5第四五章剂量学及测量的基本概念
第五章 X(γ)射线射野剂量学

第五章 X (γ)射线射野剂量学第一节 人体模型一、组织替代材料1、组织替代材料的定义: ICRU 第30号报告中曾用组织等效材料一词,并将其定义为“对射线的散射和吸收的特性与人体组织的相同的材料”,因理解不同而往往被乱用,后在第44号报告中建议使用组织替代材料一词。
定义是“模拟人体组织与射线的相互作用的材料”。
2、组织替代材料的选择:应考虑被替代组织的化学组成和辐射场的特点。
(1)对X (γ)射线,如果某种材料的总线性衰减系数(或总质量衰减系数)与被替代组织的完全相同,则等厚度的该种材料和被替代组织将使X (γ)射线衰减到相同的程度。
因在X (γ)射线的不同能量段,其作用方式不相同,材料的原子序数Z 和电子密度对其替代性影响较大。
(2)对电子束,如果等厚度的替代材料和被替代组织对电子束的散射和吸收相同的话,则它们的总线性(或总质量)阻止本领和总线性(或总质量)角散射本领一定完全相同。
一般情况下,适合X (γ)射线的组织替代材料一定是电子束的组织替代材料。
(3)对中子束,因其主要与组织中的元素的原子核发生作用,替代材料的元素构成必须与被替代组织的构成相同,而且,它们的C 、H 、N 、O 的质量相对份数完全相等,这样才能保证它们对中子的散射和吸收相等。
(4)对重离子,因其与组织的相互作用主要电子碰撞,因此线性碰撞本领的选择是首要条件。
但对负π介子,除了考虑线性碰撞本领外,还应该考虑被替代组织及组织替代材料的分子结构。
为了保证等体积的组织替代材料与被替代组织的质量相等,要求两者的质量密度即物理密度必须近似相等。
3、水是最容易得到的、最廉价的组织替代材料。
对X (γ)射线、电子束的吸收和散射几乎与软组织和肌肉近似。
水模的缺点是,用电离室作探头时,必须加防水措施。
近年来发展了干水和其它组织替代材料,表5-1 列出了人体组织和目前临床上常用的组织替代材料的有关物理参数。
二、组织替代材料间的转换比如原来组织的替代材料是有机玻璃,现在要换成水,该如何进行等效转换?这就涉及到组织替代材料间的转换问题,它决定于被测射线与模体材料的相互作用。
5第四五章剂量学及测量的基本概念

比释动能 K 定义: X或γ光子等非电离辐射粒子在与物 质相互作用时,物质中原子核外电子 接受能量形成次级粒子射线,在单位 质量的物质中,不带电粒子转移给带 电粒子的全部初始动能之和叫作比释 动能。
数学表述: 不带电射线使物质释放出来的全 部带电粒子初始动能之和与物质质量之比.本测量——量热法
任何物质受照射后吸收的射线能量都 会以热的形式表现.能量—— 热量—— 温度.测量—— 热量计。 由于辐射使温度升高的值T只有10-2 10-3 °C,故测量技术要求很高,只能做标 准仪器校对其它测D的仪器.
二. 吸收剂量的测量 1、基本测量——量热法
吸收剂量与照射量:
这两个物理量间,在相同的条件下又存在着一定 的关系。关系如下: D=f.X =0.876(cGY/R).X (R)
式中:f= 0.876(cGY/R)为空气中照射量-吸收 剂量转换系数又叫伦琴拉德转换因子
放射性活度(A) (RADIOACTIVE ACTIVITY)
是指一定量的放射性核素在一个很短的时间间隔dt内发生的核衰变数dN
吸收剂量与照射量的关系
照射量X与吸收剂量D是两个意义完全不同的辐射 量。 照射量只能作为X或γ射线辐射场的量度,描述电 离辐射在空气中的电离本领; 而吸收剂量则可以用于任何类型的电离辐射,反 映被照介质吸收辐射能量的程度,必须注意的是, 在应用此量度时,要指明具体涉及的受照物质, 诸如空气、肌肉或者其他特定材料。 但是,在两个不同量之间,在一定条件下相互可 以换算。对于同种类、同能量的射线和同一种被 照物质来说,吸收剂量是与照射量成正比的。
照射量率:指单位时间内照射量变化率
dX X dt
C kg s
-1 1
放射治疗剂量学知到章节答案智慧树2023年山东第一医科大学

放射治疗剂量学知到章节测试答案智慧树2023年最新山东第一医科大学第一章测试1.以下材料中可以做体模材料的有()参考答案:有机玻璃;水;聚苯乙烯;石蜡2.吸收剂量的单位有()参考答案:J/Kg;Gy;rad3.在一般的医学应用中,射线与物质相互作用时,主要产生的效应有()参考答案:电子对效应;光电效应;康普顿效应4.吸收剂量的测量方法中被国际权威机构和国家技术监督部门确定的、用于放射治疗剂量测量校准和日常监测的主要方法是()参考答案:电离室法5.一均匀剂量给予某一组织,如果给予1g 组织的吸收剂量为2Gy,那么给予5g组织的吸收剂量是()参考答案:2Gy6.入射能量为10MeV的光子与物质发生电子对效应,若产生的正负电子对的动能相等,正电子的动能约为()参考答案:4.5MeV7.水是最常用的组织体模材料。
()参考答案:对8.光子属于直接电离辐射。
()参考答案:错9.对中高能X射线,康普顿效应为主要形式。
()参考答案:对10.对高能X射线,电子对效应为主要形式。
()参考答案:对第二章测试1.Co-60衰变所放出的γ射线平均能量为()参考答案:1.25MeV2.半影中无法完全消除的是()参考答案:散射半影3.肿瘤放射治疗机产生的半影不包括()参考答案:能量半影4.Co-60衰变所放出的γ射线能量分别为()参考答案:1.17MeV和1.33MeV5.SDD是指()参考答案:放射源至准直器的距离6.电子直线加速器初级准直器的主要作用是()参考答案:限定最大照射野的尺寸7.电子直线加速器中均整器的作用是()参考答案:调整射野的平坦度和对称性8.电子直线加速器采用的微波电场的频率大约是3000MHz。
()参考答案:对9.钴-60远距离治疗机最早在美国生产。
()参考答案:错第三章测试1.射野中心轴上最大剂量深度处的TAR定义为()参考答案:BSF2.矩形野面积为10cm×15cm,其等效方形野的边长为()参考答案:12cm3.对于4MVX 射线,最大剂量点深度在体模内()参考答案:1.0cm4.关于非规则野外照射治疗剂量计算,正确的说法有()参考答案:原射线剂量与照射野大小相关;散射线剂量与照射野大小、形状相关;可以用Clarkson方法进行剂量计算;体内剂量由原射线剂量加散射线剂量叠加而成5.X射线PDD的影响因素有()参考答案:照射野大小;SSD;射线能量;深度6.SAD表示放射源到机架旋转中心的距离。
6量和计量单位的基本概念(取自《计量管理教程》第二章第一节)

第二章法定计量单位第一节量和计量单位的基本概念一、量人们在认识自然和改造自然的过程中,会遇到各种现象,如发热、发光、发声等;要描述各类物质,如物体的轻重、土地面积的大小等。
描述现象或物质的一个最重要的概念就是量。
确切地说,量是指“现象、物体或物质可定性区别和定量确定的属性” 。
这里说的量是指可测的量的通称。
作为一个量必须既可以定性区别又能定量确定,定性区别就是可以通过比较,得出相比较事物的程度、大小、轻重、冷热等,定量确定就是能明确给出确定的量。
例如,质量、时间、长度、温度、电流、电压等,除了能定性地比较外,都可以定量确定。
量可分为“一般的量”和“特定量”。
特定量如某根棒的长度、某根导线的电阻等;而从无数特定同种量中抽象出来的量,如长度、电阻等,则是一般的量,通常简称量。
量Q 可用如下数学式表示:Q Q Q式中:Q——量Q 所选用的计量单位;Q——用剂量单位Q表示该量Q 的数值。
按国家规定,量的符号应用斜体书写,如量Q,牛顿第二定律Fma 等。
事实上,还存在着另外一类量不能通过测量得出,但可以通过计数办法得出,称它为计数量或统计量,如人口、金额、物品的件数、分子数等。
二、量值如何定量地表示一个量的大小程度呢,这就要选择一个作为标准的量,将被测量与该标准量进行比较,从而得出被测量的量值。
量值的定义是:“一般由一个数乘以测量单位所表示的特定量的大小。
”其中,在量值表示中与测量单位相乘的数称为数值。
对于那些包含在物理方程式中的量,即理论上得到充分阐明的物理量,可以用一个数乘以一个测量单位来表示其大小,例如 5.34m 或534m,35kg 或3500g,20N,300Pa 等。
但是还有一些不能纳入物理方程式而实用上又很需要的量(例如硬度),尚无法用一个数乘以测量单位来表示,只能满足于用一个数结合一个代表约定参考标尺的符号表示。
广义上说,这样的表示也可称为量值,因为也能按相对大小排序,不过这样表示的量值无法代入物理方程式进行计算,只可能出现在某些经验公式中。
质量工程师考试第5章计量基础中级

非强制检定—— 强制检定以外的,使用单位 依法自主管理,自由送检,自求溯源,自定 检定周期
检定依据—— 计量检定规程
随着经济发展,对大量非强检测量仪器,为达 到统一量值的目的,应以校准为主。
真值—— 与被测量定义一致的值 由于真值不能确定,实际用约定真值
(常称实际值、校准值或标准值)
对指示式仪器—— 示值误差=示值-实际值 对实物量值—— 示值误差=标称值-实际值
最大允许误差—— 对给定的测量仪器,由 规范、规程等所允许的误差极限值
(四)灵敏度—— 测量仪器响应的变化除以对 应的激励变化
Hz
1Hz=1s-1
N
1N=1kg·m/s2
Pa
1Pa=1N/m2
J
1J=1N·m
W
1W=1J/s
C
1C=1A·s
V
1V=1W/A
电容
法[拉]
F
电阻 电导
欧[姆]
西[门子]
S
磁[通量]
韦[伯]
Wb
磁通[量]密度,磁感应强度
特[斯拉]
T
电感
亨[利]
H
摄氏温度
摄氏度
℃
光通量 [光]照度
流[明]
lm
勒[克斯]
3. 溯源性—— 任何测量结果或测量标准的值, 都能通过一条具有规定不确定度 的不间断的比较链,与测量基准 联系起来的特性。
4. 法制性—— 计量必需的法制保障方面的特性。
二、计量法律和法规
1.计量法的基本内容 计量立法宗旨 计量单位制 计量监督 计量认证 计量法律责任 调整范围 计量器具管理 计量授权 计量纠纷处理
辐射剂量与防护(B5标准)详解

核辐射剂量与防护(内部教材)张丽娇编目录目录 (I)绪论 (1)第一章辐射的基础知识 (7)第一节物质结构 (7)1.1. 原子结构 (7)1.2. 射线与辐射 (10)第二节射线与物质相互作用 (16)2.1. 带电粒子与物质相互作用 (16)2.2. γ射线与物质相互作用 (17)2.3. 中子与物质相互作用 (19)第三节辐射防护中常用的物理量 (21)3.1. 描述辐射场的量 (21)3.2. 相互作用系数 (24)3.3. 辐射剂量学中使用的量 (29)3.4. 辐射防护中使用的量 (40)第二章辐射对人体的影响和防护标准 (47)第一节放射性来源 (48)1.1. 天然放射性 (48)1.2. 人工放射性 (50)第二节辐射的生物效应 (53)2.1. 基础知识 (53)2.2. 几种电离辐射的相对危害性 (56)2.3. 辐射的生物效应 (57)2.4. 影响辐射生物效应的因素 (61)第三节辐射防护的目的、原则和标准 (64)3.1. 辐射防护的目的 (64)3.2. 辐射防护原则 (65)3.3. 辐射防护标准 (66)第三章外照射的防护 (75)第一节外照射防护的基本方法 (75)1.1. 时间防护 (76)1.2. 距离防护 (76)1.3. 屏蔽 (76)第二节X或Γ射线的外照射防护 (77)2.1. X、γ射线剂量计算 (77)2.2. X、γ射线在物质中的减弱规律 (83)2.3. X、γ射线的屏蔽计算 (88)2.4. 屏蔽X或γ射线的常用材料 (102)第三节Β射线的外照射防护 (103)3.1. β射线的剂量计算 (103)3.2. β射线的轫致辐射的剂量计算 (105)3.3. β射线的屏蔽计算 (107)第四节中子的外照射防护 (110)4.1. 中子的剂量计算 (110)4.2. 中子的屏蔽计算 (112)4.3. 屏蔽中子的常用材料 (117)第五节外照射防护中的几个特殊问题 (119)5.1. 屋顶厚度的计算 (119)5.2. 迷道和门窗问题 (122)5.3. 通风问题 (124)5.4. 安全连锁系统 (124)第四章内照射的防护 (127)第一节概述 (127)1.1. 内照射的特点 (127)4.2. 内、外照射防护的不同思路 (128)4.3. 放射性物质进入人体的途径 (128)第二节内照射限值 (132)2.1. 次级限值 (132)2.2. 导出限值 (135)第三节内照射防护 (136)3.1. 开放型放射性工作场所的分级、分区及其主要防护要求 (137)3.2. 个人防护措施 (141)第五章辐射防护监测 (143)第一节监测特点和分类 (143)第二节个人剂量监测 (144)2.1. 外照射个人剂量监测 (144)2.2. 体内污染的个人剂量监测 (147)第三节工作场所监测 (149)3.1. 外照射监测 (149)3.2. 表面污染监测 (150)3.3. 空气污染监测 (152)第四节环境监测 (154)4.1. 本底调查 (155)4.2. 常规监测 (155)4.3. 应急监测 (156)4.4. 环境监测的质量保证 (156)附表1 γ射线在某些元素和材料中的质量减弱系数、质量能量转移系数和质量能量吸收系数 (158)附表2 中子在某些物质中的比释动能因子 (161)附表3 各向同性γ点源的照射量积累因子 (165)附表4 各向同性点源γ射线减弱倍数所需的水屏蔽层厚度 (168)附表5 各向同性点源γ射线减弱倍数所需的混凝土屏蔽层厚度 (172)附表6 各向同性点源γ射线减弱倍数所需的铁屏蔽层厚度 (176)附表7 各向同性点源γ射线减弱倍数所需的铅屏蔽层厚度 (180)附表8 加速器X射线减弱倍数所需的混凝土屏蔽层厚度 (184)附图1~10 (186)绪论一、核科学技术的应用20世纪是一个科技成果丰硕的世纪,其伟大科技成果之一是人们打开了核科学技术利用的大门。
《放射治疗物理学》讲义教案放射治疗物理学目录.doc

放射治疗物理学目录第一章放射治疗物理基础第一节原子和原子核性质一、一些基本概念二、原子核的大小和质量三、原子核结合能四、原子核的自旋与磁矩五、原子核和核外电子的能级第二节射线与物质的相互作用一、基木粒子的种类和物理特性二、核的稳定性和衰变类型三、放射性度量和放射性核素衰减规律四、常见类型射线与物质的相互作用及定量表达第二章临床放射生物学概论第一节电离辐射对生物体的作用一、辐射生物效应的时间标尺二、电离辐射的直接作用和间接作用第二节电离辐射的细胞效应一、辐射诱导的DNA损伤及修复二、细胞死亡的概念三、细胞存活曲线四、细胞周期时相与放射敏感性五、氧效应及乏氧细胞的再氧合六、再群体化笫三节电离辐射对肿瘤组织的作用一、肿瘤的增殖动力学二、在体实验肿瘤的放射生物学研究中得到的一些结论第四节正常组织及器官的放射效应一、正常组织的结构组分二、早期和晚期放射反应的发生机制三、正常组织的体积效应第五节肿瘤放射治疗的基本原则一、照射范围应包括肿瘤二、要达到基本消灭肿瘤的目的三、保护邻近正常组织和器官四、保护全身情况及精神状态良好第六节提高肿瘤放射敏感性的措施一、放射源的选择二、利用时间-剂量-分割关系三、使肿瘤细胞再分布四、利用氧效应第七节肿瘤放射治疗中生物剂量等效换算的数学模型一、“生物剂量”的概念二、放射治疗屮生物剂量等效换算的数学模型三、外推反应剂量(ERD)概念第三章常用放射治疗设备第一节X线治疗机一、X线的发生二、X线机的一般结构三、X线质的改进四、X射线治疗机的改进第二节医用加速器一、概述二、医用电子直线加速器的加速原理三、医用电子直线加速器的结构四、质子放疗系统第三节远距离^Co治疗机一、叫20源的产生与衰变二、远距离治疗机的一般结构三、60Co治疗机种类四、60Co治疗机的半影种类五、垂直照射相邻照射野的设计六、60c°v射线的优缺点七、6°C0源更换八、Y刀第四节远距离控制的近距离治疗机一、H DR后装治疗设备的组成二、现代后装机具有的优点第五节理想放射源条件一、理想的剂量分布二、能杀灭乏氧细胞三、能杀灭非增殖期细胞(Go期)第六节模拟定位设备一、模拟定位机二、C T模拟定位机三、磁共振模拟机四、P ET-CT模拟机第七节体位固定装置一、一般的头颈部支持系统二、乳腺体位辅助托架三、热塑面网(罩)和体罩四、真空成形固定袋(真空袋)第八节放射治疗局域网络一、局域网络的配置二、放射治疗科网络的信息交换三、L ANTIS系统四、科室网络的安全维护第四章辐射剂量学的基本概念第一节辐射剂量学基本定义一、照射量二、比释动能三、吸收剂量四、有关辐射场的几个基本定义第二节各辐射量Z间的关系一、高能光子在介质中的能量转移和吸收二、电子平衡三、照射量和比释动能的关系四、比释动能和吸收剂量的关系五、吸收剂量和照射量的关系第三节空腔理论一、阻止本领二、阻止本领和吸收剂量的关系三、Bragg-Gray空腔理论四、Spencer-Attix 理论五、空腔理论住电离室剂量测量中的应用第五章射线的测量第一节电离室一、电离室基本原理二、指形电离室三、电离室的工作特性以、特殊电离室五、电离室测量吸收剂量的原理第二节热释光剂量计一、原理二、热释光剂量讣的种类三、热释光剂量计使用四、热释光剂量计的刻度第三节胶片剂量计一、原理二、应用第四节半导体剂量计一、原理二、Mapcheck半导体剂量仪第五节场效应管一、原理二、M OSFET探测器的特性第六节剂量的标定一、射线质的测定二、射线吸收剂量的标定第六章光子照射剂量学第一节原射线与散射线一、原射线二、散射线第二节平方反比定律第三节百分深度剂量一、照射野及有关名词定义二、百分深度剂量第四节射野输出因子和模体散射因子一、射野输出因子二、模体散射校正因子第五节组织空气比一、组织空气比定义二、源皮距对组织空气比的影响三、射线能量、组织深度和射野大小对组织空气比的彫响四、反向散射因子五、组织空气比与百分深度剂量的关系六、不同源皮距百分深度剂量的计算一一组织空气比法七、旋转治疗屮的剂量计算八、散射空气比第六节组织最大比一、组织模体比和组织最大剂量比二、散射最大剂量比第七节等剂量线一、等剂量线二、射野离轴比第八节组织等效材料一、组织替代材料二、组织替代材料间的转换三、模体四、剂量准确性要求第九节人体曲而和组织不均匀性的修正一、均匀模体和人体之间的差别二、人体曲面的校正第十节不均匀组织(骨、肺)校正一、射线衰减和散射的修正二、不均匀组织屮的吸收剂量三、组织补偿第十一节楔形野剂量学一、楔形野等剂量分布与楔形角二、楔形因子三、一楔合成四、楔形板临床应用方式及其计算公式五、动态楔形野第十二节不规则射野剂量学第十三节临床剂量计算一、处方剂量二、加速器剂量计算三、钻-60剂量计算四、离轴点剂量计算一一Day氏法第七章电子线照射剂量学第一节电子线中心轴深度剂量分布一、中心轴深度剂量曲线的基木特点二、有效源皮距及平方反比定律三、彫响电子线百分深度剂量的因素四、电子线的输出因子第二节电子线剂量学参数一、电子线的射程二、电子线能量参数三、电子线的离轴比四、电子线的均整度、对称性及半影五、电子线的等剂量线分布特点第三节电子线的一般照射技术一、电子线处方剂量ICRU参考点二、能量和照射野的选择三、射野形状及铅挡技术四、电子线的补偿技术五、电子线的斜入射修正六、电子线的组织不均匀修正和边缘效应七、电子线的射野衔接技术第四节电子线的特殊照射技术一、电子线旋转照射技术二、电子线全身皮肤照射三、电子线术中照射第八章近距离放射治疗剂量学第一节近距离放疗概述一、近距离放射治疗的设备和相关技术二、近距离放疗的常用核素第二节近距离放疗的剂量计算一、单个粒子源的剂量计算方法二、临床多粒子源植入的扰动影响三、组织异质情况下的剂量修正第三节近距离放疗的临床应用和剂量体系一、粒子源植入治疗的临床应用二、粒子源植入的临床剂量体系第九章中子近距离照射剂量学第一节钿中子与制中子相对生物学效应一、钢屮子二、^cf的相对生物效应(RBE)三、屮子近距离治疗的优势第二节钏中子治疗技术一、'叱彳中子后装治疗机(中子刀)简介二、中子刀适应症及禁忌症第三节钿中子治疗的剂量分布一、模体二、确定漩Cf中子束、Y射线吸收剂量分布的探测器三、确定^Cf中子、Y吸收剂量分布的理论方法第四节中子的防护一、中子后装机的辐射防护性能二、患者的辐射防护三、医护人员的辐射防护四、公众的辐射防护五、安全管理第十章临床常用技术和应用第一节挡块一、挡块的厚度二、低熔点铅技术三、挡块制作第二节组织补偿一、组织填充物二、组织补偿器三、电子束的补偿技术第三节多叶准直器一、多叶准直器的基本结构二、多叶准直器的安装位置第四节楔形野一、楔形板二、楔形角与楔形因子三、一楔合成四、动态楔形野第五节独立准直器第十一章临床常用放疗方案第一节放疗临床对剂量学的要求一、提高治疗比二、实现临床剂量学四原则第二节照射技术和射野设计原理一、体外照射技术的分类及其优缺点二、射线及其能量的合理选择三、高能X射线的射野设计原则四、相邻野设计五、不对称射野笫三节临床常见肿瘤放射治疗方案一、鼻咽癌常规照射野设计二、肺癌常规照射野设计三、食管癌常规照射野设计第十二章三维适形放射治疗及调强放射治疗第一节三维适形放疗的发展过程第二节3DCRT工作流程、计划工具一、体模制作二、计划CT扫描与数据传输三、轮廓勾画四、计划设计和评价五、计划验证六、三维适形放疗的临床应用第三节立体定向放射外科和立体定向放射治疗一、立体定向放射外科二、立体定向放射治疗笫以节调强放射治疗一、IMRT的工作流程和基本概念二、IMRT实施方法三、IMRT的优点四、IMRT的可能潜在问题五、IMRT的剂量验证第五节 调强放射治疗的临床应用举例一、 鼻咽癌的调强放射治疗二、 前列腺癌的调强放射治疗三、 肺癌的调强放射治疗第十三章治疗计划系统和治疗计划评估 第一节治疗计划系统概念和历史简介一、 治疗计划系统概念二、 治疗计划系统的发展历史三、 两维和三维治疗计划系统的比较 第二节治疗计划的剂量学原则及靶区剂量规定一、 肿瘤致死剂量与正常组织耐受剂量二、 临床剂量学四项原则 第三节外照射靶区剂量学规定治疗目的 参考点和坐标系 体积的定义 対剂量报告的一般性建议 剂量归一点 吸收剂量二、四、五、八、第六节近距离放射治疗剂量算法近距离治疗特点近距离治疗类型和放射源空间重建近距离主耍剂量计算方法192Ir 放射源的数学模型 近距离照射的剂量优化第七节外照射剂量计算算法一、 剂量计算算法的临床实现进程二、 剂量计算算法第八节 治疗计划系统的设计和体系结构一、 基本组成二、 单个治疗计划工作站系统三、 多工作站系统四、 辅助部件五、 第三方软件六、 治疗计划系统的发展七、 系统说明书二、 四、五、八 第四节TPS 中的图像和图像处理技术一、 放射治疗计划中使用的图像技术二、 图像处理第五节治疗计划设计过程体位固定治疗计划设计放射治疗计划评估治疗计划的验证治计划的执行调强放射治疗的TPS 剂量验证 二、 四、 五、 六、第九节治疗计划系统的验收一、验收内容二、与剂量无关的项目三、外照射野光子剂量计算四、电子线剂量计算五、后装治疗六、数据传输第十节治疗计划系统的质量保证一、系统文件和人员培训二、系统定期QA项目三、患者治疗计划检查第十四章放射治疗的质量保证QA和质量控制QC 第一节QA和QC的目的及重要性第二节放射治疗对剂量准确度的要求一、靶区剂量的确定二、对剂量准确度的要求三、影响剂量准确性的因素第三节外照射治疗物理质量保证内容一、外照射治疗机、模拟机和辅助设备二、等中心及指示装置三、照射野特性的检查四、剂量测量和控制系统五、治疗计划系统六、治疗安全第四节近距离治疗QA内容一、放射源二、污染检查三、遥控后装机QA四、治疗的质量控制第五节QA、QC的管理要求一、部门QA的主要内容二、国家QA的主要内容第十五章发展中的图像引导放射治疗第一节三维适形放射治疗第二节调强放射治疗第三节图像引导放射治疗一、放射治疗实施前影像二、治疗室内图像引导和投照三、图像引导放射治疗四、4维放射治疗第四节剂量引导放疗和循变放疗一、剂量引导放射治疗二、循变放射治疗第十六章放射防护第一节电离辐射的生物效应一、放射损伤机理二、放射生物效应的类型三、影响放射生物效应的主要因素四、辐射对组织、器官的损伤效应第二节放射防护目的与标准一、放射防护的目的二、放射防护应遵守的三项基本原则三、人工照射类型四、放射防护标准第三节外照射防护基本措施一、工作场所区域划分二、减少外照射剂量的三项措施第四节医用电离辐射防护一、医院的防护职责二、医疗照射的正当性判断三、医疗照射的防护最优化四、医疗照射的指导水平与剂量约束章名为小三宋体加粗节名为小四宋体加粗正文为五号宋体加粗一、加粗(一)加粗有必要时1.加粗有必要时(1)a.(a)数字为timenewman公式为(1-1)。
电离辐射剂量学基础课件——第二章 剂量学基本概念

)a
( e W
)a
[h
( en
e
)
a
]
( W
)a
三.X和 X值得说明的问题
•含义: 自由空间或不同于空气的材料内某一点的照射量
或照射量率的概念 •可以用空气碰撞比释功能Kc,a来取代照射量
原因:a. 由电离电荷量到能量的换算(乘以(w/e)a 因子)很不方便
b. Exposure的含义容易混 •对于点源:
(5) tr Ee EA Ee' hv hvk hv"
注:E1是由反冲电子Ee的轫致辐射释放的带电粒子,不能作为 独立事件产物再加到εtr中去。
(2)PP
tr E E hv 2mc2 hv Q
电子对生成过程中反应能为Q=-2mc2,mc2为正负电 子的静止质量能。
3.εtr通用表示方法
(1)定义
1 E
(2)通用表达式
E1 Ein Eout Q
16O(n,αγ)13C Q=-2.215MeV
Ee’
En
δ
α
e+
hυ
13C e-
hυB
一次能量沉积事件的授与能示意图
1 En Ee' hvB 2.215Mev 1.022Mev
3.总授与能ε
Ei Ein Eout Q
研究不带电粒子在介质中的能量转移,有必要对二个阶段 (过程)分别考虑
比释动能是描述不带电粒子在物质中转移能量的第一阶段的 一个物理量
二、Energy transferred (转移能)εtr
1.定义 在指定体积V内由不带电粒子释放出来的所有带电的电离 离子初始动能之和,用εtr表示,单位是J。
2.典型过程的转移能分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D K
例题1: 质量为0.2g的物质,10s内吸收电离辐射 的平均能量为100尔格,求该物质的吸收 剂量和吸收剂量率. 解: dm = 0.2g = 2×10-4kg; dEen= 100 erg =10-5J; dt = 10s
dEen 10 D 0.05Gy 4 dm 2 10 dD -1 D 5mGy s dt
二. 吸收剂量的测量
对医学和防护学有意义的量是 吸收剂量。吸收剂量一般通过间接 测量来获取,考察某点能量沉积产 生的理化变化,间接反映该点物质 吸收的射线能量。经过适当校准, 给出D的大小。
吸收剂量(Absorbed Dose) 吸收剂量是指电离辐射在单位质量的介质中沉积 (Imparted)的平均能量。 旧单位为拉德(rad ),SI 单位为戈瑞(Gy )。 其单位( Gy )的定义是每千克( kg )物质吸收 1 焦耳 (J)能量时的吸收剂量。1rad=10-2J/kg=1cGy。 吸收剂量与照射量区别: (1)吸收剂量被广泛地应用于不同电离辐射的类 型、能量及各种介质。 (2)吸收剂量反映的是射束在介质中被吸收的情 况,而照射量则是指辐射在空气中电离量的大小。 在临床上,吸收剂量更重要,更被医生所关注, 它的量值是通过使用剂量计及电离室对照射量进行精 确的测算而确定的。
二. 吸收剂量的测量 1、基本测量——量热法
任何物质受照射后吸收的射线能量都 会以热的形式表现.能量—— 热量—— 温度.测量—— 热量计。 由于辐射使温度升高的值T只有10-2 10-3 °C,故测量技术要求很高,只能做标 准仪器校对其它测D的仪器.
二. 吸收剂量的测量 1、基本测量——量热法
一.照射量 X
是直接量度X或γ光子对空气电离能力的量, 可间接反映X射线或γ射线辐射场的强度大小 或光子数多少的一种物理量。 定义: X或γ光子在单位质量的空气中所产生的 总电荷量(或辐射强度或光子数). 照射量仅适应于能量在 10KeV~3MeV范围内的X射线或γ射线
照射量 X
dQ (C/kg)或(R伦琴) X dm 1R 2.58 104 C/kg
吸收剂量率的单位:
-1. -1 -1. -1 . . 国际单位:焦耳 千克 秒 (J Kg S ) -1 . 专名:戈瑞每秒(Gy S )
吸收剂量率
讨论:
dD D dt
(Gy/s)
dEX K dm
X或γ能量除转换成电子初始动 能外,还有核与电子间束缚能及散 射光子能量等. 电子初始动能还有一部分转换 成轫致辐射等能量.
比释动能与吸收剂量的关系
两者单位相同,概念有区别; 不带电粒子与物质相互作用,产生带电粒子和其 它次级不带电电离粒子而损失能量,是第一步; 带电粒子把能量授予物质,是第二步。 比释动能表示第一步结果; 吸收剂量则表示第二步结果。 因此,只有满足次级电子平衡条件和韧致辐 射忽略不计时,比释动能才等于吸收剂量。
2、实用空气电离室 电离室 的校准 测量条件: 方法
(1) 室壁与空气等效 (2) 准确得知空气腔体积 (3) 室壁厚度满足电子平衡条件
用两种电离室同时测量已知强度的X、 γ线源,得出实用空气电离室的校准因子.
定期校准
(20°C,760mmHg)
273.2 t 760 K tp 293.2 P
放射性活度与照射量率的关系
.
放射性活度(A)和照射量率(X)的关系如下:
A X= ———— R2
。
式中:X--照射量率,库伦/千克.秒;伦/秒;伦/小时, A--源的放射性活度,贝可;居里, --照射量率常数,库伦.米2/千克;库伦.米2/小时.居里, 1居里的点源在1米处1小时内所产生的照射量率, R--观察点到源的距离,米。 对60CO,=2.56x10-18库伦.米2/千克=1.32伦.米2/小时.居里 对192Ir, =4.72伦.厘米2/小时.毫居里
吸收剂量与照射量:
这两个物理量间,在相同的条件下又存在着一定 的关系。关系如下: D=f.X =0.876(cGY/R).X (R)
式中:f= 0.876(cGY/R)为空气中照射量-吸收 剂量转换系数又叫伦琴拉德转换因子
放射性活度(A) (RADIOACTIVE ACTIVITY)
是指一定量的放射性核素在一个很短的时间间隔dt内发生的核衰变数dN
吸收剂量与照射量的关系
照射量X与吸收剂量D是两个意义完全不同的辐射 量。 照射量只能作为X或γ射线辐射场的量度,描述电 离辐射在空气中的电离本领; 而吸收剂量则可以用于任何类型的电离辐射,反 映被照介质吸收辐射能量的程度,必须注意的是, 在应用此量度时,要指明具体涉及的受照物质, 诸如空气、肌肉或者其他特定材料。 但是,在两个不同量之间,在一定条件下相互可 以换算。对于同种类、同能量的射线和同一种被 照物质来说,吸收剂量是与照射量成正比的。
照射量率:指单位时间内照射量变化率
dX X dt
C kg s
-1 1
二.比释动能 K
比释动能是描述不带电致电离粒子与物质 相互作用时,把多少能量传给了带电粒子的 物理量。在辐射防护中,常用比释动能的概 念推断生物组织中某点的吸收剂量或计算中 子的吸收剂量等。 注意区别: 照射量是以电离电量的形式间接反映射线 在空气中辐射强度的量,不反映射线被物质 吸收而使能量转移的过程。
虽然SED后来被弃之不用,而采用了更加精确 的测量单位,如伦琴等,但皮肤红斑却被物 理学家用作评估放射治疗反应的近似指标。 这在kV级X线照射中是很有意义的,因为皮肤 往往是提高肿瘤致死剂量的受限器官。 当兆伏级X线成为放射治疗的主要手段时,由 于剂量建成效应使皮肤剂量大为降低,所以 才放弃用皮肤反应作为评估的依据。
伦琴的定义: 在X或γ射线照下,0.001293g空 气(相当于0º C和101kPa大气压下1cm3干燥空 气的质量)所产生的次级电子形成总电荷量为 1静电单位的正离子或负离子.即
1静电单位电荷 3.336 10 C 4 1R 2 . 58 10 C/kg 6 0.001293g 1.293 10 kg
1、自由空气电离室
步骤
(1) 设法隔离已知质量的空气 (2) 测量该空气中X、γ线使物质放 出的次级粒子电离产生的同种离子 总电量。
Q X V
造成空 气室非 稳定态 的因素
空气对X线的吸收和散射 离子的复合 入口对X线吸收产生多余次级电子 电离室壁的阻止使电子损失的能量 温度气压变化引起的空气密度改变
介质
热电偶
dE dE dT D dm dT dm
5.能量注量
定义:进入单位截面积小球所有粒子能量的 总和
dEL Ψ = ———
dα
Si单位焦耳米-2或 Jm-2
能量注量率:单位时间内进入单位截面 积小球所有粒子能量的总和
dΨ ψ = ———
dt Si单位焦耳· 米-2秒-1或 J· m-2S-1
粒子注量与能量注量的关系
两者都是描述辐射场强度的辐射量,前者是 粒子数,后者是粒子能量,如果知道每一个 粒子的能量E, 就可知道能量注量。 Ψ=ΦE Emax Ψ=∫0 单能
比释动能率 X或γ光子传能 给带电粒子(K)
(J/kg)或(Gy)
dK K dt
(Gy/s)
电离、激发(被物质吸收 D) 轫致辐射 (不被物质吸收)
三. 吸收剂量D:物质吸收辐射能量的多少 X或γ射线与物质相互作用时,能量转换 分两个阶段进行: 第一:X(γ)
E
带电粒子 (K)
第二:带电粒子
dN A= ------- =N=N0e-t=A0e-t dt
式中:dN--时间间隔dt内放射性核素的核衰变数, ---衰变常数,表示单位时间内每个原子核衰变的 概率, A0-初始时刻该放射性核素的放射性活度。
国际单位:贝可勒尔(Bq) ,MBq,GBq,TBq 专用单位 :居里(Ci),毫居里(mCi) 1Ci=3.7x1010Bq=3.7x104MBq =3.7x10GBq =3.7x10-2TBq
比释动能 K 定义: X或γ光子等非电离辐射粒子在与物 质相互作用时,物质中原子核外电子 接受能量形成次级粒子射线,在单位 质量的物质中,不带电粒子转移给带 电粒子的全部初始动能之和叫作比释 动能。
数学表述: 不带电射线使物质释放出来的全 部带电粒子初始动能之和与物质质量之比.
dE tr K dm
第四章 辐射剂量学的基本概念
在X射线用于诊断和治疗的年代,曾试图 依据它们与其它物质的化学和生物学反应来测 定电离辐射。例如胶片乳胶对辐射的感光、某 些化学化合物的颜色改变和人体皮肤的潮红反 应等都与吸收的辐射量有关,这只能对辐射剂 量作出粗略估计。 在放射治疗中,所谓皮肤红斑剂量(Skin Erythema Dose,SED)是指刚好使人体皮肤出现 潮红反应的辐射剂量。
5
4.粒子注量 Φ
定义: 进入单位截面 积球体内的粒子数.
h3
da h5 P• h4
h1
dN da
(m-2)
h2
实际辐射场中.每个粒子具有 不同的能量,即Emax~ 0各种可 能值, 粒子能量计算公式为:
Ema x
E
E
0
dE
粒子注量率:
d dt
(m-2s-1)
所以必须进行校正, 统一标准. 国家级的叫 基本标准,对省市(次级标准)统一校正.自由空 气电离室很大,约20m2,成本高,技术复杂,不能 作现场仪器,只能作标准.
2、实用空气电离室 特点
(1)空气压缩,减 小电离室体积 (2) 压缩空气可 用等效材料替 (Z接近),如石墨, 有机玻璃,石蜡
(3)体积小,可现 场携带测量.
ΦEdE
照射量和比释动能之间的区别
辐射量 照射量X 比释动能K 吸收剂量D