第一节 正方体与正四面体
专题02 正四面体模型(解析版)

专题02 正四面体模型(解析版)一、解题技巧归纳总结1.正四面体如图,设正四面体ABCD的的棱长为a,将其放入正方体中,则正方体的棱长为22a,显然正四面体和正方体有相同的外接球.正方体外接球半径为236224R a a=⋅=,即正四面体外接球半径为64R a=.二、典型例题例1.棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如图,则图中三角形(正四面体的截面)的面积是().A.22B.32C.2D.3【解析】如图球的截面图就是正四面体中的∆ABD,已知正四面体棱长为2,所以=3AD=1AC,所以=2CD2故选:C.例2.正四面体的棱长为1,则其外接球的表面积为 . 【解析】解析:依题意,正四面体的外接球半径64R =,其表面积为23=42S R ππ=,故答案为32π. 三、配套练习1.棱长为1的正四面体的外接球的半径为( ) A .64B .34C .1D .33【解析】已知正四面体A BCD -的棱长为1,过B 作BE CD ⊥,交CD 于E ,A 作AF ⊥平面BCD ,交BE 于F ,连结AE ,设球心为O ,则O 在AF 上,连结BO ,22131()22BE AE ==-=,2333BF BE ==,1336EF BE ==, 22336()()263AF =-=, 设球半径为R ,则BO AO R ==, 22236()()33R R ∴=+-, 解得64R =. 故选:A .2.棱长为a的正四面体的外接球和内切球的体积比是()A.9:1B.4:1C.27:1D.8:1【解析】把棱长为a的正四面体镶嵌在棱长为x的正方体内,∴外接球和内切球的球心重合,为正方体的中心O,∴外接球的球半径为:23322x x=,22113(2)634x x h=⨯⨯⨯,33xh=,内切球的半径为:3333 2236x x x xh-=-=,∴外接球和内切球的半径之比为:33:3:1 26x x=,∴正四面体的外球和内切球的体积比是27:1,故选:C.3.如图所示,在正四面体A BCD-中,E是棱AD的中点,P是棱AC上一动点,BP PE+的最小值为7,则该正四面体的外接球的体积是()A6πB.6πC 36D.32π【解析】将侧面ABC∆和ACD∆展成平面图形,如图所示:设正四面体的棱长为a则BP PE+的最小值为22172cos120742aBE a a a=+-︒==,2a∴=.在正四面体A BCD -的边长为2, 外接球的半径6642R a ==外接球的体积3463V R ππ==.故选:A .4.表面积为83( ) A .43πB .12πC .8πD .6π【解析】表面积为8322将正四面体补成一个正方体,则正方体的棱长为2,正方体的对角线长为3 正四面体的外接球的直径为正方体的对角线长,∴外接球的表面积的值为24(3)12ππ=.故选:B .5.一个正四面体的棱长为2,则这个正四面体的外接球的表面积为( ) A .6πB .8πC 6πD .11π【解析】26, 正四面体的外接球的直径为正方体的对角线长,∴外接球的表面积的值为264()62ππ=. 故选:A .6.在棱长为2的正四面体的外接球中,相互垂直的两个平面分别截球面得两个圆.若两圆的圆心距为2,则两圆的公共弦长是( )A .34B .34C .1D .12【解析】正四面体扩展为正方体,它们的外接球是同一个球,正方体的对角线长就是球的直径,正方体的棱长为:1;对角线长为:3, 所以球的半径为:32R =, 设相互垂直两圆的圆心分别为1O 、2O ,球心为O ,公共弦为AB ,其中点为E , 则12OO EO 为矩形,于是对角线12O O OE =, 而222232()22OE OA AE AE =-=-=, 12AE ∴=,则1AB =; 故选:C .7.如图所示,正四面体ABCD 中,E 是棱AD 的中点,P 是棱AC 上一动点,BP PE +的最小值为14,则该正四面体的外接球表面积是( )A .12πB .32πC .8πD .24π【解析】将三角形ABC 与三角形ACD 展成平面,BP PE +的最小值,即为BE 两点之间连线的距离,则14BE =设2AB a =,则120BAD ∠=︒,由余弦定理221414222a a a a+--=,解得2a =, 则正四面体棱长为22,因为正四面体的外接球半径是棱长的64倍, 所以,设外接球半径为R ,则62234R ==, 则表面积244312S R πππ===. 故选:A .8.已知正四面体的棱长为4,则此四面体的外接球的表面积是( ) A .24πB .18πC .12πD .6π【解析】将正四面体补成一个正方体,则正方体的棱长为26 6,∴外接球的表面积的值为24(6)24ππ=.故选:A .9.一个棱长为6的正四面体内部有一个任意旋转的正方体,当正方体的棱长取得最大值时,正方体的外接球的表面积是( ) A .4πB .6πC .12πD .24π【解析】正方体可以在正四面体纸盒内任意转动,∴正方体在正四面体的内切球中,∴正方体棱长最大时,正方体的对角线是内切球的直径,点O 为内切球的圆心,连接PO 并延长交底面ABC 与点D , 点D 是底面三角形ABC 的中心,PD ∴⊥底面ABC ,OD ∴为内切球的半径,连接BO ,则BO OP =,在Rt BDP ∆中,236233BD ==2226PD PB BD -在Rt BDO ∆中,2222222()OD BD OB BD OP BD OP OD =+=+=+-,代入数据得62OD =,令正方体棱长为a ,则236a =,解得2a =, ∴正方体棱长的最大值为2,此时正方体的外接球半径:36222r =⨯=. ∴当正方体的棱长取得最大值时,正方体的外接球的表面积是:22644()62S r πππ==⨯=. 故选:B .10.如图,在棱长为1的正四面体ABCD 中,G 为BCD ∆的重心,M 是线段AG 的中点,则三棱锥M BCD -的外接球的表面积为( )A .πB .32πC 6D 6 【解析】连接BG ,四面体ABCD 中,由G 为BCD ∆的重心, 可得AG ⊥面BCD ,M 是线段AG 的中点,3BG ,226AG AB BG =-M 为线段AG 的中点,6MG ∴=设三棱锥M BCD -外接球的半径为R ,则23(R =226)(R +, 6R ∴=, ∴三棱锥M BCD -外接球的表面积为2342R ππ=. 故选:B .11.正四面体(四个面均为正三角形的四面体)的外接球和内切球上各有一个动点P 、Q ,若线段PQ 长463,则这个四面体的棱长为 4 . 【解析】设这个四面体的棱长为a , 则它的外接球与内切球的球心重合,且半径64R a =外,612r a =内, 依题意得66464123a a +=, 4a ∴=.故答案为:4.12.已知正四面体ABCD 的棱长为1,M 为棱CD 的中点,则二面角M AB D --的余弦值为 63;平面MAB 截此正四面体的外接球所得截面的面积为 .【解析】如图,M 为棱CD 的中点,AM CD ∴⊥,BM CD ⊥,又AMBM M =,CD ∴⊥平面AMB ,则AMB ∠为二面角A CD B --的平面角,由对称性,可知二面角C AB D --的平面角等于AMB ∠. 由正四面体ABCD 的棱长为1,可得3AM BM ==则2231()()1622cos()23AMB -∠==平面AMB 平分二面角C AB D --,∴二面角M AB D --的余弦值16cos()2AMB =∠;设BCD ∆的外心为G ,连接AG ,求得233BG BM ==,22361()3AG =-= 设正四面体ABCD 的外接球的半径为R ,则22263()(R R -+=,解得6R =平面MAB 过正四面体ABCD 的外接球的球心,∴平面MAB 截此正四面体的外接球所得截面的面积为263(8ππ⨯=.故答案为:63;38π. 13.已知某正四面体的内切球体积是1,则该正四面体的外接球的体积是 27 . 【解析】正四面体的外接球和内切球的半径之比为3:1,∴正四面体的外接球和内切球的体积比是27:1,正四面体的内切球体积是1,∴该正四面体的外接球的体积是27.故答案为:27.14.一个正四面体的展开图是边长为22的正三角形,则该四面体的外接球的表面积为 3π . 【解析】如图,一个正四面体的展开图是边长为2∴2,设底面三角形的中心为G ,则22162332AG AD ==-=, 正四面体的高2323PG =-. 再设正四面体外接球的球心为O ,连接OA , 则22263(()R R =+,解得3R =. ∴该四面体的外接球的表面积为234(3ππ⨯=. 故答案为:3π.15.如图所示,正四面体ABCD 中,E 是棱AD 的中点,P 是棱AC 上一动点,BP PE +的最小值为14,则该正四面体的外接球的体积是 3π .【解析】将侧面ABC ∆和ACD ∆展成平面图形,如图所示: 设正四面体的棱长为a ,则BP PE +的最小值为2272cos12014422a a BE a a a =+-︒==, 22a ∴=.在棱锥A BCD -中,设底面三角形BCD 的中心为M ,外接球的球心为O ,F 为BC 的中点,则362DF a ==, 22633DM DF ∴==,22433AM AD DM =-=. 设外接球的半径OA OD r ==,则433OM r =-, 在Rt OMD ∆中,由勾股定理可得:2224326()()33r r =-+, 解得:3r =.∴外接球的体积为34433r ππ=.故答案为:43π.。
高考数学 正方体是多面体的题根知识分析

题根研究正方体为多面体之根一、正方体高考十年十年来,立体几何的考题一般呈“一小一大”的形式.分数约占全卷总分的八分之一至七分之一. 立几题的难度一般在0.55左右,属中档考题,是广大考生“上线竞争”时势在必夺的“成败线”或“生死线”.十年的立几高考,考的都是多面体. 其中: (1)直接考正方体的题目占了三分之一; (2)间接考正方体的题目也占了三分之一.因此有人说,十年高考,立体几何部分,一直在围绕着正方体出题.【考题1】(正方体与其外接球)(1996年)正方体的全面积为a 2,则其外接球的表面积为(B )A.3 2a πB.22a π C.2πa 2D.3πa 2【解析】外接球的表面积,比起内接正方体的全面积来,自然要大一些,但绝不能是它的(C )约6倍或(D )约9倍,否定(C ),(D );也不可能与其近似相等,否定(A ),正确答案只能是(B ).【考题2】(正方体中的线面关系)(1997年)如图,在正方体ABCD- A 1B 1C 1D 1中,E 、F 分别是BB 1、CD 的中点.(1)证明AD ⊥D 1F ;(2)求AE 与D 1F 所成的角; (3)证明面AED ⊥面A 1FD 1;(4)设AA 1=2,求三棱锥F -A 1ED 1的体积【说明】 小问题很多,但都不难. 熟悉正方体各棱、各侧面间位置关系的考生,都能迅速作答. 如解答(1),只要知道棱AD 与后侧面垂直 就够了.【考题3】(正方体的侧面展开图)(2001年)右图是正方体的平面展开图.在这个正方体中,①BM 与ED 平行;②与BE 是异面直线;③与BM 成60°角;④DM 与 BN 垂直.以上四个命题中,正确命题的序号是(A)①②③(B)②④(C)③④(D)②③④【解析】考查空间想象能力. 如果能从展开图(右上)想到立体图(下),则能立即判定命题①、②为假,而命题③、④为真,答案是C.【考题4】(正方体中的垂直面)(2002年)如图,正方形ABCD、ABEF的边长都是1,而且平面ABCD、ABEF互相垂直. 点M在AC上移动,点N在BF上移动,若CM=BN=a()(1)求MN的长;(2)当a为何值时,MN的长最小;(3)当MN的长最小时,求面MNA与面MNB所成二面角α的大小.【解析】【考题5】(正方体中主要线段的关系)(2002年)在下列四个正方体中,能得出AB⊥CD的是【解析】射影法:作AB在CD所在平面上的射影,由三垂线定理知其正确答案为A.平移法:可迅速排除(B),(C),(D),故选(A).【考题6】(正方体与正八面体)(2003年) 棱长为a 的正方体中,连结相邻面的中心,以这些线段为棱的八面体的体积为A.33aB.43aC.63aD.123a【解析】将正八面体一分为二,得2个正四棱锥,正四棱锥的底面积为正方形面积的21,再乘31得61. 答案选C.【考题7】(正方体中的异面直线)(2004年)如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,O 是底面ABCD 的中心,E 、F 分别是CC 1、AD 的中点,那么异面直线OE 和FD 1所成的角的余弦值等于A.510 B.515 C.54 D.32【解析】【考题8】(正方体中的线线角)(2005年)如图,长方体ABCD —A 1B 1C 1D 1中,AA 1=AB =2,AD =1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角是A.arccos 515B.4 πC.arccos 510D.2π【考题9】(正方体中的射影问题)(2006年)如图,E 、F 分别为正方体的面ADD 1A 1、面BCC 1B 1的中心,则四边形BFD 1E 在该正方体的面上的射影可能是_______.(要求:把可能的图的序号都填上)【考题10】(正方体中的三角形)(2006年)在正方体上任选3个顶点连三角形,则所得的三角形是直角非等腰三角青工的概率为 A.71 B.72 C.73 D.74【解析】在正方体上任选3个顶点连成三角形可得38C 个三角形,要得直角非等腰三角形,则每个顶点上可得三个(即正方体的一边与过此点的一条面对角线),共有24个,得38C 24,所以选C. 二、全国热炒正方体2006年的各地数学考卷中,直涉正方体的考题有13个,隐涉正方体的考题还有更多.其中,某某卷“一大一小”的立几考题,都是考的正方体.某某卷登峰造极,“一小一大”的两个立几考题,都是正方体中的难题. 其中,第18题的第2问还是个开放题目.【考题1】2006年某某卷第13题——正方体的一“角”在三棱锥O —ABC 中,三条棱OA 、OB 、OC 两两互相垂直,且OA =OB =OC ,M 是AB 边的中点,则OM 与平面ABC 所成角的大小是(用反三角函数表示).【考题2】2006年某某卷第19题——两正方体的“并” 如图,在长方体ABCD —A 1B 1C 1D 1中,E 、P 分别是BC 、A 1D 1的中点,M 、N 分别是AE 、CD 1的中点,AD =AA 1=a ,AB =2a .(1)求证:MN ∥面ADD 1A 1; (2)求二面角P —AE —D 的大小; (3)求三棱锥P —DEN 的体积.【考题3】(2006年某某卷第18题)如图,在棱长为1的正方体ABCD —A 1B 1C 1D 1中,P 是侧棱CC 1上的一点,CP =m .(Ⅰ)试确定m ,使得直线AP 与平面BDD 1B 1所成角的正切值为3;(Ⅱ)在线段A 1C 1上是否存在一个定点Q ,使得对任意的m ,D 1Q 在平面APD 1上的射影垂直于AP .并证明你的结论.【分析】熟悉正方体对角面和对角线的考生,对第(Ⅰ)问,可心算出结果为m =1/3;对第(Ⅱ)问,可猜出这个Q 点在O 1点.可是由于对正方体熟悉不多,因此第(Ⅰ)小题成了大题,第(Ⅱ)小题成了大难题.【考题4】(2006年某某卷第16题)多面体上,位于同一条棱两端的顶点称为相邻的,如图,正方体的一个顶点A 在平面,其余顶点在的同侧,正方体上与顶点A 相邻的三个顶点到的距离分别为1,2和4,P 是正方体的其余四个顶点中的一个,则P 到平面的距离可能是:①3; ②4; ③5; ④6; ⑤7以上结论正确的为______________.(写出所有正确结论的编号)三、正四面体与正方体从“正方体高考十年”和“全国热炒正方体”中,我们看到正方体在立体几何中的特殊地位. 在实践中,正方体是最常见的多面体;在理论上,所有的多面体都可看作是由正方体演变而来.我们认定了正方体是多面体的“根基”. 我们在思考: (1)正方体如何演变出正四面体? (2)正方体如何演变出正八面体? (3)正方体如何演变出正三棱锥? (4)正方体如何演变出斜三棱锥?【考题1】(正四面体化作正方体解)四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为( )A.3πB.4πC.3π3D.6π【说明】本题如果就正四面体解正四面体,则问题就不是一个小题目了,而是有相当计算量的大题. 此时的解法也就沦为拙解.【拙解】正四面体棱长为⇒2底面ABC 是边长为2的正三角形△ABC 的高线BD =23·2=26(斜高VD =26)⇒△ABC 的边心距HD =31·26=⇒66正四面体V —ABC 的高 .332)66()26(2222=-=-=HD VD VH 正四面体外接球的半径为高的43,即R =43·.23332= 故其外接球的表面积为3π. 答案是A.【联想】1、2、3的关系正四面体的棱长为2,这个正四面体岂不是由棱长为1的 正方体的6条“面对角线”围成?为此,在棱长为1的正方体B —D 1中,(1)过同一顶点B 作3条面对角线BA 1、BC 1、BD ; (2)将顶点A 1,C 1,D 依次首尾连结.则三棱锥B —A 1C 1D 是棱长为2的正四面体.于是正四面体问题可化归为对应的正方体解决.【妙解】 从正方体中变出正四面体以2长为面对角线,可得边长为1的正方体ABCD —A 1B 1C 1D 1,这个正方体的体对角线长为3,则其外接球的半径为23,则其外接球的表面积为S =4πR 2=4π (23)2=3π 以2为棱长的正四方体B —A 1C 1D 以1为棱长的正方体有共同的外接球,故其外接球的表面积也为S =3π.【寻根】 正方体割出三棱锥在正方体中割出一个内接正四面体后,还“余下”4个正三棱锥. 每个正三棱锥的体积均为1/6,故内接正四面体的体积为1/3 . 这5个四面体都与正方体“内接”而“共球”.事实上,正方体的内接四面体(即三棱锥)共有12C 48-=58个.至此可以想通,正方体为何成为多面体的题根.四、正方体成为十年大难题按理说,立体几何考题属中档考题,难度值追求在0.4到0.7之间. 所以,十年来立几考题——哪怕是解答题也没有出现在压轴题中.从题序上看,立几大题在6个大题的中间部分,立几小题也安排在小题的中间部分.然而,不知是因为是考生疏忽,还是命题人粗心,竟然在立几考题中弄出了大难题,其难度超过了压轴题的难度,从而成为近十年高考难题的高难之最!【命题】 将正方体一分为二2003年全国卷第18题,某某卷第18题,某某卷第19题等,是当年数学卷的大难题. 其难度,超过了当年的压轴题.在命题人看来,其载体是将正方体沿着对角面一分为二,得到了一个再简单不过的直三棱柱.图中的点E 正是正方体的中心.【考题】如图,在直三棱柱ABC —A 1B 1C 1中,底面是等腰直角三角形,∠ACB =90°.侧棱AA 1=2,D 、E 分别是CC 1与A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的重心G .(Ⅰ)求A 1B 与平面ABD 所成角的大小(结果用反三角函数值表示); (Ⅱ)求点A 1到平面AED 的距离.【解析】(Ⅰ)连结BG ,则BG 是BE 在面ABD 的射影,即 ∠EBG 是A 1B 与平面ABD 所成的角.设F 为AB 中点,连结EF 、FC ,∵D 、E 分别是CC 1、A 1B 的中点,又DC ⊥平面ABC , ∴CDEF 为矩形.连结DF ,G 是△ADB 的重心,∴G ∈DF .在直角三角形EFD 中,EF 2=FG ·FD =31FD 2,∵EF =1,∴FD =3. 于是ED =2,EG =36321=⨯. ∵FC =ED =2,∴AB =22,A 1B =23,EB =3. ∴sin ∠EBG =EB EG =36·31=32.∴A 1B 与平面ABD 所成的角是arcsin32. (Ⅱ)连结A 1D ,有E AA D ADE A V V 11--=.∵ED ⊥AB ,ED ⊥EF ,又EF ∩AB =F ,∴ED ⊥平面A 1AB , 设A 1到平面AED 的距离为h ,则S △AED ·h =AE A S 1∆·ED . 又AE A S 1∆=A A S AB A 114121=∆·AB =2, S △AED =21AE ·ED =26.∴h =3622622=⨯. 即A 1到平面AED 的距离为362. 本题难在哪里?从正方体内切出的直三棱柱的画法不标准! 难点突破:斜二测改图法,把问题转到正方体中.EFCD 为矩形EF =1(已知)FD =3FG (重心定理)FD =3(射影定理)EG =36(Ⅰ)ED =2(勾股定理)FC =2(正方体!) FB =2EB =3(Ⅱ)sin ∠EBG =32=EB EG .难题(0318)的题图探究正方体立体图常见的画法有两种: (1)斜二测法(图(1))此法的缺点:A1、B、C 三点“共线”导致“三线”重合(2)正等测法(图(2))此法的缺点:A、C、C1、A1“共线”导致“五线”重合难题的图近乎第二种画法(图(3)):将正方体的对角面置于正前面.五、解正方体正方体既然这么重要,我们就不能把这个“简单的正方体”看得太简单.像数学中其他板块的基础内容一样,越简单的东西,其基础性就越深刻,其内涵和外延的东西就越多.我们既然认定了正方体是多面体的根基,那我们就得趁着正方体很“简单”的时候,把它的上上下下、左左右右、里里外外的关系,都弄个清楚明白!关于正方体你已经知道了多少?正方体,()个面,线面距转()面距,()个顶点()棱。
正四面体的性质及应用

正四面体的性质及应用正四面体是立体几何中的基本几何体,它蕴涵着极为丰富的线面的位置、数量关系.在近年来各类考试中,正四面体倍受命题者青睐,命题者常以正四面体中的线面问题为载体,借以考察学生的数学思维能力和思维品质.因此,一线师生在教学过程中,应对这个几何体引起足够的重视.笔者在长期的教学中对正四面体进行了深入研究、潜心挖掘,得出了一些优美、简洁的结论.下面给出正四面体的相关结论,并利用这些结论解决问题,以期能对同学们学习立体几何有所启示.一、理顺正四面体性质——固本清源不妨设正四面体ABCD的棱长为a,则存在着以下定理:定理1.正四面体的3对异面棱均互相垂直,任意一对异面棱之间的距离均为;定理2.正四面体的高为;定理3.正四面体的切球半径为,外接球半径为,且有;略证:如图1,易知正四面体的外接球心与切球心重合为点O,并且位于正四面体的高AH上,连结BO、CO、DO,易知,且,从而AO、BO、CO、DO两两所确定的平面将正四面体分割成四个形状相同的正三棱锥:,,且每一个小正三棱锥的高都是切球的半径,于是有,即,亦即有,所以,.故定理4.正四面体的全面积为,体积为;定理5.正四面体底面任一点O到三个侧面的距离的之和;正四面体任意一点到四个侧面的距离之和(仿定理3利用体积分割法易证).定理6.正四面体的侧棱与其底面所成的线面角大小为;定理7.正四面体相邻侧面所成的二面角的大小为;略证:设相邻两个侧面所成的角为,由于四个侧面的面积均相等,所以由射影面积公式知.定理8.设正四面体的侧棱与底面所成的角为,相邻两个侧面所成的二面角记为,则有略证:如图1所示,易知,,由H为的中心,易知,从而.定理9.正四面体的外接球的球心与切球的球心O重合且为正四面体的中心;中心与各个顶点的四条连线中两两夹角相等,其大小为,此角即为化学中甲烷分子结构式中的键位角.略证:如图1,在三角形AOB中,,,由余弦定理可求得,于是.同理可得.定理10.正四面体接于一正方体,且它们共同接于同一个球,球的直径等于正方体的对角线.二、运用正四面体性质——化繁为易1.巧算空间距离例1.一个球与正四面体的6条棱都相切,若正四面体的棱长为a,则求此球的体积.分析一:由定理10知,将正四面体嵌于正方体的部,然后再利用正四面体的棱与球相切,则该半径与正方体的切半径相等进行求解.解法一.如图2所示,将正四面体补成正方体,易知与正四面体的各棱相切的球即为正方体的切球.∵正四面体的棱长为a,∴正方体的棱长为.∴正方体的切球半径.∴.分析二:根据正四面体的对称性,结合定理1可知,该球的球心应位于正四面体的中心,其直径即为正四面体相对棱之间的距离.解法二.∵正四面体的棱长为a,∴由定理1可知,相对棱间的距离为.即该球的半径为.∴.例2.在棱长为2的正四面体木块ABCD的棱AB上有一点P(),过P点要锯出与棱AB垂直的截面,当锯到某个位置时因故停止,这时量得在面ABD上锯痕,在面ABC上的锯缝,求锯缝MN的值.解:如图3,取AB的中点E,连结CE,DE,则为正四面体相邻两面的二面角的平面角,由条件知∠MPN也是正四体相邻两面的二面角的平面角,即∠NPM=∠CED,由定理7可知,于是,在中,由余弦定理得,∴2.妙求空间角例3.设P为空间一点,PA、PB、PC、PD是四条射线,若PA、PB、PC、PD两两所成的角相等,则这些角的余弦值为.解:如图4,构造正四面体ABCD,设P为四面体的中心,则PA、PB、PC、PD两两所成的角相等,设,由正四面体的性质,可知余弦值为例4.如图5,在正四面体ABCD中,E、F分别为棱AD、BC的中点,连结AF、CE.⑴求异面直线直线AF和CE所成的角;⑵求CE与面BCD所成的角.解:⑴连结FD,在平面AFD,过点E作EG∥AF交DF于点G.则是异面直线AF与CE所成的角(或其补角).设正四面体ABCD的棱长为a,可得,,.由余弦定理可求得.故异面直线AF与CE所成的角为.⑵由已知易知平面AFD⊥平面BCD,在平面AFD,过点E作EH⊥FD于点H,连结CH,则∠ECH为CE与平面BCD所成的角.∵EH为正四面体高的一半,由正四面体性质的定理2知.∴.∴CE与底面BCD所成的角为.例5.如图6,正四面体ABCD的四个顶点在同一个球面上,CC1和DD1是该球的直径,求面ABC与面AC1D1所成角的正弦值.解:由正四面体性质定理10知正四面体接于一球,该正方体也接于此球,且正方体的对角线为此球的直径,如图所示,即CC1、DD1为该球的直径.连结C1D1,交AB于点M,连结MC.∵MC⊥AB,MD1⊥AB,∴∠CMD1为平面ABC与平面AC1D1所成的角.设正方体棱长为a,在中,.∴平面ABC与平面ACD所成的角的正弦值为.归纳反思:正四面体是立体几何中一个重要的数学问题载体,在平时的学习过程中若能有意识地研究它、利用它,就能较好地培养我们数学思维的“方向感”和思路的“归属感”,有助于促进自己数学思维空间的拓展、数学品质的提升.1.在正四面体P ABC-中,D、E、F分别是AB、BC、CA的中点,下面四个结论中不成立的是②.①//BC面PDF;②面PDF⊥面ABC;③DF⊥面PAE;④面PAE⊥面ABC.2.正四面体ABCD中,AB与平面ACD所成角的余弦值为3.3.如图,正四面体ABCD的棱长为2,点E,F分别为棱AD,BC的中点,则EF BA的值为()A.4B.4-C.2-D.24.以下说法 ①三个数20.3a =,2log 0.3b =,0.32c =之间的大小关系是b a c <<;②已知:指数函数()(0,1)x f x a a a =>≠过点(2,4),则log 41a y =;③已知正四面体的边长为2cm ,则其外接球的体积为33cm π; ④已知函数()y f x =的值域是[1,3],则()(1)F x f x =-的值域是[0,2];⑤已知直线//m 平面α,直线n 在α,则m 与n 平行.其中正确的序号是①③.5.在正四面体A BCD -中,M 为AB 的中点,则直线CM 与AD 所成角的余弦值为()A .12B .2C .3D .23选:C .6.在正四面体ABCD 中,E 、F 分别为棱AD 、BC 的中点,连接AF 、CE ,则异面直线AF 和CE 所成角的正弦值为()A .13B .23C .24D .5 选:D .【点评】本题考查空间点、线、面的位置关系及学生的空间想象能力、求异面直线角的能力.在立体几何中找平行线是解决问题的一个重要技巧,这个技巧就是通过三角形的中位线找平行线,如果试题的已知中涉及到多个中点,则找中点是出现平行线的关键技巧.本题易错点在于要看清是求异面直线AF 和CE 所成角的正弦值,而不是余弦值,不要错选答7.如图所示,在正四面体A BCD -中,E 是棱AD 的中点,P 是棱AC 上一动点,BP PE +的最小值为7,则该正四面体的外接球的体积是()A 6πB .6πC 36D .32π 选:A .8.棱长为1的正四面体ABCD 中,E 为棱AB 上一点(不含A ,B 两点),点E 到平面ACD 和平面BCD 的距离分别为a ,b ,则11a b +的最小值为6 【考点】7F :基本不等式及其应用【专题】31:数形结合;35:转化思想;5F :空间位置关系与距离;5T :不等式【分析】设点O 是正三角形ACD 的中心,连接OB ,作EF AO ⊥,垂足为点F .AO 交CD 于点M ,则点M 为CD 的中点.设(01)AE AB λλ=<<.23AO AM =,3AM ,22BO AB AO =-.由//EF BO ,可得6EF BO a λ===.同理可得:6)b EN λ=-.代入利用基本不等式的性质即可得出. 【解答】解:如图所示,设点O 是正三角形ACD 的中心,连接OB ,作EF AO ⊥,垂足为点F .AO 交CD 于点M ,则点M 为CD 的中点.设(01)AE AB λλ=<<.223333AO AM ===, 226BO AB AO ∴=- //EF BO ,6EF BO a λ∴===. 同理可得:6)b EN λ==-.∴21111161()11(1)()2a b λλλλλλ+=+=⨯=+---当且仅当12λ=时取等号.故答案为:9.已知M 是正四面体ABCD 棱AB 的中点,N 是棱CD 上异于端点C ,D 的任一点,则下列结论中,正确的个数有()(1)MN AB ⊥;(2)若N 为中点,则MN 与AD 所成角为45︒;(3)平面CDM ⊥平面ABN ;(4)存在点N ,使得过MN 的平面与AC 垂直.A .1个B .2个C .3个D .4个【考点】LM :异面直线及其所成的角;LO :空间中直线与直线之间的位置关系;LW :直线与平面垂直;LY :平面与平面垂直【专题】14:证明题【分析】连接CM 、DM ,可证明出AB ⊥平面CDM ,从而MN AB ⊥,得(1)正确;取AC 中点E ,连接EM 、EN ,利用三角形中位线定理证明出EN 、NM 所成的直角或锐角,就是异面直线MN 、AD 所成的角,再通过余弦定理,可以求出MN 与AD 所成角为45︒,故(2)正确;根据(1)的正确结论:MN AB ⊥,结合平面与平面垂直的判定定理,得到(3)正确;对于(4),若存在点N ,使得过MN 的平面与AC 垂直,说明存在N 的一个位置,使MN AC ⊥.因此证明出“不论N 在线段CD 上的何处,都不可能有MN AC ⊥”,从而说明不存在点N ,使得过MN 的平面与AC 垂直.【解答】解:(1)连接CM 、DM正ABC ∆中,M 为AB 的中点CM AB ∴⊥同理DM AB ⊥,结合MC M D M =AB ∴⊥平面CDM ,而MN ⊆平面CDMMN AB ∴⊥,故(1)是正确的;(2)取AC 中点E ,连接EM 、ENADC ∆中,E 、N 分别是AC 、CD 的中点//EN AD ∴,12EN AD =. EN ∴、NM 所成的直角或锐角,就是异面直线MN 、AD 所成的角设正四面体棱长为2a ,在MCD ∆中,2CM DM a === 则Rt MNC ∆中122CN a a =⨯=∴MN = 在MNE ∆中,122ME EN a a ==⨯=∴222cos 2EN MN EM ENM EN MN +-∠==⨯⨯ 45ENM ∴∠=︒,即异面直线MN 、AD 所成的角是45︒,故(2)正确;(3)由(1)的证明知:AB ⊥平面CDMAB ⊂平面ABN∴平面ABN ⊥平面CDM ,故(3)正确;(4)若有MN AC ⊥,根据(1)的结论MN AB ⊥,因为AB 、AC 相交于A 点,所以MN ⊥平面ABCMCD ∆中,CM MD ==,2CD a =2221cos 023CM MD CD CMD CM MD +-∴∠==> 可得CMD ∠是锐角,说明点N 在线段CD 上从C 到D 运动过程中, CMN ∠的最大值是锐角,不可能是直角,因为CM ⊂平面ABC ,CM 与NM 不能垂直,以上结论与MN ⊥平面ABC 矛盾,故不论N 在线段CD 上的何处,都不可能有MN AC ⊥.因此不存在点N ,使得过MN 的平面与AC 垂直.综上所述,正确的命题为(1)(2)(3)故选:C .10.棱长为a 的正四面体中,给出下列命题:①正四面体的体积为324a V =;②正四面体的表面积为2S ;③切球与外接球的表面积的比为1:9;④正四面体的任意一点到四个面的距离之和均为定值.上述命题中真命题的序号为②③④.【考点】LE :棱柱、棱锥、棱台的侧面积和表面积;LF :棱柱、棱锥、棱台的体积【专题】31:数形结合;35:转化思想;49:综合法;5F :空间位置关系与距离【分析】①正四面体的高h ==,体积为213V =,计算即可判断出正误;②正四面体的表面积为24S a =,即可判断出正误;③分别设切球与外接球的半径为r ,R ,则23143r ⨯,解得r ;R +=,解得R ,即可判断出正误; ④正四面体的任意一点到四个面的距离之和为H,则221133H ⨯=【解答】解:①正四面体的高h =,体积为3231324a V ==≠,因此不正确;②正四面体的表面积为224S a =,正确;③分别设切球与外接球的半径为r ,R ,则2314312r ⨯=,解得r =;R +=,解得R . :1:3r R ∴=,因此表面积的比为1:9,正确;④正四面体的任意一点到四个面的距离之和为H ,则221133H ⨯=化简可得:H =,即为正四面体的高,均为定值,正确.上述命题中真命题的序号为②③④.。
正方体与正面体

近年来,无论是高考,还是全国竞赛,涉及空间结构的试题日趋增多,成为目前的热点之一。
本文将从最简单的五种空间正多面体开始,与大家一同探讨中学化学竞赛中与空间结构有关的内容。
第一节 正方体与正四面体在小学里,我们就已经系统地学习了正方体,正方体(立方体或正六面体)有六个完全相同的正方形面,八个顶点和十二条棱,每八个完全相同的正方体可构成一个大正方体。
正四面体是我们在高中立体几何中学习的,它有四个完全相同的正三角形面,四个顶点和六条棱。
那么正方体和正四面体间是否有内在的联系呢?请先让我们看下面一个例题吧:【例题1】常见有机分子甲烷的结构是正四面体型的,请计算分子中碳氢键的键角(用反三角函数表示)【分析】在化学中不少分子是正四面体型的,如CH 4、CCl 4、NH 4+、 SO 42-……它们的键角都是109º28’,那么这个值是否能计算出来呢?如果从数学的角度来看,这是一个并不太难的立体几何题,首先我们把它抽象成一个立体几何图形(如图1-1所示),取CD 中点E ,截取面ABE(如图1-2所示),过A 、B 做AF ⊥BE ,BG ⊥AE ,AF 交BG 于O ,那么 ∠AOB 就是所求的键角。
我们只要找出AO (=BO )与AB 的关系,再用余弦定理,就能圆满地解决例题1。
当然找出AO 和AB的关系还是有一定难度的。
先把该题放下,来看一题初中化学竞赛题:【例题2】CH 4分子在空间呈四面体形状,1个C 原子与4个H 原子各共用一对电子对形成4条共价键,如图1-3所示为一个正方体,已画出1个C 原子(在正方体中心)、1个H 原子(在正方体顶点)和1条共价键(实线表示),请画出另3个H 原子的合适位置和3条共价键,任意两条共价键夹角的余弦值为①【分析】由于碳原子在正方体中心,一个氢原子在顶点,因为碳氢键是等长的,那么另三个氢原子也应在正方体的顶点上,正方体余下的七个顶点可分成三类,三个为棱的对侧,三个为面对角线的对侧,一个为体对角线的对侧。
正四面体的体积计算公式

正四面体的体积计算公式正四面体是一种很有趣的几何体,在数学学习中经常会碰到。
那咱就来聊聊正四面体的体积计算公式。
先给大家说说我曾经碰到的一件事儿。
有一次在课堂上,我给学生们讲正四面体的知识,其中一个平时很调皮的学生居然听得特别认真。
我当时就觉得很惊喜,讲完之后让大家做练习,这小家伙居然第一个做完,而且还全对!这让我深刻地体会到,只要能激发起学生的兴趣,再难的知识他们也能掌握得很好。
咱回到正四面体的体积计算公式这个正题哈。
正四面体的体积计算公式是:V = √2/12 × a³ (其中 V 表示体积,a 表示正四面体的棱长)。
要理解这个公式,咱们先来了解一下正四面体的特点。
正四面体的四个面都是全等的等边三角形,每个顶点到对面三角形的距离都相等。
想象一下,就像是四个一模一样的小三角形拼成了一个尖尖的立体图形。
那这个公式是怎么来的呢?这就得用到一些高中阶段的数学知识啦。
我们可以把正四面体放进一个正方体里面,通过正方体的体积和正四面体与正方体之间的关系来推导出来。
假设正方体的棱长是 a ,那么正方体的体积就是 a³。
而正四面体的体积正好是正方体体积的一部分。
通过一系列的计算和推导,最终就得出了正四面体的体积是√2/12 × a³ 。
可能有的同学会觉得,哎呀,推导过程太复杂啦,不好懂。
没关系,咱们多做几道题,多画几个图,慢慢地就会有感觉啦。
比如说,给你一个正四面体,棱长是6 厘米,那它的体积是多少呢?咱们就把棱长 6 厘米代入公式,V = √2/12 × 6³ ,经过计算就能得出答案啦。
在实际生活中,正四面体的体积计算也有不少用处呢。
比如建筑师在设计一些独特的建筑结构时,如果用到了正四面体的元素,就得通过这个公式来计算相关的体积,从而确定材料的用量和空间的大小。
学习正四面体的体积计算公式,就像是打开了一扇通往数学奇妙世界的门。
虽然可能会遇到一些小困难,但只要咱们不放弃,多思考,多练习,一定能掌握得妥妥的!就像那个调皮的学生一样,只要用心,啥都能学好。
第7章---第1节

已知△ABC的直观图△A′B′C′是边长为a的正三角形,求 △ABC的面积. 【思路点拨】 首先建立适当的平面直角坐标系还原得出△ABC, 然后求出△ABC相应的边和角,进而求得面积.
【尝试解答】 如图是△ABC 的平面直观图△A′B′C′,作
C′D′∥y′轴交 x′轴于 D′,则 C′D′对应△ABC 的高 CD, ∴CD=2C′D′=2· 2· C′O′ 3 =2 2· a= 6a. 2 而 AB=A′B′=a, 1 6 ∴S△ABC= · 6a= a2. a· 2 2
视图与俯视图的宽相等,即“正侧一样高,正俯一样长,俯侧一样宽
”.
高 考 体 验 · 明 考 情
课 时 知 能 训 练
新课标 ·数学(文)(广东专用)
网 络 构 建 · 览 全 局 策 略 指 导 · 备 高 考 自 主 落 实 · 固 基 础 典 例 探 究 · 提 知 能
1.(教材改编题)关于空间几何体的结构特征,下列说法不正确的是
网 络 构 建 · 览 全 局 策 略 指 导 · 备 高 考 自 主 落 实 · 固 基 础 菜 单
第一节
空间几何体的结构及其三视图和直观图
典 例 探 究 · 提 知 能
高 考 体 验 · 明 考 情
课 时 知 能 训 练
新课标 ·数学(文)(广东专用)
网 络 构 建 · 览 全 局 策 略 指 导 · 备 高 考 自 主 落 实 · 固 基 础 典 例 探 究 · 提 知 能
棱台的侧面是等腰梯形;④棱柱的侧面是平行四边形. A.①④ C.①③ 【解析】 B.②③ D.②④ 用平行于底面的平面去截棱锥,底面和截面之间的部分
典 例 探 究 · 提 知 能
高 考 体 验 · 明 考 情
正四面体的性质最终版

正四面体的性质:设正四面体的棱长为a ,则这个正四面体的(1)全面积 S 全2a ; (2)体积3; (3)对棱中点连线段的长d=2a ;(此线段为对棱的距离,若一个球与正四面体的6条棱都相切,则此线段就是该球的直径。
) (4)相邻两面所成的二面角 α=1arccos 3(5)对棱互相垂直。
(6)侧棱与底面所成的角为β=1arccos3(7)外接球半径a ; (8)内切球半径r=12a . (9)正四面体内任意一点到四个面的距离之和为定值(等于正四面体的高). 直角四面体的性质有一个三面角的各个面角都是直角的四面体叫做直角四面体.如图,在直角四面体AOCB 中,∠AOB=∠BOC=∠COA=90°,OA=a ,OB=b ,OC=c .则 ①不含直角的底面ABC 是锐角三角形;②直角顶点O 在底面上的射影H 是△ABC 的垂心; ③体积 V= 16a b c ; ④底面面积S △ABC⑤S 2△BOC =S △BHC ·S △ABC ; ⑥S 2△BOC +S 2△AOB+S 2△AOC =S2△ABC⑦22221111OH a b c =++;⑧外接球半径⑨内切球半径 r=AOBBOC AOC ABCS S S S a b c∆∆∆∆++-++四面体的性质探究如果从面的数目上来说,四面体是最简单的多面体。
一.四面体性质ABCDO HA BDCOS 1S 2S 3 S 41.四面体的射影定理:如果设四面体ABCD 的顶点A 在平面BCD 上的射影为O ,△ABC 的面积为S 1,△ADC的面积为S 2,△BCD 的面积为S 3,△ABD 的面积为S 4,二面角A-BC-D 为θ1-3,二面角A-DC-B 为θ2-3,二面角A-BD-C 为θ3-4,二面角C-AB-D 为θ1-4,二面角C-AD-B 为θ2-4,二面角B-AC-D 为θ1-2,则S 1 = S 2cosθ1-2 + S 3cosθ1-3 + S 4cosθ1-4 S 2 = S 1cosθ1-2 + S 3cosθ2-3 + S 4cosθ2-4 S 3 = S 1cosθ1-3 + S 2cosθ2-3 + S 4cosθ3-4 S 4 = S 1cosθ1-4 + S 2cosθ2-4 + S 3cosθ3-42.性质2(类似余弦定理)S 12= S 22+ S 32+S 42- 2S 2S 3 cosθ2-3 - 2S 2S 4 cosθ2-4 - 2S 3S 4 cosθ3-4 S 22= S 12+ S 32+S 42- 2S 1S 3 cosθ1-3 - 2S 1S 4 cosθ1-4 - 2S 3S 4 cosθ3-4 S 32= S 12+ S 22+S 42 - 2S 1S 2 cosθ1-2 - 2S 1S 4 cosθ1-4 - 2S 2S 4 cosθ2-4 S 42= S 12+ S 22+S 32- 2S 1S 2 cosθ1-2 - 2S 1S 3 cosθ1-3 - 2S 2S 3 cosθ2-3特别地,当cosθ1-2 = cosθ1-4 = cosθ2-4 = 0,即二面角C-AB-D 、 C-AD-B 、B-AC-D 均为直二面角(也就是AB 、AC 、BC 两两垂直)时,有S 32= S 12+ S 22+S 42, 证明:S 32= S 3S 1cosθ1-3 + S 3S 2cosθ2-3 + S 3S 4cosθ3-4= S 1 S 3cosθ1-3 + S 2 S 3cosθ2-3 + S 3 S 4cosθ3-4= S 1(S 1 - S 2cosθ1-2 + S 4cosθ1-4)+S 2(S 2 - S 1cosθ1-2 + S 4co sθ2-4)+ S 4(S 4 - S 1cosθ1-4 + S 2cosθ2-4)= S 12+ S 22+S 42- 2S 1S 2 cosθ1-2 - 2S 1S 4 cosθ1-4 - 2S 2S 4 cosθ2-4二.正四面体的性质设正四面体的棱长为a ,则这个正四面体的 (1)全面积S 全2a ;(2)体积V=312a ;(3)对棱中点连线段的长 a ;(此线段为对棱的距离,若一个球与正四面体的6条棱都相切,则此线段就是该球的直径。
正四面体有趣性质的简单证明

这个问题单凭想象求解难度不小,但若能借助正方体这个模型,便能感受到小小模型的巨大威力。
将正四面体放入正方体中,使其四个顶点与正方体的四个顶点重合。
正四面体的棱长为1,则相对的两条棱互相垂直,且距离为√2/2。
由于AB‖平面α,所以当CD‖平面α或CD ⊂α (即将平面AEBF或平面CHDG作为平面α )时,四面体在α内的射影为正方形,其面积为1/2(最大);当CD ⊥α (即将平面ABHG 作为平面α )时,四面体在α内的射影为等腰三角形,其面积为√2/4(最小)。
总之,利用正(方)体的完美性质,可以变难为易,使难题轻松获解;可以变陌生为熟悉,使问题迎刃而解;可以优化解题途径,使解题过程简捷明快,生动有趣。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
近年来,无论是高考,还是全国竞赛,涉及空间结构的试题日趋增多,成为目前的热点之一。
本文将从最简单的五种空间正多面体开始,与大家一同探讨中学化学竞赛中与空间结构有关的内容。
第一节 正方体与正四面体
在小学里,我们就已经系统地学习了正方体,正方体(立方体或正六面体)有六个完全相同的正方形面,八个顶点和十二条棱,每八个完全相同的正方体可构成一个大正方体。
正四面体是我们在高中立体几何中学习的,它有四个完全相同的正三角形面,四个顶点和六条棱。
那么正方体和正四面体间是否有内在的联系呢?请先让我们看下面一个例题吧:
【例题1】常见有机分子甲烷的结构是正四面体型的,请计算分子中碳氢键的键角(用反三角函数表示)
【分析】在化学中不少分子是正四面体型的,如CH 4、CCl 4、NH 4+、 SO 42-……
它们的键角都是109º28’,那么这个值是否能计算出来呢?
如果从数学的角度来看,这是一个并不太难的立体几何题,首先我们把它抽象成一个立体几何图形(如图1-1所示),取CD 中点E ,截取面ABE
(如图1-2所示),过A 、B 做AF ⊥BE ,BG ⊥AE ,AF 交
BG 于O ,那么 ∠AOB 就是所求的键角。
我们只要找
出AO (=BO )与AB 的关系,再用余弦定理,就能圆满地解决例题1。
当然找出AO 和AB
的关系还是有一定难度的。
先把该题放下,来看一题初中化学竞赛题:
【例题
2】CH 4分子在空间呈四面体形状,1个C 原子与4
个H 原子各共用一对电子对形成4条共价键,如图
1-3所示为一
个正方体,已画出1个C 原子(在正方体中心)、1个H 原子(在正
方体顶点)和1条共价键(实线表示),请画出另3个H 原子的合适
位置和3条共价键,任意两条共价键夹角的余弦值为
①
【分析】由于碳原子在正方体中心,一个氢原子在顶点,因
为碳氢键是等长的,那么另三个氢原子也应在正方体的顶点上,
正方体余下的七个顶点可分成三类,三个为棱的对侧,三个为面
对角线的对侧,一个为体对角线的对侧。
显然三个在面对角线对
侧上的顶点为另三个氢原子的位置。
【解答】答案如图1-4所示。
【小结】从例题2中我们发现:在正四面体中八个顶点中不
相邻的四个顶点(不共棱)可构成一个正四面体,正四面体的棱
长即为正方体的棱长的2倍,它们的中心是互相重合的。
【分析】回到例题1,将正四面体ABCD 放入正方体中考虑,设正方体的边长为1,则AB 为面对角线长,即2,AO 为体对角线长的一半,即3/2,
图1-1 图1-2 图1-3 图1-4
由余弦定理得cos α=(AO 2+BO 2-AB 2)/2AO ·BO =-1/3
【解答】甲烷的键角应为 π-arccos1/3
【练习1】已知正四面体的棱长为2,计算它的体积。
【讨论】利用我们上面讲的思想方法,构造一个正方体,那么正四面体就相当于正方体削去四个正三棱锥(侧面为等腰直角三角形),V 正四面体=a 3-4×(1/6)×a 3。
若四面体相对棱的棱长分别相等,为a 、b 、c ,求其体积。
我们也只需构造一个长方体,问题就迎刃而解了。
【练习2】平面直角坐标系上有三个点(a 1,b 1)、(a 2,b 2)、(a 3,b 3)求这三个点围成的三角形的面积。
【讨论】通过上面的构造思想,你能构造何种图形来解决呢?是矩形吧!怎样表达面积呢?你认为下面的表达式是否写得有道理?
S △=(max{a 1,a 2,a 3}-min{a 1,a 2,a 3})×(max{b 1,b 2,b 3}-min{b 1,b 2,b 3})-2
1(21a a -21b b -+32a a -32b b -+13a a -13b b -) 【练习3】在正四面体中体心到顶点的距离是到底面距离的几倍,能否用物理知识去理解与解释这一问题呢?
【讨论】利用物理中力的正交分解来解决这一问题,在平面正三角形中,从中心向顶点构造三个大小相等,夹角为120º的力F 1、F 2、F 3。
设F 1在x 轴正向,F 2、F 3进行正交分解在x 、y 轴上,在x 轴上的每一个分力与F 1相比就相当于中心到底面与到顶点距离之比,而两个分力之和正好与F 1抵消,即大小相等。
显然中心到顶点距离应为到底边距离的2倍。
在空间,构造四个力F i (i =1,2,3,4),F 1在x 轴正向(作用点与坐标原点重合),F 2、F 3、F 4分解在与x 轴与yz 面上,yz 面上三个力正好构成正三角形,而在x 轴(负向)上有三个分力,其之和与F 1抵消,想想本题答案应为3吗?当然这个问题用体积知识也是易解决的。
让我们再回到正题,从上面的例题1,2中,我们了解了正四面体与正方体的关系,虽然这是一个很浅显易懂的结论,但我们还是应该深刻理解和灵活应用,帮助我们解决一些复杂的问题。
先请再来看一个例题吧:
【例题3】SiC 是原子晶体,其结构类似金刚石,为C 、Si 两原子依次相间排列的正四面体型空间网状结构。
如图1-5所示为两个中心重合,各面分别平行的大小两个正方体,其中心为一Si 原子,试在小正方体的顶点上画出与该Si 最近的C 的位置,在大正方体的棱上画出与该Si 最近的Si 的位置。
两大小正方体的边长之比为_______;Si —C —Si 的键角为______(用反三角函数表示);若Si —C 键长为 a cm ,则大正方体边长为_______cm ;SiC 晶体的密度为________g/cm 3。
(N A 为阿佛加德罗常数,相对原子质量 C.12 Si.28)② 【分析】正方体中心已给出了一个Si 原子,那么与Si 相邻的四个C 原子则在小正方体不相邻的四个顶点上,那么在大正方体上应画几个Si 原子呢?我们知道每个碳原子也应连四个硅原子,而其中一个
必为中心的硅原子,另外还剩下4×3=12个硅原子,这12个点应落在大正方体上。
那么这12个又在大正方体的何处呢?
前文介绍正方体时曾说正方体有12条棱,是否每一条棱上各有一个碳原子?利用对称性原则,这12个硅原子就应落在各棱的中点。
让我们来验证一下假设吧。
过大正方体的各棱中心作截面,将大正方体分割成八个小正方体,各棱中点、各面心、顶点、中心构成分割后正方体的顶点。
原来中心的硅原子就在分割后八个正方体的顶点上了,由于与一个碳原子相邻的四个硅原子是构成一个正四面体的。
利用例2的结论,分割后的正方体上另三个硅原子的位置恰为原来大正方体的棱心(好好想一想)。
那么碳原子又在分割后的正方体的哪里呢,毫无疑问,在中心。
那么是否每个分割后的正方体的中心都有碳原子呢?这是不可能的,因为只有四个碳原子,它们应该占据在不相邻的四个正方体的中心。
碳原子占据四个硅原子构成的最小正四面体空隙的几率为1/2,那么反过来碳原子占据碳原子四面体空隙的几率又是多少呢?也1/2吧,因为在空间,碳硅两原子是完全等价的,全部互换它们的位置,晶体是无变化的。
我们可以把大正方体看成SiC 晶体的一个基本重复单位,那么小正方体(或分割后的小正方体)能否看成一个基本重复单位呢?这是不行的,因为有的小正方体中心是有原子的,而有些是没有的。
大小两个正方体的边长应是2:1吧,至于键角也就不必再说了。
最后还有一个密度问题,我们将留在第二节中去分析讨论。
【解答】如图1-6所示(碳原子在小正方体不相邻的四个顶点上,硅原子在大正方体的十二条棱的中点上) 2:1 arcos (-1/3) 43/3 153/2N A a 3
【练习4】金刚石晶体是正四面体型的空间网状结构,课本上的金刚石结构图我们很难理解各原子的空间关系,请用我们刚学的知识将金刚石结构模型化。
【练习5】在例题3中,如果在正方体中心不画出Si 原子,而在小正方体和大正方体上依旧是分别画上C 原子和Si 原子,应该怎么画呢?
【讨论】还是根据例题3 的分析,在例题3中,将大正方体分割成小正方体后,我们所取的四个点在大正方体上是棱心和体心,那么我们是否可以取另外四个点呢?它们在大正方体中又在何位置呢?与原来的位置(棱心+体心)有什么关系呢?
【练习参考答案】
1.331
a ;))()((6
1222222222b a c a c b c b a -+-+-+ 2.该表达式是正确的; 3.3倍
4.只需将例题3中将Si 原子变成C 原子,就是我们所需
的金刚石结构模型,大正方体就是金刚石的晶胞(下文再详述)。
5.可以取另外四个点,C 原子的位置无变化,Si 原子在大
正方体的面心和顶点上(这不就是山锌矿的晶胞吗?下文再详述);与原来的位置正好相差了半个单位,即只需将原来的大正
方体用一水平面分成两等份,将下面部分平移到上面一部分的上面接上即可。
图1-6
本文不着重探讨其中涉及纯理论的内容,大家可参考相应的竞赛书籍和大学教材。