压水反应堆的热功率

合集下载

AP600核电站的系统简介

AP600核电站的系统简介

6.2 AP-600,西屋西屋公司先进的非能动压水堆AP-600是一种电功率为600MW的压水反应堆,它具有先进的非能动的安全特性,并且通过广泛采用简化设计从而显著提高了电站的建造,运行和维护性能。

电站设计充分利用了经过30多年压水堆运行经验验证的成熟技术。

在世界范围内,压水堆的比重占所有轻水反应堆的76%,而67%的压水堆是建立在西屋压水堆技术基础之上的。

AP-600的设计目标是达到很高的安全和性能记录。

它的设计虽然基于保守的已被验证的压水堆技术,但是在安全特性方面强调依赖自然力。

安全系统尽可能使用自然驱动力比如压缩气体,重力流和自然循环流动。

安全系统不使用能动部件(比如泵,风机或柴油发电机)并且设计为功能实现不需要安全级的支持系统(比如交流电源,部件冷却水,生活服务水,采暖通风)。

控制安全系统所需的运行人员的操作在数量上和复杂度上都尽可能小;其宗旨就是用自动实现取代运行人员的操作。

最终结果就是形成的设计显著降低了复杂度并提高的可操作性。

AP-600的标准设计符合所有适用的美国核管会标准。

大量的安全分析工作已经完成,相关内容写入了提交核管会的标准安全分析报告(SSAR)和概率风险评价(PRA)。

广泛的实验计划也已经完成,从而验证了电站的创新性设计在运行中将与预期的设计和分析一致。

概率风险评价(PRA)的结果表明了其具有满足先进反应堆设计目标的非常低的堆芯损坏几率,并且由于改善了安全壳的隔离与冷却能力,其也具有很低的放射性泄漏几率。

AP-600的设计理念中非常重要的一个方面是关注电站的可操作性和可维护性。

这些因素已经融入了其整个的设计过程。

AP-600的设计具有许多独到之处,比如通过简化设计在提高可操作性的同时也减少了部件及其配套设施的数量。

特别是,简化的安全系统显著地简化了技术规格,从而降低了监督的要求。

通过强调已验证的部件的应用,从而确保达到高水平的可靠性同时具有很低的维护要求。

部件的标准化降低了备件的数量,减小了维护的培训要求,并且使维护周期进一步缩短。

技术类《反应堆热工水力》第2章(反应堆稳态工况下的传热计算)

技术类《反应堆热工水力》第2章(反应堆稳态工况下的传热计算)

AUO2 UO 2分子量, g/mol
A00 阿弗加德洛常数, 6.0221023 1/mol
C5 29325U丰度
11
1.2 堆芯功率的分布及其影响因素
讨论3:U-235的丰度
由于工程上通常给出的是U235的浓缩度(富集度),浓缩度是U235在铀中 的质量数之比,丰度与浓缩度之间的关系式如下:
f
2
293 273 t
f
0.0253 f
t
其中: t 慢化剂温度, 0C
f (0.0253) 0.0253ev中子的微观裂变截面, cm2
对于235 92
U,
f
(0.0253)
583.5b,
1b
10-28 m2
f (t) 非1/v修正因子,一般取1.0
14
1.2 堆芯功率的分布及其影响因素
1
C5
1
0.9874
1
5
1
5
1.0128
1 0.0128
C5
其中: C5 29325U丰度,原子数之比
5 29325U浓缩度, 质量数之比
12
1.2 堆芯功率的分布及其影响因素
讨论4:丰度和浓缩度之间的关系式推导
C5
单位质量铀内235 92
U核子数
单位质量铀内235 92
U
238 92
U总核子数
22
1.2 堆芯功率的分布及其影响因素
均匀裸堆的释热率分布
qv r,
z
qv,maxJ0 2.405
r Re
cos

LRe
其中:
qv ,m a
为最大体积释热率
x
qv,max Fa E f N5σ fΦ0

压水堆核电站控制(第一章)

压水堆核电站控制(第一章)

反应性阶跃变化大小与反应堆周期的关系 压水堆动力学模型 华北电力大学核科学与工程学院
当反应性的变化ρ接近β时,由缓增变为陡增。对应反应堆周期 T=1/ ω 1急剧减小。
压水堆动力学模型 华北电力大学核科学与工程学院 反应性大阶跃变化下中子密度响应
当反应性变化大于β后,反应堆周期接近零,反应堆功率急 剧上升失去控制,出现“瞬发临界事故”。
华北电力大学核科学与工程学院 n/n0
瞬变项
华北电力大学核科学与工程学院 反应性小阶跃变化下中子密度响应 反应性扰动开始的瞬间,中子密度迅速增长决定于瞬发中子,反 应堆周期 ,这种现象称为瞬跳;很快缓发中子发挥作用, 按指数规律增长。
中子密度以反应堆周期
华北电力大学核科学与工程学院
压水堆动力学模型 华北电力大学核科学与工程学院 反应性大阶跃变化下中子密度响应 当反应性ρ为一个很大的阶跃扰动时,按上述类似方法可得:
华北电力大学核科学与工程学院 点堆动力学模型:把反应堆看成没有空间度量的一个“点”, 即反应堆内各点的中子通量密度只随时间变化,与空间位置 无关。 有效增殖系数Keff :某一代参与裂变反应的中子数除以上 一代参与裂变反应的中子数。 中子一代时间(Neutron life time) l :上一代中子产生数量 相同的下一代中子的所需的时间。 平均一代中子时间:一个中子由于裂变被另一个中子代替 的平均时间。 Λ =l/ Keff 反应性:表征链式反应介质或系统偏离临界程度的参数。
华北电力大学核科学与工程学院
华北电力大学核科学与工程学院
华北电力大学核科学与工程学院
压水堆动力学模型 华北电力大学核科学与工程学院 反应性小阶跃变化下中子密度响应
平衡点处: 缓发中子先驱核产生率= 缓发中子先驱核消失率

第一次作业参考答案

第一次作业参考答案

1
A A
8
1
f ,5
5 a,8
1
a,5
1
238 1 2.416 583.5
235
2.7
1.692
680.9 1 1.72%
9、设核燃料中 235U 的富集度为 3.2%(重量),试求其 235U 与 238U 的核子数之比。
解:设 235U 与 238U 的核子数之比为 ,则富集度为
解:查表得: f ,5 583.5 b,a,5 680.9 b,a,8 2.70 b, a,c 0.0034 b
a,
f
5
N A
A5
a,5 8
N A
A8
a,8
a
a,C
a, f
C
N A
AC
a,C
5
N A
A5
a,5 8
N A
A8
a,8
热中子利用系数:
f a, f
5
N A5
A
a,5
235
故消耗的 U 量为
m (1 ) 3.125 1010 Eth A103 NA
(1 0.169) 3.125 1010 1.8 1012 235 103
0.0257kg
6.022 1023
8.(1) 计算并画出中子能量为 0.0253eV 时的富集铀的参数 与富集度的函数关系。
8
N A
A8
a,8
a
C
N A
AC
a,C
5
N A
A5
a,5
8
N A
A8
a,8
a,5
1
A5
A8
a,8
A5 AC

核反应堆工程部分习题参考

核反应堆工程部分习题参考

h f h0 Qs Qt 1 h h h e f e g 0
故平衡态含汽率为: e
sin
zs H / 2
H 2
1
0.25
1 0.25 h f h0 0.1728 0.25 hg h f
1
均匀流模型下,滑速比为: S 1.0 所以空泡份额为:
0.015 2 ) 6.1 10.78m3 2
10 P 200 7.05 1020 3.824 1022 2.748 1012 10.78 2.558105 kW t 1.602110
3 有一板状燃料元件,芯块用铀铝合金制成(铀占 22%重量) ,厚度为 1mm,铀的富集度 14 2 为 90%,包壳用 0.5mm 厚的铝。中子注量率为 10 /(cm •s)。元件两侧用 40℃水冷却,对流 传热系数 h = 40000W/(m •℃),假设气隙热阻可以忽略,铝的热导率 kAl = 221.5W/(m•℃), 铀铝合金的热导率 kU-Al = 167.9W/(m•℃),裂变截面 σf = 520×10-24 cm2 。试求元件在稳态下的 径向温度分布。 解: 求温度分布,需求体积释热率; 体积释热率 qV Fu E f R Fu E f N5 f ,其中 Fu 97.4% , E f 200MeV , σf = 520×10-24 cm2 ; 元件两侧用 40℃水冷却, 中心温度不会很高, 故求 N5 时铀的密度取附录 A 中 93℃时的 值:
包壳中: T ( x) Tci
aqV ( x a) k AL a 2kU AL
由热阻定义, T0 Tm aqV (

k AL

反应堆热工水力

反应堆热工水力

第一章核反应堆是一个能维持和控制核裂变链式反应,从而实现核能到热能转换的装置。

传热机理—热传导、热对流、热辐射世界上第一座反应堆是1942 年美国芝加哥大学建成的。

核反应堆按照冷却剂类型分为轻水堆、重水堆、气冷堆、钠冷堆按照用途分为实验堆、生产堆、动力堆按中子能量分类:热中子堆、中能中子堆、快中子堆以压水堆为热源的核电站称为压水堆核电站主要有核岛和常规岛核岛的四大部件为蒸汽发生器、稳压器、主泵、堆芯五种重要堆型压水堆沸水堆重水堆高温气冷堆钠冷快中子增值堆水作为冷却剂慢化剂的优缺点:轻水作为冷却剂缺点是沸点低,优点具有优良热传输性能,且价格便宜。

描述反应堆性能的参数反应堆热功率[MWh]:反应堆堆芯内生产的总热量电厂功率输出[MWe]:电厂生产的净电功率电厂净效率[%]:电厂电功率输出/反应堆热功率容量因子[%]:某时间间隔内生产的总能量/[(电厂额定功率)×该时间间隔]功率密度[MW/m3]:单位体积堆芯所产生的热功率线功率密度[kW/m]:单位长度燃料元件内产生的热功率比功率[kW/kg]:反应堆热功率/可裂变物质初始总装量燃料总装量[kg]:堆芯内燃料总质量燃料富集度[%]:易裂变物质总质量/易裂变物质和可转换物质总质量比燃耗[MWd/t]:堆芯工作期间生产的总能量/可裂变物质总质量本章主要内容1.压水堆的主要特征2 沸水堆和重水堆的主要特征3 热工水力学分析的目的与任务(这个可以忽略)第二章(本章可以覆盖部分计算题)热力学第一定律:热力系内物质的能量可以传递,其形式可以转换,在转换和传递过程中总能量保持不变。

热力学第二定律(永动机不可能制成):不可能将热从低温物体传至高温物体而不引起其它变化;不可能从单一热源取热,并使之完全转变为有用功而不产生其它影响;不可逆热力过程中的熵的微增量总是大于零。

最基本的状态参数:压力(压强Pa,atm,bar,at)比体积(m3/kg)温度内能:系统内部一切微观粒子的一切运动形式所具有的能量总和,U焓:热力学中表示物质系统一个状态参数–H,数值上等于系统内能加上压强与体积的乘积。

国外军用核动力装置发展动态分析

国外军用核动力装置发展动态分析

中仍是海上最具活力的核心兵力,表现出超常的实战能力和威慑作用。
当今世界美、俄、英、法和中国等5个国家有核动力潜艇。除中国外,各国在役核动力潜艇143
艘,在役艇用反应堆共计187座。表一示出了国外在役潜艇核动力装置概况。
表一国外在役潜艇核动力装置概况
国别
潜艇类型
级别Βιβλιοθήκη 数量在役核动力装簧概况
弹道导弹核潜艇(SSBN)
法国 弹道导弹核潜艇(SSBN) 凯旋(LeTriomphant)
2 1 PWRKl5150MW双机单轴41500马力泵喷推进
总计
14(4)
-k包含2001年12月4日已入役的“猎豹”号核潜艇。
2.1 美国军用核动力装置的发展动态 由于冷战的结束,全面核战争的可能性已减弱,美海军的战略中心己从重视远洋深海区域作战
强军事力量作为维护自身安全和国家利益的重要途径,一场以发展高技术武器为先导的军事领域的
深刻变革正在世界范围内兴起。为适应新的形势并争取自身优势,许多国家纷纷调整国防政策和军
事战略,普遍压缩军备规模,更加注重质量建军。 在核动力舰船方面,在役的核潜艇大多为80~90年代的新装备,其吨位大、性能好,舰载武
转移到地区纷争和近海作战,80年代美海军开发研制的高参数、大潜深的“海狼”级已不适应新 世纪美国国防战略的需求。为此,美国防部缩减了“海狼”的建造数量,提出建造低成本、集先进技术 r一‘身、承担多种使命任务的“弗吉尼Ⅱ”级攻击型核潜艇,充分体现出适用性和先进性并举的方针。
“海狼”级攻击型核潜艇现已服役2艘,在建仅有1艘,预计2004年服役。“海狼”级艇妖107.6
结合以E S6W、S8G两型核动力装置情况,分析美国军用核动力装置特点和发展方向主要表 现在:I)在采用典型成熟的压水堆结构基础上,研制高可靠性、安全性、生命力的核动力装置。 而且,据报道美正在研制一种新型的能产生500~5000KW功率的采用热离子和热电系统的船用反 应堆;2)延长堆芯换料周期和使用寿命,使堆芯可在潜艇全寿期内持续使用,不必更换;3)提高 反应堆的功率密度,进一步缩小核动力装置的体积和重量;4)采用板状燃料元件,提高反应堆的 比功率、堆芯寿命;5)发展低噪声舰船动力装置,“弗吉尼亚”级核潜艇在自然循环工况下的最高 航速达到了20节,居世界先进水平;6)提高装置设备的抗冲击性能,保证潜艇的生命力和战斗力: 7)提高装置自动化水平。

(完整版)反应堆热工水力

(完整版)反应堆热工水力
▪ 式中,Pth,t是反应堆输出的总热功率,W;mt是进入反应堆的冷却剂的总质 量流量,kg/s;hout和hin是反应堆出口和进口处的冷却剂比焓,J/kg;Tout和 Tin是反应堆出口和进口处的冷却剂温度,K;Cp是反应堆内冷却剂平均定压 比热容,J/(kg·K)。
返回
传热学
体积释热率qv:单位燃料体积所发出的热量;W/m3或W/cm3; 表面热流密度q:流过单位面积的热量; W/m2或W/cm2 线功率密度ql:单位燃料长度所发出的热量; W/m或W/cm;
例: 设燃料芯块半径ru=4.1mm,包壳外半径rc=4.7mm,燃料芯块的热导率
Ku=2W/(m·℃),包壳热导率Kc=5.4 W/(m·℃)[Kc已包括了间隙热阻的影响]
传热学
▪ 热辐射传热: 物体通过电磁波传热的方式称 做辐射,在常温下热辐射起的作用不大,在 高温时则起重要作用。
▪ 例如:在反应堆失水事故时堆芯裸露,燃料 元件温度升得很高时,就要考虑热辐射的作 用。
返回
燃料传递热量到冷却剂的过程
❖ 燃料元件内部(包括燃 料芯块、间隙和包壳) 的导热
❖ 包壳外表面与冷却剂之 间的传热(主要是单相 强迫对流传热),
▪ 设有一段长为ΔZ、直径为dcs的燃料元件棒,其燃料芯块
的直径为du,如果该小段燃料芯块的体积释热率qv,f是均
匀的,试写出在稳态工况下qv,f、线功率ql、元件表面热流
密度q和该段热功率Pth,ΔZ之间的关系
4
du
2
qV
,
f
dcs q ql
Pth,
传热学
例:某压水堆燃料元件热点处的燃料芯块的
热流密度;k是材料的热导率, W/(m·K),它是物性量;是温度梯
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、课程设计的目的与要求
反应堆热工设计的任务就是要设计一个既安全可靠又经济的堆芯输热系统。对于反应堆 热工设计,尤其是对动力堆,最基本的要安全。要求在整个寿期能够长期稳定运行,并能适 应启动、功率调节和停堆等功率变化,要保证在一般事故工况下堆芯不会遭到破坏,甚至在 最严重的工况下,也要保证堆芯的放射性物质不扩散到周围环境中去。
三.设计正文 冷却剂有效流量
交混因子)
焓升工程热管因子 取 1.085(未计入
1)确定燃料元件的实际最大热流密度 qmax
因为压水堆的安全限值首先是燃料元件表面的最小 DNBR,其次才是燃料元件的中心温
度,故实际的 qmax 值由热点处的 qDNB 值除以 DNBR 而得。
堆芯燃料棒数目 N 157 (1717 24 1) 41448
2)确定燃料元件表面平均热流密度
3)堆芯等效直径
式中 T 为正方形组件每边边长(m)。 因为组件无盒壁,组件间水隙 ,故得
将 带入到 中,得
4)热管版高度处水的比焓
,相邻组件的燃料元件棒中心距为
堆芯平均管焓升
堆芯热管最大焓升
假设冷却剂温度变化是线性的,则
借助水和蒸汽计算程序,查得

,p=15.51MPa 时,
17x17 正方形排列,共 157 组燃料组件;每个组件有 24 个控制棒套管和一个中子通量测
量管;燃料棒中心间栅距 P=13mm,组件间水隙 w 1mm 。系统工作压力 p=15.51MPa,
冷却剂平均温度 t R 305C ,堆芯冷却剂平均温升 t 27.4C ;冷却剂旁流系数
6% ;冷却剂设计总流量 14314Kg/s, Fq 2.55 , FNH 1.65 ;DNBR=1.3;
又设燃料元件释热份额占总释热量的 97.4%;堆芯高度取 L=4.2672 m;并近似认为燃 料元件表面最大热流密度、元件表面最高温度和元件中心最高温度都发生在元件半高度
处;已知元件包壳的热导率 kc 0.00547(1.8tcs 32) 13.8[W /(m C)] 。试用
单通道模型求燃料元件中心温度。
比容(
);
借助水和蒸汽计算程序,可得
时,比容
。 应由两部分组成:一部分是组件燃料元件棒之间冷却剂的流通面积;另一部分是组件 间水隙的横截面积,因为流过这个水隙的冷却剂是冷却燃料组件最外面一排燃料元件的,所 以它也属于有效冷却剂的流通面积。因此有
平均热流密度
q
N t Fu d cs LN
3500 106 97.4% 9.5 103 4.2672 41448
0.646MW
/ m2
q max q Fq 0.646 2.55 1.65MW / m 2
q DNB q max DNBR 1.65 1.3 2.14MW / m 2
课程设计报告
( 2013 -- 2014 年度第 二 学期)
名 称: 核反应堆热工分析课程设计
题 目:利用单通道模型进行反应堆稳态热工设计
院 系: 核学院
班 级: 核电 1101 班
学 号: 1111440113
学生: 漆圣培
指导教师: 向斌
设计周数:
一周
成 绩:
日期: 2014 年 06 月 29 日

借助水和蒸汽计算程序,在工作压力下
5)热管半高处冷却剂流速 热管冷却剂流速(或质量流速)的精确计算可按教科书中介绍的方法求解,也可按热管
与平均管压降相等的原则进行迭代求解。作为例子,为简化计算,取热管半高处冷却剂流速 近似等于平均管半高处的流速,则
式中: 为堆芯燃料元件周围的冷却剂总有效流通截面积( ); 为冷却剂平均温度下的
5、掌握压降的计算; 6、掌握单相及沸腾时的传热计算。 7、理解单通道模型的编程方法。 课程设计的考核方式: 1、 报告一份;2、计算程序及说明一份;3、答辩。
二、设计任务(设计题目)
2.2
已件 包 壳 外 径
dcs 9.5mm ,包壳径 dci 8.6mm ,芯块直径 du 8.19mm ;燃料组件采用
在进行反应堆热工设计之前,首先要了解并确定的前提为: (1)根据所设计堆的用途和特殊要求(如尺寸、重量等的限制)选定堆型,确定所用 的核燃料、冷却剂、慢化剂和结构材料等的种类; (2)反应堆的热功率、堆芯功率分布不均匀系数和水铀比允许的变化围; (3)燃料元件的形状、它在堆芯的分布方式以及栅距允许变化的围; (4)二回路对一回路冷却剂热工参数的要求; (5)冷却剂流过堆芯的流程以及堆芯进口处冷却剂流量的分配情况。 在设计反应堆冷却系统时,为了保证反应堆运行安全可靠,针对不同的堆型,预先规定 了热工设计必须遵守的要求,这些要求通常就称为堆的热工设计准则。目前压水动力堆设计 中所规定的稳态热工设计准则,一般有以下几点: (1)燃料元件芯块最高应低于其他相应燃耗下的熔化温度; (2)燃料元件外表面不允许发生沸腾临界; (3)必须保证正常运行工况下燃料元件和堆构件得到充分冷却;在事故工况下能提供 足够的冷却剂以排除堆芯余热; (4)在稳态额定工况和可预计的瞬态运行工况中,不发生流动不稳定性。 在热工设计中,通常是通过平均通道(平均管)可以估算堆芯的总功率,而热通道(热 管)则是堆芯中轴向功率最高的通道,通过它确定堆芯功率的上限,热点是堆芯中温度最高 的点,代表堆芯热量密度最大的点,通过这个点来确定 DNBR。 热工课程设计主要是为了培养学生综合运用反应堆热工分析课程和其它先修课程的理 论和实际知识,树立正确的设计思想,培养分析和解决实际问题的能力。通过本课程设计, 达到以下目的: 1、深入理解压水堆热工设计准则; 2、深入理解单通道模型的基本概念、基本原理。包括了平均通道(平均管)、热通道(热 管)、热点等在反应堆设计中的应用; 3、掌握堆芯焓场的计算并求出体现在反应堆安全性的主要参数:烧毁比 DNBR,最小烧 毁比 MDNBR,燃料元件中心温度及其最高温度,包壳表面温度及其最高温度等; 4、求出体现反应堆先进性的主要参数:堆芯流量功率比,堆芯功率密度,燃料元件平 均热流密度(热通量),最大热流密度,冷却剂平均流速,冷却剂出口温度等;
相关文档
最新文档