几何-空间几何-正四面体专题
几何体的正四面体

几何体的正四面体正四面体是一种特殊的几何体,具有很多独特的性质和特点。
在本文中,我将介绍正四面体的定义、属性以及一些有趣的应用。
一、正四面体的定义正四面体是一种具有四个等边等角面的多面体。
它的四个面都是等边三角形,每两个面之间的夹角都是一样的,也都是等于70.53°。
在正四面体中,任意两条边的长度和相等。
这些特点使得正四面体在几何学中有着重要的地位。
二、正四面体的性质1. 对称性:正四面体具有很高的对称性。
它有24个对称操作,包括旋转和翻转等。
这些对称性使得正四面体在立体几何中有广泛的应用,例如建筑设计和立体模型制作等。
2. 共面性:正四面体的四个顶点共面。
这意味着可以通过这四个顶点构成一个平面。
而且在这个平面上,正四面体可以被视为一个等边三角形。
3. 体积和表面积:正四面体的体积和表面积可以通过简单的公式计算得到。
其中,体积公式为V = (a³√2) / 12,表面积公式为S = a²√3,其中a表示正四面体一个面的边长。
4. 空间分割:正四面体可以将三维空间分割成四个完全相同的四面体。
这种空间分割在某些科学领域中非常有用,例如晶体结构的研究和分子模拟等。
三、正四面体的应用1. 立体几何学研究:正四面体是立体几何学中的一个基本概念,它的研究可以帮助我们理解和解决各种与几何学相关的问题,例如立体投影、体积计算等。
2. 建筑设计:正四面体的对称性和美观性使得它成为建筑设计中的常用元素。
例如,一些摩天大楼的外形可以采用正四面体的结构,使得建筑物更加稳定和美观。
3. 教育和娱乐:正四面体的独特性质和形状可以作为教学和娱乐的工具。
通过搭建正四面体模型或者使用虚拟现实技术,人们可以更直观地了解和体验正四面体的一些特点和性质。
总结:正四面体作为一种特殊的几何体,具有对称性、共面性以及特定的体积和表面积等性质。
它在几何学研究、建筑设计和教育娱乐等领域有着广泛的应用。
通过深入研究和探索正四面体,我们可以进一步拓展对几何学的理解和应用。
高考数学(文)《立体几何》专题复习

(2)两个平面垂直的判定和性质
✓ 考法5 线面垂直的判定与性质
1.证明直线 与平面垂直 的方法
2.线面垂直 的性质与线 线垂直
(1)判定定理(常用方法): 一条直线与一个平面内的两条相交直线都垂直,则该直线
与此平面垂直.判定定理中的两条相交直线必须保证“在平面 内相交”这一条件. (2)性质: ①应用面面垂直的性质(常用方法):若两平面垂直,则在一 个平面内垂直于交线的直线必垂直于另一个平面,是证明线 面垂直的主要方法; ②(客观题常用)若两条平行直线中的一条垂直于一个平面, 则另一条也垂直于这个平面.
64
65
✓ 考法4 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法 2.空间平行关系 之间的转化
66
✓ 考法3 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法
这是立体几何中证明平行关系常用的思路,三 种平行关系的转化可结合下图记忆
2.空间平行关系 之间的转化
67
68
600分基础 考点&考法
定义 判定方法
2.等角定理
判定定理 反证法 两条异面直线所成的角
✓ 考法2 异面直线所成的角
常考形式
直接求 求其三角函数值
常用方法
作角
正弦值 余弦值 正切值
证明 求值 取舍
55
56
57
58
600分基础 考点&考法
➢ 考点46 线面、面面平行的判定与性质 ✓ 考法3 线面平行的判定与性质 ✓ 考法4 面面平行的判定与性质
1.计算有关 线段的长
2.外接球、内切 球的计算问题
观察几何体的特征 利用一些常用定理与公式 (如正弦定理、余弦定理、勾股定理、 三角函数公式等) 结合题目的已知条件求解
专题10第一章空间几何体知识点与综合提升题—(解析版)高一数学复习巩固练习(人教A版)

A.6B.32C.12D.62
【答案】C
【分析】
结合斜二测法的画法原理求出 , ,再结合面积公式求解即可.
【详解】
由斜二测画法特点得 ,
为直角三角形,
,
故选:C.
【点睛】
本题考查由直观图求平面图的面积,属于容易题.
3.如图所示的几何体是()
A.圆锥B.棱锥C.圆台D.棱柱
三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等”
二.空间几何体的直观图
斜二测画法的基本步骤:①建立适当直角坐标系 (尽可能使更多的点在坐标轴上)
②建立斜坐标系 ,使 =450(或1350)
③画对应图形
在已知图形平行于X轴的线段,在直观图中画成平行于X‘轴,且长度保持不变;
在已知图形平行于Y轴的线段,在直观图中画成平行于Y‘轴,且长度变为原来的一半;
(1)绳子的最短长度的平方f(x).
(2)绳子最短时,顶点到绳子的最短距离.
(3)f(x)的最大值.
【答案】(1) f(x)=AM2=x2+16(0≤x≤4). (2) SR= = (0≤x≤4),(3) f(4)=32.
【解析】试题分析:将圆锥的侧面沿SA展开在平面上,如图,则该展开图为扇形,且弧AA′的长度L就是⊙O的周长,
∴L=2πr=2π.∴∠ASA′= ×360°= ×360°=90°,
(1)由题意知,绳长的最小值为展开图中的AM,其值为AM= (0≤x≤4),
∴f(x)=AM2=x2+16(0≤x≤4).
故选:A
【点睛】
已知三棱锥的三条侧棱两两相互垂直,即可将三棱锥的外接球扩展为长方体的外接球是解题的关键.
空间几何中的平行四面体与正四面体知识点

空间几何中的平行四面体与正四面体知识点在空间几何学中,平行四面体和正四面体是两种常见的多面体。
它们具有不同的特点和性质,下面将详细介绍这两种多面体的知识点。
一、平行四面体平行四面体是指四个面中的任意两个面平行的四面体。
它具有以下几个重要的性质:1. 对角线平行性质:平行四面体的任意两条对角线都是平行的。
这是因为平行四面体的两个相对面平行,因此连接相对顶点的对角线也是平行的。
2. 面积比例性质:平行四面体的相邻两个面之间的面积比等于相邻两个对角面的面积比。
具体而言,如果平行四面体的两个相邻面的面积分别为S1和S2,而另外两个对角面的面积分别为S3和S4,则有S1/S2 = S3/S4。
3. 体积计算公式:平行四面体的体积可以通过以下公式计算:V = (1/3) * S * h,其中V表示体积,S表示底面积,h表示底面到顶点的距离。
4. 平行四面体的类型:根据底面形状的不同,平行四面体可以分为正方形底面四面体、长方形底面四面体和菱形底面四面体等多种类型。
二、正四面体正四面体是指四个等边等角的三角形构成的四面体。
它具有以下几个重要的性质:1. 边长和面积:正四面体的边长相等,每个面都是等边三角形。
正四面体的面积可以通过以下公式计算:S = (sqrt(3) * a2) / 4,其中S表示面积,a表示边长。
2. 高度和体积:正四面体的高度可以通过以下公式计算:h = (sqrt(6) * a) / 3,其中h表示高度,a表示边长。
正四面体的体积可以通过以下公式计算:V = (sqrt(2) * a3) / 12,其中V表示体积,a表示边长。
3. 正四面体的特殊点:正四面体有四个特殊的点,分别为顶点、底心、重心和垂心。
顶点是四个面的交点,底心是底面三角形三个高线的交点,重心是四个面重心连线的交点,垂心是底面三角形三条垂线的交点。
4. 对称性:正四面体具有四个三角对称面和六个对称轴。
四个三角对称面将正四面体分为等价的四个部分,而六个对称轴则是通过连接各个面的中点和顶点形成的。
空间几何的性质四面体的性质及其应用

空间几何的性质四面体的性质及其应用四面体是空间中常见的立体图形,它具有一些独特的性质和应用。
本文将介绍四面体的性质及其应用。
一、四面体的定义和性质四面体是由四个三角形面组成的立体图形。
它具有以下性质:1. 定义:四面体是由四个不在同一平面上的点及连接这些点的边组成的立体。
2. 面积和体积:四面体的表面积和体积可以通过一定的公式计算得出。
其中,表面积等于四个三角形面积之和,体积等于底面积乘以高的一半。
3. 棱和顶点:四面体有六条棱和四个顶点。
任意两个顶点之间可以连接一条棱。
4. 高、中线和外接球:四面体的高是从一个顶点到相对的底面的垂直距离。
每个面的中线是连接该面上的两个中点的线段。
四面体还可以围绕外接球,外接球的球心与四面体的顶点都在同一平面上。
二、四面体的分类根据四面体的性质,我们可以将其分为以下几类:1. 正四面体:如果四面体的四个面都是等边三角形,那么它就是正四面体。
正四面体具有对称性,在空间几何学中起到重要作用。
2. 正交四面体:如果四面体的三个互相垂直的棱对同时相等,那么它就是正交四面体。
正交四面体具有一些特殊的性质,常用于计算几何和物理学中。
3. 锐角四面体和钝角四面体:根据四个顶点形成的凸四面体的内角是锐角还是钝角,可以将四面体分为两类。
在实际应用中,这些分类有助于确定四面体的稳定性和结构特征。
三、四面体的应用四面体不仅具有美学价值,还在许多领域有实际应用:1. 建筑与工程学:在建筑设计和工程施工中,四面体的结构特性可以用于设计和计算支撑结构的强度和稳定性。
2. 化学与结晶学:在化学和结晶学研究中,四面体被广泛用于分子和晶体的描述和分析。
3. 三维造型与动画:计算机图形学中,四面体被用于表示和生成三维模型和动画效果。
4. 数学与几何学:四面体是数学和几何学中研究的重要对象之一,对于解决空间几何问题和推导数学定理有重要意义。
总结:四面体是空间几何中重要的立体图形,具有独特的性质和应用。
立体几何基础立方体与正四面体的性质与计算

立体几何基础立方体与正四面体的性质与计算立体几何基础:立方体与正四面体的性质与计算立方体是一种具有六个相等的正方形面的立体几何体,它有一些特殊的性质和计算方法。
与之相似的还有正四面体,它有四个相等的等边三角形面。
在本文中,我们将探讨立方体和正四面体的性质,并介绍一些与它们相关的计算方法。
一、立方体的性质与计算方法立方体具有以下性质:1. 六个面积相等的正方形面:立方体的所有面都是正方形,且这六个面的面积都相等。
2. 八个顶点、十二条棱和六个面:立方体由八个顶点、十二条棱和六个面组成。
3. 所有的内角都为直角:立方体的六个顶点都是直角,即内角为90度。
4. 对角线相等:立方体的对角线相等,可以通过勾股定理进行计算。
计算方法:1. 立方体的体积计算:立方体的体积公式为V = a^3,其中a为立方体的边长。
通过将边长三次方即可得到立方体的体积。
2. 立方体的表面积计算:立方体的表面积公式为S = 6a^2,其中a 为立方体的边长。
通过将边长平方乘以6即可得到立方体的表面积。
二、正四面体的性质与计算方法正四面体具有以下性质:1. 四个边相等的等边三角形面:正四面体的四个面都是等边三角形面,且这四个面的边长都相等。
2. 四个顶点、六条棱和四个面:正四面体由四个顶点、六条棱和四个面组成。
3. 所有的内角都小于180度:正四面体的所有内角都小于180度,但不是直角。
4. 对角线相等:正四面体的对角线相等,可以通过勾股定理进行计算。
计算方法:1. 正四面体的体积计算:正四面体的体积公式为V = (a^3) / (6√2),其中a为正四面体的边长。
通过将边长的立方除以6乘以根号2即可得到正四面体的体积。
2. 正四面体的表面积计算:正四面体的表面积公式为S = √3a^2,其中a为正四面体的边长。
通过将边长的平方乘以根号3即可得到正四面体的表面积。
结论:立方体和正四面体作为常见的立体几何体,具有各自独特的性质和计算方法。
空间几何中的四面体与四面体的性质

空间几何中的四面体与四面体的性质四面体是空间几何中的一个基本几何体,它由四个面组成,每个面都是一个三角形。
四面体的性质十分有趣,它们在数学和几何中有广泛的应用。
本文将介绍四面体的定义、特征以及一些重要的性质。
一、四面体的定义和构造四面体的定义很简单:它是一个具有四个面的立体,且每个面都是一个三角形。
这四个面彼此相邻,共享边。
通过四个顶点,可以唯一地确定一个四面体。
构造四面体有多种方法,下面介绍两种常见的方法。
1. 顶点法构造:选取空间中的四个点作为四面体的顶点,通过连接这四个点,就可以构造出一个四面体。
2. 剖分法构造:将一个三角形沿着一个内部点作剖分,得到四个小三角形。
这四个小三角形的边即为四面体的边,而原来的三角形则成为四面体的底面。
无论是哪种构造方法,生成的四面体都具有相同的性质和特征。
二、四面体的性质1. 顶点、边、面和体积:一个四面体有四个顶点、六条边、四个面。
其中每个面都是一个三角形,每个顶点都是三条边的交点。
四面体的体积可以通过海伦公式来计算,该公式将四面体的面积和边长联系在一起。
设四面体的底面积为S,底面和顶点的距离为h,则四面体的体积V可以通过如下公式求得:V = (1/3) * S * h。
2. 共面性:四面体的四个顶点不共面,也就是说它们不会在同一个平面上。
这个性质使得四面体与其他几何体有所区别。
3. 高度和正交性:对于任意一个面,可以通过顶点引垂线得到一条高。
同时,四面体的相邻面也满足正交关系,即相交直线互相垂直。
4. 对称轴和中线:四面体具有对称轴和中线。
对称轴是通过两个相对的棱的中点连接而成的直线,它可以将四面体分为两个对称的部分。
中线则是通过两个相对的顶点的中点连接而成的直线。
5. 欧拉公式:对于一个凸四面体,其顶点数、边数和面数满足欧拉公式:顶点数 + 面数 = 边数 + 2。
四、特殊类型的四面体1. 正四面体:四个等边三角形组成的四面体称为正四面体。
正四面体具有以下特点:所有边长相等,任意两条边的夹角为60度,底面上的高相等。
几何-空间几何-正四面体专题

几何-空间几何-正四面体专题几何-空间几何-正四面体专题一.选择题(共6小题)1.已知棱长为a的正四面体ABCD内切球O,经过该棱锥A﹣BCD的中截面为M,则O到平面M的距离为()A.B.C.D.2.已知正四面体ABCD的棱长为1,球O与正四面体的各棱都相切,且球心在正四面体的内部,则球O的表面积为()A.4πB.2πC.D.3.已知球O在一个棱长为的正四面体内,如果球O是该正四面体的最大球,那么球O的表面积等于()A.B.C.2πD.4.半径为1的球面上的四点A,B,C,D是一个正四面体的顶点,则这个正四面体的棱长是()A.B.C.D.5.正四棱锥P﹣ABCD的侧棱长和底面边长都等于a,有两个正四面体的棱长也都等于a.当这两个正四面体各有一个面与正四棱锥的侧面PAD,侧面PBC完全重合时,得到一个新的多面体,该多面体是()A.五面体B.七面体C.九面体D.十一面体6.(2006•江西)如图,在四面体ABCD中,截面AEF经过四面体的内切球(与四个面都相切的球)球心O,且与BC,DC分别截于E、F,如果截面将四面体分成体积相等的两部分,设四棱锥A﹣BEFD与三棱锥A﹣EFC的表面积分别是S1,S2,则必有()A.S1<S2B.S1>S2C.S1=S2D.S1,S2的大小关系不能确定二.填空题(共14小题)7.已知棱长为a的正四面体ABCD有内切球O,经过该棱锥A﹣BCD三侧棱中点的截面为α,则O到平面α的距离为_________.8.在正四面体ABCD中,其棱长为a,若正四面体ABCD有一个内切球,则这个球的表面积为_________.9.已知正四面体棱长为a,则它的外接球表面积为_________.10.正四面体ABCD的棱长为1,则其外接球球面上A、B两点间的球面距离为_________.11.正四面体ABCD的棱长为1,棱AB∥平面α,则正四面体上所有点在平面α内的射影所构成的图形面积的取值范围为_________.12.(2006•浙江)正四面体ABCD的棱长为1,棱AB∥平面α,则正四面体上的所有点在平面α内的射影构成的图形面积的取值范围是_________.13.已知正四面体ABCD的棱长为1,若以的方向为左视方向,则该正四面体的左视图与俯视图面积和的取值范围为_________.14.四面体ABCD中,AB=CD=6,其余的棱长均为5,则与该四面体各个表面都相切的内切球的半径长等于_________.15.正四面体的棱长为a,它的体积为_________.16.棱长为1的正四面体ABCD中,对棱AB、CD之间的距离为_________.17.已知球O是棱长为12的正四面体S﹣ABC的外接球,D,E,F分别是棱SA,SB,SC的中点,则平面DEF 截球O所得截面的面积是_________.18.与四面体的一个面及另外三个面的延长面都相切的球称为该四面体的旁切球,则棱长为1的正四面体的旁切球的半径r=_________.19.已知结论:“在正三角形ABC中,若D是BC的中点,G是三角形ABC重心,则=2”.若把该结论推广到空间,则有结论:“在正四面体ABCD中,若△BCD的中心为M,四面体内部一点O到四面体各面的距离都相等,则=_________.20.设等边△ABC的边长为a,P是△ABC内的任意一点,且P到三边AB,BC,CA的距离分别为d1,d2,d3,则有d1+d2+d3为定值;由以上平面图形的特性类比空间图形:设正四面体ABCD的棱长为a,P是正四面体ABCD内的任意一点,且P到四个面ABC、ABD、ACD、BCD的距离分别为d1,d2,d3,d4,则有d1+d2+d3+d4为定值_________.几何-空间几何-正四面体专题参考答案与试题解析一.选择题(共6小题)1.已知棱长为a的正四面体ABCD内切球O,经过该棱锥A﹣BCD的中截面为M,则O到平面M的距离为()A.B.C.D.考点:点、线、面间的距离计算;棱锥的结构特征。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何-空间几何-正四面体专题一.选择题(共6小题)1.已知棱长为a的正四面体ABCD内切球O,经过该棱锥A﹣BCD的中截面为M,则O到平面M的距离为()A.B.C.D.2.已知正四面体ABCD的棱长为1,球O与正四面体的各棱都相切,且球心在正四面体的内部,则球O的表面积为()A.4πB.2πC.D.3.已知球O在一个棱长为的正四面体内,如果球O是该正四面体的最大球,那么球O的表面积等于()A.B.C.2πD.4.半径为1的球面上的四点A,B,C,D是一个正四面体的顶点,则这个正四面体的棱长是()A.B.C.D.5.正四棱锥P﹣ABCD的侧棱长和底面边长都等于a,有两个正四面体的棱长也都等于a.当这两个正四面体各有一个面与正四棱锥的侧面PAD,侧面PBC完全重合时,得到一个新的多面体,该多面体是()A.五面体B.七面体C.九面体D.十一面体6.(2006•江西)如图,在四面体ABCD中,截面AEF经过四面体的内切球(与四个面都相切的球)球心O,且与BC,DC分别截于E、F,如果截面将四面体分成体积相等的两部分,设四棱锥A﹣BEFD与三棱锥A﹣EFC的表面积分别是S1,S2,则必有()A.S1<S2B.S1>S2C.S1=S2D.S1,S2的大小关系不能确定二.填空题(共14小题)7.已知棱长为a的正四面体ABCD有内切球O,经过该棱锥A﹣BCD三侧棱中点的截面为α,则O到平面α的距离为_________.8.在正四面体ABCD中,其棱长为a,若正四面体ABCD有一个内切球,则这个球的表面积为_________.9.已知正四面体棱长为a,则它的外接球表面积为_________.10.正四面体ABCD的棱长为1,则其外接球球面上A、B两点间的球面距离为_________.11.正四面体ABCD的棱长为1,棱AB∥平面α,则正四面体上所有点在平面α内的射影所构成的图形面积的取值范围为_________.12.(2006•浙江)正四面体ABCD的棱长为1,棱AB∥平面α,则正四面体上的所有点在平面α内的射影构成的图形面积的取值范围是_________.13.已知正四面体ABCD的棱长为1,若以的方向为左视方向,则该正四面体的左视图与俯视图面积和的取值范围为_________.14.四面体ABCD中,AB=CD=6,其余的棱长均为5,则与该四面体各个表面都相切的内切球的半径长等于_________.15.正四面体的棱长为a,它的体积为_________.16.棱长为1的正四面体ABCD中,对棱AB、CD之间的距离为_________.17.已知球O是棱长为12的正四面体S﹣ABC的外接球,D,E,F分别是棱SA,SB,SC的中点,则平面DEF 截球O所得截面的面积是_________.18.与四面体的一个面及另外三个面的延长面都相切的球称为该四面体的旁切球,则棱长为1的正四面体的旁切球的半径r=_________.19.已知结论:“在正三角形ABC中,若D是BC的中点,G是三角形ABC重心,则=2”.若把该结论推广到空间,则有结论:“在正四面体ABCD中,若△BCD的中心为M,四面体内部一点O到四面体各面的距离都相等,则=_________.20.设等边△ABC的边长为a,P是△ABC内的任意一点,且P到三边AB,BC,CA的距离分别为d1,d2,d3,则有d1+d2+d3为定值;由以上平面图形的特性类比空间图形:设正四面体ABCD的棱长为a,P是正四面体ABCD内的任意一点,且P到四个面ABC、ABD、ACD、BCD的距离分别为d1,d2,d3,d4,则有d1+d2+d3+d4为定值_________.几何-空间几何-正四面体专题参考答案与试题解析一.选择题(共6小题)1.已知棱长为a的正四面体ABCD内切球O,经过该棱锥A﹣BCD的中截面为M,则O到平面M的距离为()A.B.C.D.考点:点、线、面间的距离计算;棱锥的结构特征。
专题:计算题。
分析:先利用棱长为a的正四面体ABCD的高的公式:h=a,再利用内切球O的半径即为高的,最后利用O到平面α的距离正好是高的,从而得到结果.解答:解:记棱锥A﹣BCD的高为AO1,且AO1=a.O在AO1上且OO1=AO1;AO1与面α交于M,则MO1=AO1,故MO=OO1=AO1=.故答案为:.故选C.点评:本小题主要考查点、线、面间的距离计算、组合体的几何性质、中截面等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.2.已知正四面体ABCD的棱长为1,球O与正四面体的各棱都相切,且球心在正四面体的内部,则球O的表面积为()A.4πB.2πC.D.考点:球的体积和表面积;棱锥的结构特征。
专题:计算题。
分析:将正四面体ABCD,补成正方体,则正四面体ABCD的棱为正方体的面上对角线,根据球O与正四面体的各棱都相切,且球心在正四面体的内部,可得球O是正方体的内切球,从而可求球O的表面积.解答:解:将正四面体ABCD,补成正方体,则正四面体ABCD的棱为正方体的面上对角线∵正四面体ABCD的棱长为1∴正方体的棱长为∵球O与正四面体的各棱都相切,且球心在正四面体的内部,∴球O是正方体的内切球,其直径为∴球O的表面积为故选C点评:本题考查球的表面积公式解题的关键是将正四面体ABCD,补成正方体,使得球O是正方体的内切球.3.已知球O在一个棱长为的正四面体内,如果球O是该正四面体的最大球,那么球O的表面积等于()A.B.C.2πD.考点:球的体积和表面积;棱锥的结构特征。
专题:计算题。
分析:已知球O在一个棱长为的正四面体内,如果球O是该正四面体的最大球,那么球O与此正四面体的四个面相切,即球心到四个面的距离都是半径,由等体积法求出球的半径,再由公式求体积解答:解:由题意,此时的球与正四面体相切,由于棱长为的正四面体,故四个面的面积都是=3又顶点到底面的投影在底面的中心,此点到底面三个顶点的距离都是高的,又高为=3,故底面中心到底面顶点的距离都是2由此知顶点到底面的距离是=2此正四面体的体积是×2×3=2又此正四面体的体积是×r×3×4,故有r==球O的表面积等于4×π×=2π故选C点评:本题考查球的体积和表面积,解答本题关键是理解球O是该正四面体的最大球,从中得出此时球是正四面体的内切球,从而联想到用等体积法求出球的半径,熟练掌握正四面体的体积公式及球的表面积公式是正确解题的知识保证.4.半径为1的球面上的四点A,B,C,D是一个正四面体的顶点,则这个正四面体的棱长是()A.B.C.D.考点:棱锥的结构特征。
专题:计算题。
分析:由已知可得,半径为1的球为正四面体A﹣BCD的外接球,由正四面体棱长与外接球半径的关系,我们易得正四面体的棱长,求出正四面体的棱长.解答:解:∵正四面体是球的内接正四面体,又∵球的半径R=1∴正四面体棱长l与外接球半径R的关系l=得l=故选D点评:注意牢记:边长为1的正三角形,高为,内切圆的半径为,外接圆半径为;棱长为1的正四面体,侧高为,侧面内切圆的半径为,侧面外接圆半径为;高为,内切球半径为,外接球半径为5.正四棱锥P﹣ABCD的侧棱长和底面边长都等于a,有两个正四面体的棱长也都等于a.当这两个正四面体各有一个面与正四棱锥的侧面PAD,侧面PBC完全重合时,得到一个新的多面体,该多面体是()A.五面体B.七面体C.九面体D.十一面体考点:棱锥的结构特征。
专题:探究型。
分析:由正四棱锥的相邻二个侧面所成的二面角为arccos(﹣),可知得到的新多面体为五面体.解答:解:正四面体每相邻二个面所成的二面角为arccos,题目所说的正四棱锥的相邻二个侧面所成的二面角为arccos(﹣),所以得到的新多面体为五面体.故选A.点评:本题考查棱锥的结构特征,解题时要认真审题,仔细解答.6.(2006•江西)如图,在四面体ABCD中,截面AEF经过四面体的内切球(与四个面都相切的球)球心O,且与BC,DC分别截于E、F,如果截面将四面体分成体积相等的两部分,设四棱锥A﹣BEFD与三棱锥A﹣EFC的表面积分别是S1,S2,则必有()A.S1<S2B.S1>S2C.S1=S2D.S1,S2的大小关系不能确定考点:球内接多面体。
专题:计算题;综合题。
分析:比较表面积的大小,可以通过体积进行转化比较;也可以先求表面积,然后比较.解答:解:连OA、OB、OC、OD,则V A﹣BEFD =V O﹣ABD+V O﹣ABE+V O﹣BEFD+V O﹣AFDV A﹣EFC =V O﹣AFC+V O﹣AEC+V O﹣EFC又V A﹣BEFD=V A﹣EFC而每个三棱锥的高都是原四面体的内切球的半径,又面AEF公共,故S ABD+S ABE+S BEFD+S ADF=S ADC+S AEC+S EFC故选C点评:本题考查球的内接体的表面积问题,找出表面积的共有特征是解题简化的关键,是中档题.二.填空题(共14小题)7.已知棱长为a的正四面体ABCD有内切球O,经过该棱锥A﹣BCD三侧棱中点的截面为α,则O到平面α的距离为.考点:点、线、面间的距离计算。
专题:计算题。
分析:先利用棱长为a的正四面体ABCD的高的公式:h=a,再利用内切球O的半径即为高的,最后利用O 到平面α的距离正好是高的,从而得到结果.解答:解:记棱锥A﹣BCD的高为AO1,且AO1=a.O在AO1上且OO1=AO1;AO1与面α交于M,则MO1=AO1,故MO=OO1=AO1=.故答案为:.点评:本小题主要考查点、线、面间的距离计算、组合体的几何性质、中截面等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.8.在正四面体ABCD中,其棱长为a,若正四面体ABCD有一个内切球,则这个球的表面积为.考点:球的体积和表面积。
专题:计算题。
分析:作出正四面体的图形,球的球心位置,说明OE是内切球的半径,利用直角三角形,逐步求出内切球的表面积.解答:解:如图O为正四面体ABCD的内切球的球心,正四面体的棱长为:a;所以OE为内切球的半径,BF=AF=BE=,所以AE=,BO2﹣OE2=BE2,所以OE=球的表面积为:4π•OE2=故答案为:点评:本题考查正四面体的内切球的表面积,是一道典型题目,考试常考题,考查空间想象能力,计算能力,是基础题.9.已知正四面体棱长为a,则它的外接球表面积为.考点:球的体积和表面积。
专题:计算题。
分析:由正四面体的棱长,求出正四面体的高,设外接球半径为R,利用勾股定理求出R的值,可求外接球的表面积.解答:解:正四面体的棱长为:a,底面三角形的高:a,棱锥的高为:=,设外接球半径为R,R2=(a﹣R)2+解得R=a,所以外接球的表面积为:4πa2=a2;故答案为a2.点评:本题考查球的内接多面体的知识,考查计算能力,逻辑思维能力,是基础题.10.正四面体ABCD的棱长为1,则其外接球球面上A、B两点间的球面距离为(π﹣arcos)(或arcos (﹣)).考点:球面距离及相关计算;球内接多面体。