换律:a+b=b+a2. 加法结合律:(a+b)+c=a+(b+c)3. 相反数:a=-(-a)4. 0的任何非零有理数(0除外)相加,结果为0。

三、数的乘除法乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

除法法则:两数相除,同号得正,异号得负,并把绝对值相除,0不能作除数。

四、混合运算的顺序混合运算的顺序是先乘方,再乘除,最后加减;如果有括号,先算括号里面的。

五、代数式的值代数式的值是指将字母的取值代入代数式后得到的数值。

求代数式的值有两种方法:一种是直接代入求值;另一种是整体代入求值。

六、方程的基本概念方程是一种含有未知数的等式。

一元一次方程是指只含有一个未知数,并且未知数的次数是1的方程。

解一元一次方程就是求出使方程成立的未知数的值。

七、一元一次方程的解法解一元一次方程的基本步骤包括去分母、去括号、移项、合并同类项、系数化为1等步骤。

通过这些步骤,我们可以将复杂的一元一次方程简化,并求出未知数的值。

八、实际问题的数学模型实际问题中,我们可以通过建立数学模型来解决问题。

数学模型是指用数学语言描述实际问题,并把问题的数量关系和数学规律联系起来的一种工具。

通过建立数学模型,我们可以更好地理解和解决实际问题。

九、综合应用举例有理数加减乘除混合运算在实际生活中有着广泛的应用。

例如,购物时计算花费、计算物品的总重量或总价、计算速度和路程等等都需要用到有理数混合运算的知识。

通过这些实际应用的例子,我们可以更好地理解和掌握有理数混合运算的知识。

有理数的四则混合运算

有理数的四则混合运算

第2课时 有理数的四则混合运算1.能熟练地进行有理数的乘除混合运算,能用简便方法计算.2.能熟练地掌握有理数加减乘除混合运算的顺序,并能准确计算.3.能解决有理数加减乘除混合运算应用题.4.了解用计算器进行有理数的加减乘除运算.自学指导看书学习第37、38页的内容,掌握有理数乘除混合运算法则,能够解决具体问题.知识探究 有理数加减乘除混合运算法则:先乘除,后加减,有括号的先算括号内的. 自学反馈 计算: (1)6-(-12)÷(-3); (2)3×(-4)+(-28)÷7;(3)(-48)÷8-(-25)×(-6); (4)42×(-32)+(-43)÷. 解:(1)2;(2)-16;(3)-156;(4)-25.在做有理数的乘除混合运算时:①先将除法转化为乘法;②确定积(或商)的符号;③适时运用运算律;④若出现带分数可化为假分数,小数可化为分数计算;⑤注意运算顺序.活动1:小组讨论1.计算:-54×(-241)÷(-421)×92=-6. 2.(-7)×(-5)-90÷(-15)=41.3.一架直升机从高度450米的位置开始,先以20米/秒的速度上升60秒,后以12米/秒的速度下降120秒,这时直升机所在高度是多少?解:210米活动2:活学活用1.计算:(1)(-6)÷(-23); (2)(-2476)÷(-6); (3)-141÷÷(-16); (4)(-54)÷(-34)×0; (5)(-3)×(-21)-(-5)÷(-2); (6)|-521|÷(31-21)×(-111). 解:(1)4;(2)729;(3)165;(4)0;(5)-1;(6)3. 2.高度每增加1千米,气温大约降低6℃,今测量高空气球所在高度的温度为-7℃,地面温度为17℃,求气球的大约高度.解:4千米3.某探险队利用温度测量湖水的深度,他们利用仪器侧得湖面的温度是12℃,湖底的温度是5℃,已知该湖水温度每降低℃,深度就增加30米,求该湖的深度.解:300米有理数加减乘除混合运算法则:无括号,先算乘除,后算加减;有括号先算括号里面的.教学至此,敬请使用学案当堂训练部分.。

有理数加减乘除四则混合运算

有理数加减乘除四则混合运算

复习回顾,引出新课
有理数的减法法则: 减去一个数,等于加上它的相反数.
复习回顾,引出新课
有理数乘法法则: 两数相乘,同号得正,异号得负,并把绝 对值相乘. 任何数与0相乘,都得0.
复习回顾,引出新课
有理数除法法则:
①两数相除,同号得正,异号得负,并把 绝对值相除. 0除以任何一个不等于0数,都得0.
(a、b、c表示任意有理数)
复习回顾,引出新课
(3)乘法交换律: 两个数相乘,交换因数的位置,积不变.
字母表示:ab ba (a、b表示任意有理数)
(4)乘法结合律: 三个数相乘,先把前两个数相乘,或者先把 后两个数相乘,积不变.
字母表示:(ab)c a(bc) (a、b、c表示任意有理数)
复习回顾,引出新课
(5)分配律:
一个数同两个数的和相乘,等于把这个数 分别同这两个数相乘,再把积相加. 字母表示:
(a+b)c=ac+bc (a、b、c表示任意有理数)
复习回顾,引出新课
有理数的运算顺序 (1)先乘除,再加减. (2)同级运算,按从左到右的顺序进行. (3)如有括号,先做括号内的运算,按小括 号、中括号、大括号依次进行.
有理数的混合运算
问题1 计算: 2.5 5 ( 1 ) 84
Hale Waihona Puke 有理数的加减乘除混合运算问题2 计算:
(1)-8+4÷(-2) ; (2)(-7)×(-5)- 90÷(-15) ;
有理数的加减乘除混合运算
问题3 计算:
(1)(125 5) (5) 7
(2)15 ( 1 1) 32
巩固应用
例1 计算:
(1)(12) (4) (11) 5
(2)( 2) ( 8) (0.25) 35

有理数的混合运算知识点

有理数的混合运算知识点

有理数的混合运算知识点有理数的混合运算是数学学科中比较基础的一部分,也是中学数学学科中重要的内容之一。

有理数混合运算指的是将加、减、乘、除等基本运算有机地组合起来计算的过程,涵盖了加、减、乘、除四种数学运算。

下面将对有理数混合运算的知识点进行详细的阐述。

一、有理数的加减法计算1.有理数的加法对于两个数a和b,它们的和a+b的计算方法是:当a和b同号时,把它们的绝对值相加,并仍用原来的符号。

当a和b异号时,只要它们的绝对值相减,而符号用绝对值较大的数的符号。

例如:-3+(-7)=-10;-3+7=4;3+(-7)=-4;3+7=10。

2.有理数的减法对于两个数a和b,它们的差a-b的计算方法是:把-b变为其相反数b’,再求a与b’的和a+b’,即:a-b=a+(-b’)。

例如:-5-(-3)=-5+3=-2;5-(-3)=5+3=8;-5-3=-8;5-3=2。

二、有理数的乘法计算对于两个数a和b,它们的积a×b的计算方法是:把a、b的绝对值相乘,而积的符号是a、b符号乘积的符号。

例如:-3×(-7)=21;-3×7=-21;3×(-7)=-21;3×7=21。

三、有理数的除法计算对于两个数a和b,它们的商a÷b的计算方法是:把a、b的绝对值相除,但商的符号由a、b符号的相除决定。

例如:-16÷4=-4;-16÷(-4)=4;16÷(-4)=-4;16÷4=4。

四、有理数的混合运算有理数的混合运算包含加减乘除四种基本运算,其计算顺序与四则运算一样,按照“先乘除、后加减”的规则进行计算。

如果有括号,则先算括号内的运算。

例如:5×[(3+2)×(-4)-1]=5×[(5)×(-4)-1]=5×[-20-1]=-105五、有理数混合运算的应用1.分数的混合运算在分数的混合运算中,常常需要进行分数化简、约分等操作。

2.2.2 有理数的除法(第2课时 有理数加减乘除混合运算)(课件)七年级数学上册(人教版2024)

2.2.2 有理数的除法(第2课时 有理数加减乘除混合运算)(课件)七年级数学上册(人教版2024)


除法转化为乘法
=-49× ×(- )


=49× × =9.



计算,勿先算 ×(- )



确定积的符号
典例剖析
例6
计算:
5
(1) (−125 )÷(−5);
7
5 1
解:原式=(125+ )×
7 5
1 5 1
= 125× + ×
5 7 5
1
=25+
7
1
=25 ;
7
5
1
(2)−2.5÷ ×(− ).
5
5
=−3×
6
5
=− .
2
2
8
(4) (− ) × ÷(−0.25)
3
5
2 8
解:原式= × ×4
3 5
64
= .
15
课本练习
2.计算:
(1) 6 (12) (3)
(2) 3×(-4)+(-28)÷7
(3) (48) 8 (25) (6)
(4) 42 ( 2 ) ( 3 ) (0.25)


(4)(-2)÷

9 8 2
9 8 2
原式=-16×-3×-3=-16×3×3=-1;




4 4 1
4 4 1


解:原式=(-81)× -9 ×9×8=81×9×9×8=2;





7 4
(- )× ÷(-5 ).
7
7 4 7
14
)
,其算式是

有理数的混合运算

有理数的混合运算

有理数四则运算定义示例剖析有理数加法法则:①同号两数相加,取相同的符号.....,并把绝对..值相加....②绝对值不相等的异号两数相加,取绝对值...较大..的加数符号,并用较大的绝对值减去..较小的绝对值.③一个数同0相加,仍得这个数.358+=() 53532 -+=--=-303-+=-有理数加法的运算步骤:法则是运算的依据,根据有理数加法的运算法则,可以得到加法的运算步骤:①确定和的符号;②求和的绝对值,即确定是两个加数的绝对值的和或差.有理数加法的运算技巧:①分数与小数均有时,应先化为统一形式.②带分数可分为整数与分数两部分参与运算.③多个加数相加时,若有互为相反数的两个数,可先结合相加得零.④若有可以凑整的数,即相加得整数时,可先结合相加.⑤若有同分母的分数或易通分的分数,应先结合在一起.⑥符号相同的数可以先结合在一起.有理数加法的运算律:①两个数相加,交换加数的位置,和不变.②三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.a b b a+=+(加法交换律)()()a b c a b c++=++(加法结合律)有理数减法法则:减去一个数,等于加上这个数的相反数....有理数减法的运算步骤:①把减号变为加号(改变运算符号)②把减数变为它的相反数(改变性质符号)③把减法转化为加法,按照加法运算的步骤进行运算.有理数加减混合运算的步骤:①把算式中的减法转化为加法;②省略加号与括号;③利用运算律及技巧简便计算,求出结果.()a b a b-=+-(减法法则)30.159511(3)(0.15)(9)(5)(11) --+-=++-+-+++-它的含义是正3,负0.15,负9,正5,负11的和.模块一有理数的加减法注意:根据有理数减法法则,减去一个数等于加上它的相反数,因此加减混合运算可以依据上述法则转变为只有加法的运算,即为求几个正数,负数和0的和,这个和称为代数和.为了书写简便,可以把加号与每个加数外的括号均省略,写成省略加号和的形式.【例1】 计算:⑴ ()37.535⎛⎫+++= ⎪⎝⎭ ⑵ ()37.535⎛⎫-+-= ⎪⎝⎭⑶ 75366⎛⎫+-= ⎪⎝⎭【例2】 计算:⑴ ()()20152817-+----⑵21133838⎛⎫⎛⎫---+- ⎪ ⎪⎝⎭⎝⎭⑶11322234343-+-【例3】 计算:⑴ ()7.3412.7412.347.34-+-++⑵ ()1113 5.513332⎛⎫⎛⎫+-+-+- ⎪ ⎪⎝⎭⎝⎭⑶ ()()(){}34|15|7-+-+-+---⎡⎤⎣⎦夯实基础⑷ 231321234243--++-+⑸ 32624416 6.8 3.255++---【例4】 计算:⑴ ()()434185353.618100555⎛⎫⎛⎫⎛⎫-+++-+++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⑵ [4125+(-71)]+[(-72)+6127]⑶ 11+192+1993+19994+199995+1999996+19999997+199999998+1999999999⑷ 1511914117111234567892612203042567290-+--+-+-能力提升⑸1111122222()() 23459603455960333335859()()44659605960++++++++++++++++++++定义示例剖析有理数乘法法则:两数相乘....,同号得...正.,异号..得负..,并把绝对值相乘.任何数同0相乘,都得0.有理数乘法运算律:①两个数相乘,交换因数的位置,积相等.②三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.③一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.3412⨯=34(34)12-⨯=-⨯=-3(4)12-⨯-=ab ba=(乘法交换律)()abc a bc=(乘法结合律)()a b c ab ac+=+(乘法分配律)有理数乘法法则的推广:①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数的个数是偶数时,积为正数;负因数的个数是奇数时,积为负数.(奇负偶正)②几个数相乘,如果有一个因数为0,则积为0.③在进行乘法运算时,若有带分数,应先化为假分数,便于约分;若有小数及分数,一般先将小数化为分数,或凑整计算;利用乘法分配律及其逆用,也可简化计算.在进行有理数运算时,先确定符号,再计算绝对值,有括号的先算括号里的数.有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0.1335355÷=⨯=1a b ab÷=⋅(0b≠)有理数除法的运算步骤:首先确定商的符号,然后再求出商的绝对值.422 -÷=-夯实基础模块二有理数乘除法【例5】 计算:⑴ ()30.250.57045⎛⎫-⨯⨯-⨯ ⎪⎝⎭ ⑵ ()4113311559211⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯+⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【例6】 计算:⑴ 111113623469⎛⎫⨯+--- ⎪⎝⎭⑵ ()111148436612⎛⎫--+⨯- ⎪⎝⎭⑶ ()()999812512412161616⎛⎫⎛⎫⎛⎫-⨯---⨯-+⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⑷ ()()1110.255 3.52244⎛⎫⎛⎫-⨯-+⨯-+-⨯ ⎪ ⎪⎝⎭⎝⎭定 义示例剖析有理数混合运算的运算顺序: ⑴ 先乘方(下节课学习),再乘除,最后加减; ⑵ 同级运算,从左到右进行; ⑶ 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行. 加减法为一级运算,乘除法为二级运算,乘方及开方(以后学)称为三级运算.同级运算,按从左到右的顺序进行;不同级运算,应先算三级运算,然后二级,最后一级;如果有括号,先算括号里的,有多重括号时,先运算顺序可以简记为:“从左到右....,从高..(级)到低..(级),从小..(括号)到大..(括号)”. 模块三 有理数四则混合运算算小括号里的,再算中括号里的,最后算大括号里的.易错点1:注意运算顺序,先乘除后加减,同级的从左到右依次运算,有括号的先算括号里的.易错点2:如果只有乘除的,先确定符号,把所有的数都变为正数进行运算.【例7】 计算:⑴ ()145824211⎛⎫-⨯-÷-+ ⎪⎝⎭⑵ ()()()()9126448-+÷---⨯-÷-⑶ ()25171245138612⎡⎤⎛⎫--+⨯÷- ⎪⎢⎥⎝⎭⎣⎦【例8】 计算:⑴ ()()51112124815122623⎧⎫⎡⎤⎛⎫⎛⎫---+⨯--÷-÷-⎨⎬ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎩⎭⑵ 2005×20042003-1001×10021001⑶ 20082009200920092009200820082008⨯-⨯【例9】 从下面每组数中各取一个数,将它们相乘,那么所有这样的乘积的总和是 .探索创新能力提升第一组:5-,133,4.25,5.75;第二组:123-,115;第三组:2.25,512,4-.【例10】 ⑴ 用“>”或“<”填空①如果0abc >,0ac <那么b 0;②如果0a b >,0bc <那么ac 0.⑵ 如果0acb>,0bc <,且()0a b c ->,试确定a 、b 、c 的符号.【例11】 ⑴ 若19980a b +=,则ab 是( )A .正数B .非正数C .负数D .非负数⑵ 已知有理数,,x y z 两两不等,则,,x y y z z xy z z x x y------中负数的个数是( ) A .1个 B .2个 C .3个 D .0个或2个⑶ 若a ,b ,c ,d 是互不相等的整数,且9abcd =,则a b c d +++的值为( ) A .0 B .4 C .8 D .无法确定⑷ 如果4个不同的正整数m ,n ,p ,q 满足(7)(7)(7)(7)4m n p q ----=, 那么m n p q +++的值是多少?【例12】计算:512769)323417(125.0323417-++⨯+×(0.125+323417512769+-)知识模块一 有理数加减法 课后演练【演练1】 填空:⑴ ()31.325⎛⎫+-+= ⎪⎝⎭⑵ ()1 1.254-+=【演练2】 ⑴ ()()()5.5 3.2 2.5 4.8-+----⑵ ()1118.53611332⎛⎫-++-+ ⎪⎝⎭⑶251452.8236356⎛⎫⎛⎫+++-+ ⎪ ⎪⎝⎭⎝⎭⑷ ()17359.547.53774⎡⎤---++⎢⎥⎣⎦⑸ ()()()5.5 3.2 2.5 4.8-+-----⑹ ()32172317-------知识模块二 有理数乘除法 课后演练【演练3】 ⑴ ()110.0333323⎛⎫⎛⎫-⨯⨯- ⎪ ⎪⎝⎭⎝⎭实战演练⑵ 114116845⎛⎫⎛⎫-⨯⨯-⨯ ⎪ ⎪⎝⎭⎝⎭⑶ 23155174148⎛⎫⎛⎫⎛⎫÷-÷-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【演练4】 计算:⑴ ()1571816-⨯-⑵ ()()7351361246⎡⎤-+---⨯-⎢⎥⎣⎦⑶ ()15125230.7534252⎛⎫⎛⎫-÷⨯-⨯-÷⨯- ⎪ ⎪⎝⎭⎝⎭知识模块三 有理数加减乘除混合运算 课后演练【演练5】 计算: ()()()()511230.5468⎧⎫⎡⎤⎛⎫-÷⨯-+⨯-⨯-÷-⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭【演练6】 ⑴ 如果0a b <,0bc<,试确定ac 的符号;⑵ 已知整数,,,a b c d 满足25abcd =,且a b c d >>>,那么a b c d -+-= .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例3 计算:
(1)(36 9 ) 9 11
(2)(3)[2(5)] 39
(3)(3)[2(5)] 39
例4 计算
(1)3 (1.8)2 (251.8)2 11
6
6
(2) (12)(5)(0.2)5 33
(3)(618)(6) 5 1015 5
(4) (311 2)34 3(231 3)11 5
例1 计算:
(1)(12)(4)(11) 5
(2) (2)(8)(0.25) 35
巩固应用
例2 计算:
(1)6-(-12)÷(-3); (2)3×(-4)+(-28)÷7; (3)(-48)÷8-(-25)×(-6); (4)42(2)(3)(0.25)
34
巩固应用
有理数的混合运算
问题1 计算: 2.55(1) 84
有理数的加减乘除混合运算
问题2 计算:
(1)-8+4÷(-2) ; (2)(-7)×(-5)- 90÷(-15) ;
有理数的加减乘除混合运算
问题3 计算:
(1)(1255)(5) 7
(2)15( 1 1) 32
巩固应用
答:这个公司去年全年盈利3.7元.
回顾提升
通过这节课的学习你有哪些收获?
1.会运用有理数的运算法则进行有理数的 加减乘除混合运算. 2.会运用有理数的运算律简化运算. 3.会利用有理数的加减乘除混合运算解决 简单的实际问题.
②除以一个不等于0的数,等于乘这个数的 倒数.
用数学式子表示为:aba•1b0.
b
复习回顾,引出新课
(1)加法交换律: 两个数相加,交换加数的位置,和不变.
字母表示: abba
(a、b表示任意有理数)
(2)加法结合律: 三个数相加,先把前两个数相加,或者先把 后两个数相加,和不变. 字母表示: (a b ) c a (b c )
1.5.3加减乘除混合运算
学习目标
1.能熟练地运用有理数的运算法则进行有 理数的加减乘除混合运算.
2.能运用有理数的运算律简化运算.
3.能利用有理数的加减乘除混合运算解决 的加法法则: ①同号两数相加,取相同的符号,并把绝 对值相加. ②绝对值不相等的异号两数相加,取绝对 值较大的加数的符号,并用较大的绝对值 减去较小的绝对值;互为相反数的两个数 相加和为0. ③一个数同0相加,仍得这个数.
复习回顾,引出新课
有理数的减法法则: 减去一个数,等于加上它的相反数.
复习回顾,引出新课
有理数乘法法则: 两数相乘,同号得正,异号得负,并把绝 对值相乘. 任何数与0相乘,都得0.
复习回顾,引出新课
有理数除法法则:
①两数相除,同号得正,异号得负,并把 绝对值相除. 0除以任何一个不等于0数,都得0.
拓展提高
例4 某公司去年1~3月平均每月亏损1.5 万元.4~6月平均每月盈利2万元,7~10 月平均每月盈利1.7万元,11~12月平均每 月亏损2.3万元,这个公司去年总的盈亏情 况如何?
拓展提高
解:记盈利额为正数,亏损额为负数.公司 去年全年盈亏额(单位:万元)为
(-1.5)×3+2×3+1.7×4+(-2.3)×2 = -4.5+6+6.8-4.6 =3.7
(5)分配律:
一个数同两个数的和相乘,等于把这个数 分别同这两个数相乘,再把积相加. 字母表示:
(a+b)c=ac+bc (a、b、c表示任意有理数)
复习回顾,引出新课
有理数的运算顺序 (1)先乘除,再加减. (2)同级运算,按从左到右的顺序进行. (3)如有括号,先做括号内的运算,按小括 号、中括号、大括号依次进行.
(a、b、c表示任意有理)数
复习回顾,引出新课
(3)乘法交换律: 两个数相乘,交换因数的位置,积不变.
字母表示:abba (a、b表示任意有理数)
(4)乘法结合律: 三个数相乘,先把前两个数相乘,或者先把 后两个数相乘,积不变.
字母表示:(ab)ca(bc) (a、b、c表示任意有理)数
复习回顾,引出新课
相关文档
最新文档