立体几何专题训练(附答案)
高三精选立体几何大题30题(含详细解答)

A BC第1题图ABCD第1题图立体几何大题1.如下图,一个等腰直角三角形的硬纸片ABC中,∠ACB=90°,AC=4cm,CD是斜边上的高沿CD 把△ABC折成直二面角.(1)如果你手中只有一把能度量长度的直尺,应该如何确定A,B的位置,使二面角A-CD-B是直二面角?证明你的结论.(2)试在平面ABC上确定一个P,使DP与平面ABC内任意一条直线都垂直,证明你的结论.(3)如果在折成的三棱锥内有一个小球,求出小球半径的最大值.2.如图,已知正四棱柱ABCD—A1B1C1D1的底面边长为3,侧棱长为4,连结A1B过A作AF⊥A1B垂足为F,且AF的延长线交B1B于E。
(Ⅰ)求证:D1B⊥平面AEC;(Ⅱ)求三棱锥B—AEC的体积;(Ⅲ)求二面角B—AE—C的大小的正弦值.3.如图,正三棱柱ABC—A1B1C1的底面边长为1,点M在BC上,△AMC1是以M为直角顶点的等腰直角三角形.(I)求证:点M为BC的中点;(Ⅱ)求点B到平面AMC1的距离;(Ⅲ)求二面角M—AC1—B 的正切值. 4.如图,已知多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,三角形ACD是正三角形,且AD=DE=2,AB=1,F是CD的中点.(Ⅰ)求证:AF∥平面BCE;(Ⅱ)求多面体ABCDE的体积;(Ⅲ)求二面角C-BE-D 的正切值.5.已知:ABCD是矩形,设PA=a,PA⊥平面ABCD.M、N分别是AB、PC的中点.(Ⅰ)求证:MN⊥AB;(Ⅱ)若PD=AB,且平面MND⊥平面PCD,求二面角P—CD—A的大小;(Ⅲ)在(Ⅱ)的条件下,求三棱锥D—AMN的体积.6.在正方体ABCD—A1B1C1D1中,P、M、N分别为棱DD1、AB、BC的中点。
(I)求二面角B1—MN—B的正切值;(II)证明:PB⊥平面MNB1;(III)画出一个正方体表面展开图,使其满足“有4个正方形面相连成一个长方形”的条件,并求出展开图中P、B两点间的距离。
高三立体几何专题练习(含答案)

立体几何专题练习卷一、填空题(本大题满分56分,每小题4分) 1.正方体DC B A ABCD 111-的棱长为a ,则异面直线1AB 与1BC 所成的角的大小是__________.2.已知某铅球的表面积是2484cm π,则该铅球的体积是___________2cm .3.若圆锥的侧面积为20π,且母线与底面所成的角为4arccos5,则该圆锥的体积为___________.4.在长方体1111ABCD A B C D -中,若12,1,3AB BC AA ===,则1BC 与平面11BB D D 所成的角θ可用反三角函数值表示为θ=____________.5.若取地球的半径为6371米,球面上两点A 位于东经O12127',北纬O 318',B 位于东经O12127',北纬O 255',则A B 、两点的球面距离为_____________千米(结果精确到1千米).6.已知圆锥的母线长为5cm ,侧面积为π15 2cm ,则此圆锥的体积为__________3cm .7.若圆锥的底面半径和高都是2,则圆锥的侧面积是_____________. 8.如图,是一个无盖正方体盒子的表面展开图,A B C 、、为其上的三个点,则在正方体盒子中,ABC ∠=____________.9.一个圆柱形容器的轴截面尺寸如右图所示,容器内有一个实心的球,球的直径恰等于圆柱的高.现用水将该容器注满,然后取出该球(假设球的密度大于水且操作过程中水量损失不计),则球取出后,容器中水面的高度为__________cm. (精确到0.1cm )10.如图,用铁皮制作一个无盖的圆锥形容器,已知该圆锥的母线与底面所在平面的夹角为45︒,容器的高为10cm .制作该容器需要铁皮面积为__________cm2.(衔接部分忽略不计,结果保留整第9题数)11.如图,圆锥的侧面展开图恰好是一个半圆,则该圆锥的母线与底面所成的角的大小是__________ .12.如右下图,ABC ∆中, 90=∠C ,30=∠A ,1=BC .在三角形内挖去半圆(圆心O 在边AC 上,半圆与BC 、AB 相切于点C 、M ,与AC 交于N ),则图中阴影部分绕直线AC 旋转一周所得旋转体的体积为__________ .13.如图所示,以圆柱的下底面为底面,并以圆柱的上底面圆心为顶点作圆锥, 则该圆锥与圆柱等底等高。
高三数学立体几何专项练习题及答案

高三数学立体几何专项练习题及答案一、选择题1. 下列哪个几何体的所有面都是三角形?A. 正方体B. 圆柱体C. 正六面体D. 球体答案:C2. 一个有8个面的多面体,其中6个面是正方形,另外2个面是等边三角形,它的名字是?A. 正八面体B. 正十二面体C. 正二十面体D. 正二十四面体答案:C3. 空间中任意一点到四个角落连线的垂直距离相等的四棱锥称为?A. 正四棱锥B. 圆锥台C. 四棱锥D. 无法确定答案:C4. 任意多面体的面数与顶点数、棱数的关系是?A. 面数 + 顶点数 = 棱数 + 2B. 面数 + 棱数 = 顶点数 + 2C. 顶点数 + 棱数 = 面数 + 2D. 顶点数 + 面数 = 棱数 + 2答案:A5. 求下列多面体的棱数:(1)正六面体(2)正八面体(3)正十二面体答案:(1)正六面体的棱数为 12(2)正八面体的棱数为 24(3)正十二面体的棱数为 30二、填空题1. 下列说法正确的是:一棱锥没有底面时,它的底面是一个______。
答案:点2. 铅垂线是指从一个多面体的一个顶点到与它相对的棱上所作的垂线,它与该棱垂足的连线相交于该多面体的______上。
答案:中点3. 对正八面体,下列说法不正确的是:_____条对角线与_____两两垂直。
答案:六,相邻面三、计算题1. 一个棱锥的底面是一个边长为6cm的正三角形,其高为8cm。
求棱锥体积。
解答:底面积 S = (1/2) ×底边长 ×高 = (1/2) × 6 × 8 = 24 cm²棱锥体积 V = (1/3) × S ×高 = (1/3) × 24 × 8 = 64 cm³所以,棱锥的体积为64 cm³。
2. 一个正四棱锥的底面是一个边长为10cm的正方形,其高为12cm。
求四棱锥的体积。
解答:底面积 S = 边长² = 10² = 100 cm²四棱锥体积 V = (1/3) × S ×高 = (1/3) × 100 × 12 = 400 cm³所以,四棱锥的体积为400 cm³。
立体几何专题专练100题(含详解)

1.(本题满分15分)如图,在三棱锥D -ABC 中,DA =DB =DC ,D 在底面ABC 上的射影为E ,AB ⊥BC ,DF ⊥AB 于F .(Ⅰ)求证:平面ABD ⊥平面DEF ;(Ⅱ)若AD ⊥DC ,AC =4,∠BAC =60°,求直线BE 与平面DAB 所成的角的正弦值.答案及解析:1.(Ⅰ)如图,由题意知⊥DE 平面ABC所以DE AB ⊥,又DFAB ⊥所以⊥AB 平面DEF ,………………3分又⊂AB 平面ABD 所以平面⊥ABD 平面DEF…………………6分(Ⅱ)解法一:由DC DB DA ==知ECEB EA ==所以E 是ABC ∆的外心又BC AB ⊥所以E 为AC 的中点…………………………………9分过E 作DF EH ⊥于H ,则由(Ⅰ)知⊥EH 平面DAB所以EBH ∠即为BE 与平面DAB 所成的角…………………………………12分由4=AC , 60=∠BAC 得2=DE ,3=EF 所以7=DF ,732=EH 所以721sin ==∠BE EH EBH …………………………………15分解法二:如图建系,则)0,2,0(-A ,)2,0,0(D ,)0,1,3(-B 所以)2,2,0(--=DA ,)2,1,3(--=DB ……………………………………9分设平面DAB 的法向量为),,(z y x n =由⎪⎩⎪⎨⎧=⋅=⋅00DB n DA n 得⎩⎨⎧=--=--023022z y x z y ,取)1,1,33(-=n ………………12分设EB 与n 的夹角为θ所以7213722||||cos ==⋅=n EB nEB θ所以BE 与平面DAB 所成的角的正弦值为721………………………………15分2.如图,在直三棱柱ABC ﹣A 1B 1C 1中,AA 1=AC=2AB=2,且BC 1⊥A 1C .(1)求证:平面ABC 1⊥平面A 1ACC 1;(2)设D是线段BB1的中点,求三棱锥D﹣ABC1的体积.答案及解析:2.【考点】棱柱、棱锥、棱台的体积;平面与平面垂直的判定.【专题】综合题;转化思想;综合法;立体几何.【分析】(1)证明A1C⊥面ABC1,即可证明:平面ABC1⊥平面A1ACC1;(2)证明AC⊥面ABB1A1,利用等体积转换,即可求三棱锥D﹣ABC1的体积.【解答】(1)证明:在直三棱锥ABC﹣A1B1C1中,有A1A⊥面ABC,而AB⊂面ABC,∴A1A⊥AB,∵A1A=AC,∴A1C⊥AC1,又BC1⊥A1C,BC1⊂面ABC1,AC1⊂面ABC1,BC1∩AC1=C1∴A1C⊥面ABC1,而A1C⊂面A1ACC1,则面ABC1⊥面A1ACC1…(2)解:由(1)知A1A⊥AB,A1C⊥面ABC1,A1C⊥AB,故AB⊥面A1ACC1,∴AB⊥AC,则有AC⊥面ABB1A1,∵D是线段BB1的中点,∴.…【点评】本题考查线面垂直、平面与平面垂直的判定,考查三棱锥D﹣ABC1的体积,考查学生分析解决问题的能力,正确运用定理是关键.3.如图所示,在四棱锥P﹣ABCD中,底面ABCD是矩形,侧棱PA垂直于底面,E、F分别是AB、PC的中点.(1)求证:CD⊥PD;(2)求证:EF∥平面PAD.答案及解析:3.【考点】空间中直线与直线之间的位置关系;直线与平面平行的判定.【分析】本题是高考的重要内容,几乎年年考,次次有:(1)的关键是找出直角三角形,也就是找出图中的线线垂直.(2)的关键是找出平面PAD中可能与EF平行的直线.【解答】解:(1)证明:∵PA⊥平面ABCD,而CD⊂平面ABCD,∴PA⊥CD,又CD⊥AD,AD∩PA=A,∴CD⊥平面PAD,∴CD⊥PD、(2)取CD的中点G,连接EG、FG.∵E、F分别是AB、PC的中点,∴EG∥AD,FG∥PD,∴平面EFG∥平面PAD,又∵EF⊂平面EFG,∴EF∥平面PAD.【点评】线线垂直可由线面垂直的性质推得,直线和平面垂直,这条直线就垂直于平面内所有直线,这是寻找线线垂直的重要依据.判断或证明线面平行的常用方法有:①利用线面平行的定义(无公共点);②利用线面平行的判定定理(a∥α,b⊂α,a∥b⇒a∥α);③利用面面平行的性质定理(α∥β,a⊂α⇒a∥β);④利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β).4.如图,在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AB=5,点D是AB的中点.(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1.答案及解析:4.【考点】直线与平面垂直的性质;直线与平面平行的判定.【专题】综合题;空间位置关系与距离.【分析】(1)利用勾股定理的逆定理可得AC⊥BC.利用线面垂直的性质定理可得CC1⊥AC,再利用线面垂直的判定定理即可证明结论;(2)利用直三棱柱的性质、正方形的性质、三角形的中位线定理即可得出ED∥AC1,再利用线面平行的判定定理即可证明结论【解答】证明:(1)因为三棱柱ABC﹣A1B1C1为直三棱柱,所以C1C⊥平面ABC,所以C1C⊥AC.又因为AC=3,BC=4,AB=5,所以AC2+BC2=AB2,所以AC⊥BC.又C1C∩BC=C,所以AC⊥平面CC1B1B,所以AC⊥BC1.(2)连结C1B交CB1于E,再连结DE,由已知可得E为C1B的中点,又∵D为AB的中点,∴DE为△BAC1的中位线.∴AC1∥DE又∵DE⊂平面CDB1,AC1⊄平面CDB1∴AC1∥平面CDB1.【点评】熟练掌握勾股定理的逆定理、线面垂直的判定和性质定理、直三棱柱的性质、正方形的性质、三角形的中位线定理、线面平行的判定定理是解题的关键.5.已知在三棱锥S﹣ABC中,∠ACB=90°,又SA⊥平面ABC,AD⊥SC于D,求证:AD⊥平面SBC.答案及解析:5.【考点】直线与平面垂直的判定.【专题】证明题.【分析】要证明AD⊥平面SBC,只要证明AD⊥SC(已知),AD⊥BC,而结合已知∠ACB=90°,又SA⊥平面ABC,及线面垂直的判定定理及性质即可证明【解答】证明:∵SA⊥面ABC,∴BC⊥SA;∵∠ACB=90°,即AC⊥BC,且AC、SA是面SAC内的两相交线,∴BC⊥面SAC;又AD⊂面SAC,∴BC⊥AD,又∵SC⊥AD,且BC、SC是面SBC内两相交线,∴AD⊥面SBC.【点评】本题主要考查了直线与平面垂直,平面与平面垂直的相互转化,线面垂直的判定定理的应用,属于基础试题6.如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥底面ABCD,AP=AB=,点E 是棱PB的中点.(Ⅰ)证明:AE⊥平面PBC;(Ⅱ)若AD=1,求二面角B﹣EC﹣D的平面角的余弦值.答案及解析:6.【考点】二面角的平面角及求法;直线与平面垂直的判定.【专题】空间位置关系与距离;空间角.【分析】(Ⅰ)由PA⊥底面ABCD,得PA⊥AB.又PA=AB,从而AE⊥PB.由三垂线定理得BC⊥PB,从而BC⊥平面PAB,由此能证明AE⊥平面PBC.(Ⅱ)由BC⊥平面PAB,AD⊥AE.取CE的中点F,连结DF,连结BF,则∠BFD为所求的二面角的平面角,由此能求出二面角B﹣EC﹣D的平面角的余弦值.【解答】(Ⅰ)证明:如图1,由PA⊥底面ABCD,得PA⊥AB.又PA=AB,故△PAB为等腰直角三角形,而点E是棱PB的中点,所以AE⊥PB.由题意知BC⊥AB,又AB是PB在面ABCD内的射影,由三垂线定理得BC⊥PB,从而BC⊥平面PAB,故BC⊥AE.因为AE⊥PB,AE⊥BC,所以AE⊥平面PBC.(Ⅱ)解:由(Ⅰ)知BC⊥平面PAB,又AD∥BC,得AD⊥平面PAB,故AD⊥AE.在Rt△PAB中,PA=AB=,AE=PB==1.从而在Rt△DAE中,DE==.在Rt△CBE中,CE==,又CD=,所以△CED为等边三角形,取CE的中点F,连结DF,则DF⊥CE,∵BE=BC=1,且BC⊥BE,则△EBC为等腰直角三角形,连结BF,则BF⊥CE,所以∠BFD为所求的二面角的平面角,连结BD,在△BFD中,DF=CD=,BF=,BD==,所以cos∠BFD==﹣,∴二面角B﹣EC﹣D的平面角的余弦值为﹣.【点评】本题考查直线与平面垂直的证明,考查二面角的余弦值的求法,解题时要认真审题,注意向量法的合理运用.7.如图所示,四棱锥P ABCD的底面ABCD是平行四边形,BA=BD=,AD=2,PA=PD=,E,F分别是棱AD,PC的中点,二面角PADB为60°.(1)证明:平面PBC⊥平面ABCD;(2)求直线EF与平面PBC所成角的正弦值.答案及解析:7.证明:(1)连接PE,BE,∵PA=PD,BA=BD,而E为AD中点,∴PE⊥AD,BE⊥AD,∴∠PEB为二面角P﹣AD﹣B的平面角.在△PAD中,由PA=PD=,AD=2,解得PE=2.在△ABD中,由BA=BD=,AD=2,解得BE=1.在△PEB中,PE=2,BE=1,∠PEB=60˚,由余弦定理,解得PB==,∴∠PBE=90˚,即BE⊥PB.又BC∥AD,BE⊥AD,∴BE⊥BC,∴BE⊥平面PBC.又BE⊂平面ABCD,∴平面PBC⊥平面ABCD.解:(2)连接BF,由(1)知,BE⊥平面PBC,∴∠EFB为直线EF与平面PBC所成的角.∵PB=,∠ABP为直角,MB=PB=,∴AM=,∴EF=.又BE=1,∴在直角三角形EBF中,sin∠EFB==.∴直线EF与平面PBC所成角的正弦值为.考点:直线与平面所成的角;平面与平面垂直的判定.专题:证明题;转化思想;综合法;空间位置关系与距离;空间角.分析:(1)连接PE,BE,由已知推导出∠PEB为二面角P﹣AD﹣B的平面角,推导出BE⊥PB,BE⊥BC,由此能证明平面PBC⊥平面ABCD.(2)连接BF,由BE⊥平面PBC,得∠EFB为直线EF与平面PBC所成的角,由此能求出直线EF与平面PBC所成角的正弦值.解答:证明:(1)连接PE,BE,∵PA=PD,BA=BD,而E为AD中点,∴PE⊥AD,BE⊥AD,∴∠PEB为二面角P﹣AD﹣B的平面角.在△PAD中,由PA=PD=,AD=2,解得PE=2.在△ABD中,由BA=BD=,AD=2,解得BE=1.在△PEB中,PE=2,BE=1,∠PEB=60˚,由余弦定理,解得PB==,∴∠PBE=90˚,即BE⊥PB.又BC∥AD,BE⊥AD,∴BE⊥BC,∴BE⊥平面PBC.又BE⊂平面ABCD,∴平面PBC⊥平面ABCD.解:(2)连接BF,由(1)知,BE⊥平面PBC,∴∠EFB为直线EF与平面PBC所成的角.∵PB=,∠ABP为直角,MB=PB=,∴AM=,∴EF=.又BE=1,∴在直角三角形EBF中,sin∠EFB==.∴直线EF与平面PBC所成角的正弦值为.点评:本题考查面面垂直的证明,考查线面角的正弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养8.(15分)(2010秋•杭州校级期末)如图,已知△BCD中,∠BCD=90°,AB⊥平面BCD,BC=CD=1,分别为AC、AD的中点.(1)求证:平面BEF⊥平面ABC;(2)求直线AD与平面BEF所成角的正弦值.答案及解析:8.【考点】平面与平面垂直的判定;直线与平面所成的角.【专题】计算题;证明题.【分析】(1)通过证明CD⊥平面ABC,CD∥EF,说明EF⊂平面BEF,即可证明平面BEF⊥平面ABC;(2)过A作AH⊥BE于H,连接HF,可得AH⊥平面BEF,推出∠AFH为直线AD与平面BEF所成角.在Rt△AFH中,求直线AD与平面BEF所成角的正弦值.【解答】解:(1)证明:∵AB⊥平面BCD,∴AB⊥CD.又∵CD⊥BC,∴CD⊥平面ABC.∵E、F分别为AC、AD的中点,∴EF∥CD.∴EF⊥平面ABC,∵EF⊂平面BEF,∴平面BEF⊥平面ABC.(2)过A作AH⊥BE于H,连接HF,由(1)可得AH⊥平面BEF,∴∠AFH为直线AD与平面BEF所成角.在Rt△ABC中,为AC中点,∴∠ABE=30°,∴.在Rt△BCD中,BC=CD=1,∴.∴在Rt△ABD中,∴.∴在Rt△AFH中,,∴AD与平面BEF所成角的正弦值为.【点评】证明两个平面垂直,关键在一个面内找到一条直线和另一个平面垂直;利用三垂线定理找出二面角的平面角,解三角形求出此角,是常用方法.9.答案及解析:9.10.(12分)(2015秋•拉萨校级期末)如图,边长为2的正方形ABCD中,(1)点E是AB的中点,点F是BC的中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于点A′.求证:A′D⊥EF(2)当BE=BF=BC时,求三棱锥A′﹣EFD的体积.答案及解析:10.【考点】直线与平面垂直的性质;棱柱、棱锥、棱台的体积.【专题】空间位置关系与距离.【分析】(1)由正方形ABCD知∠DCF=∠DAE=90°,得A'D⊥A'F且A'D⊥A'E,所以A'D⊥平面A'EF.结合EF⊂平面A'EF,得A'D⊥EF;(2)由勾股定理的逆定理,得△A'EF是以EF为斜边的直角三角形,而A'D是三棱锥D﹣A'EF的高线,可以算出三棱锥D﹣A'EF的体积,即为三棱锥A'﹣DEF的体积.【解答】解:(1)由正方形ABCD知,∠DCF=∠DAE=90°,∴A'D⊥A'F,A'D⊥A'E,∵A'E∩A'F=A',A'E、A'F⊆平面A'EF.∴A'D⊥平面A'EF.又∵EF⊂平面A'EF,∴A'D⊥EF.(2)由四边形ABCD为边长为2的正方形故折叠后A′D=2,A′E=A′F=,EF=则cos∠EA′F==则sin∠EA′F==•A′E•A′F•sin∠EA′F=故△EA′F的面积S△EA′F由(1)中A′D⊥平面A′EF可得三棱锥A'﹣EFD的体积V=××2=.【点评】本题以正方形的翻折为载体,证明两直线异面垂直并且求三棱锥的体积,着重考查空间垂直关系的证明和锥体体积公式等知识,属于中档题.11.(12分)(2015秋•沧州月考)如图,在△ABC中,AO⊥BC于O,OB=2OA=2OC=4,点D,E,F分别为OA,OB,OC的中点,BD与AE相交于H,CD与AF相交于G,将△ABO 沿OA折起,使二面角B﹣OA﹣C为直二面角.(Ⅰ)在底面△BOC的边BC上是否存在一点P,使得OP⊥GH,若存在,请计算BP的长度;若不存在,请说明理由;(Ⅱ)求二面角A﹣GH﹣D的余弦值.答案及解析:11.【考点】用空间向量求平面间的夹角;直线与平面垂直的性质;二面角的平面角及求法.【专题】数形结合;向量法;空间位置关系与距离;空间角;空间向量及应用.【分析】(Ⅰ)根据条件便知H,G分别为△AOB,△AOC的重心,从而有GH∥EF∥BC,并可说明∠BOC为直角,过O作OP⊥BC,从而有OP⊥GH,而根据摄影定理便有,这样即可求出BP的长度;(Ⅱ)根据上面知OB,OC,OA三直线两两垂直,分别以这三直线为x,y,z轴,建立空间直角坐标系,从而可以根据条件求出图形上一些点的坐标,从而可以得到向量的坐标,可设平面AGH的法向量为,而根据即可求出,同样的方法可以求出平面DGH的一个法向量,根据cos=即可得出二面角A﹣GH﹣D的余弦值.【解答】解:(Ⅰ)H,G分别为△AOB和△AOC的重心;∴;连接EF,则GH∥EF;由已知,EF∥BC,∴GH∥BC;∵OA⊥OB,OA⊥OC,二面角B﹣OA﹣C为直二面角;∴∠BOC为直角;∴在Rt△BOC中,过O作BC的垂线,垂足为P,OP⊥BC,又BC∥GH;∴OP⊥GH,则由摄影定理得:OB2=BP•BC;∴;(Ⅱ)分别以OB,OC,OA为x,y,z轴,建立如图所示空间直角坐标系,则:O(0,0,0),A(0,0,2),D(0,0,1),B(4,0,0),C(0,2,0),H(),;∴,;设为平面AGH的法向量,则:;取x1=1,则y1=2,z1=1,∴;设为平面DGH的法向量,则:;取x2=1,则;∴;∴由图可知二面角A﹣GH﹣D为锐角,∴该二面角的余弦值为.【点评】考查三角形重心的概念及其性质,平行线分线段成比例,三角形中位线的性质,以及二面角的平面角的定义,直角三角形的摄影定理的内容,建立空间直角坐标系,利用空间向量解决二面角问题的方法,平面的法向量的概念及求法,能求空间点的坐标,根据点的坐标求向量的坐标,向量垂直的充要条件,以及向量夹角的余弦公式,清楚两平面所成二面角的大小和两平面的法向量夹角的关系.12.(12分)(2014•芜湖模拟)如图,E是以AB为直径的半圆上异于A、B的点,矩形ABCD 所在的平面垂直于该半圆所在的平面,且AB=2AD=2.(1)求证:EA⊥EC;(2)设平面ECD与半圆弧的另一个交点为F.①试证:EF∥AB;②若EF=1,求三棱锥E﹣ADF的体积.答案及解析:12.【考点】直线与平面垂直的性质;棱柱、棱锥、棱台的体积;直线与平面平行的性质.【专题】空间位置关系与距离.【分析】(1)利用面面垂直的性质,可得BC⊥平面ABE,再利用线面垂直的判定证明AE⊥面BCE,即可证得结论;(2)①先证明AB∥面CED,再利用线面平行的性质,即可证得结论;②取AB中点O,EF的中点O′,证明AD⊥平面ABE,利用等体积,即可得到结论.【解答】(1)证明:∵平面ABCD⊥平面ABE,平面ABCD∩平面ABE=AB,BC⊥AB,BC⊂平面ABCD∴BC⊥平面ABE∵AE⊂平面ABE,∴BC⊥AE∵E在以AB为直径的半圆上,∴AE⊥BE∵BE∩BC=B,BC,BE⊂面BCE∴AE⊥面BCE∵CE⊂面BCE,∴EA⊥EC;(2)①证明:设面ABE∩面CED=EF∵AB∥CD,AB⊄面CED,CD⊂面CED,∴AB∥面CED,∵AB⊂面ABE,面ABE∩面CED=EF∴AB∥EF;②取AB中点O,EF的中点O′,在Rt△OO′F中,OF=1,O′F=,∴OO′=∵BC⊥面ABE,AD∥BC∴AD⊥平面ABE∴V E﹣ADF =V D﹣AEF===【点评】本题考查面面垂直的性质,线面垂直的判定与性质,考查线面垂直,考查三棱锥体积的计算,考查学生分析解决问题的能力,属于中档题.13.(12分)(2014•浙江模拟)如图,在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AB=5,点D是AB的中点.(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1.答案及解析:13.【考点】直线与平面垂直的性质;直线与平面平行的判定.【专题】综合题;空间位置关系与距离.【分析】(1)利用勾股定理的逆定理可得AC⊥BC.利用线面垂直的性质定理可得CC1⊥AC,再利用线面垂直的判定定理即可证明结论;(2)利用直三棱柱的性质、正方形的性质、三角形的中位线定理即可得出ED∥AC1,再利用线面平行的判定定理即可证明结论【解答】证明:(1)因为三棱柱ABC﹣A1B1C1为直三棱柱,所以C1C⊥平面ABC,所以C1C⊥AC.又因为AC=3,BC=4,AB=5,所以AC2+BC2=AB2,所以AC⊥BC.又C1C∩BC=C,所以AC⊥平面CC1B1B,所以AC⊥BC1.(2)连结C1B交CB1于E,再连结DE,由已知可得E为C1B的中点,又∵D为AB的中点,∴DE为△BAC1的中位线.∴AC1∥DE又∵DE⊂平面CDB1,AC1⊄平面CDB1∴AC1∥平面CDB1.【点评】熟练掌握勾股定理的逆定理、线面垂直的判定和性质定理、直三棱柱的性质、正方形的性质、三角形的中位线定理、线面平行的判定定理是解题的关键.14.如图,在三棱锥S﹣ABC中,SB⊥底面ABC,且SB=AB=2,BC=,D、E 分别是SA、SC的中点.(I)求证:平面ACD⊥平面BCD;(II)求二面角S﹣BD﹣E的平面角的大小.答案及解析:14.【考点】用空间向量求平面间的夹角;平面与平面垂直的判定.【专题】空间位置关系与距离;空间角.【分析】(Ⅰ)根据面面垂直的判定定理证明AD⊥平面BCD即可证明平面ACD⊥平面BCD.(Ⅱ)建立空间直角坐标系,利用向量法即可求二面角S﹣BD﹣E的余弦值.【解答】证明:(I)∵∠ABC=,∴BA⊥BC,建立如图所示的坐标系,则C(0,,0),A(2,0,0),D(1,0,1),E(0,,1),S(0,0,2),则=(﹣1,0,1),=(0,,0),=(1,0,1),则•=(﹣1,0,1)•(0,,0)=0,•=(﹣1,0,1)•(1,0,1)=﹣1+1=0,则⊥,⊥,即AD⊥BC,AD⊥BD,∵BC∩BD=B,∴AD⊥平面BCD;∵AD⊂平面BCD;∴平面ACD⊥平面BCD;(II)=(0,,1),则设平面BDE的法向量=(x,y,1),则,即,解得x=﹣1,y=,即=(﹣1,,1),又平面SBD的法向量=(0,,0),∴cos<,>==,则<,>=,即二面角S﹣BD﹣E的平面角的大小为.【点评】本题主要考查空间面面垂直的判定,以及二面角的求解,利用向量法是解决二面角的常用方法.15.如图,在四棱锥P﹣ABCD中,AD∥BC,AB⊥AD,AB⊥PA,BC=2AB=2AD=4BE,平面PAB⊥平面ABCD,(Ⅰ)求证:平面PED⊥平面PAC;(Ⅱ)若直线PE与平面PAC所成的角的正弦值为,求二面角A﹣PC﹣D的平面角的余弦值.答案及解析:15.【考点】用空间向量求平面间的夹角;平面与平面垂直的判定;二面角的平面角及求法.【专题】计算题;空间位置关系与距离;空间角.【分析】(I)由面面垂直的性质定理证出PA⊥平面ABCD,从而得到AB、AD、AP两两垂直,因此以AB、AD、AP为x轴、y轴、z轴,建立坐标系o﹣xyz,得A、D、E、C、P的坐标,进而得到、、的坐标.由数量积的坐标运算公式算出且,从而证出DE⊥AC且DE⊥AP,结合线面垂直判定定理证出ED⊥平面PAC,从而得到平面PED⊥平面PAC;(II)由(Ⅰ)得平面PAC的一个法向量是,算出、夹角的余弦,即可得到直线PE与平面PAC所成的角θ的正弦值,由此建立关于θ的方程并解之即可得到λ=2.利用垂直向量数量积为零的方法,建立方程组算出=(1,﹣1,﹣1)是平面平面PCD的一个法向量,结合平面PAC的法向量,算出、的夹角余弦,再结合图形加以观察即可得到二面角A﹣PC﹣D的平面角的余弦值.【解答】解:(Ⅰ)∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,AB⊥PA∴PA⊥平面ABCD结合AB⊥AD,可得分别以AB、AD、AP为x轴、y轴、z轴,建立空间直角坐标系o﹣xyz,如图所示…(2分)可得A(0,0,0)D(0,2,0),E(2,1,0),C(2,4,0),P(0,0,λ)(λ>0)∴,,得,,∴DE⊥AC且DE⊥AP,∵AC、AP是平面PAC内的相交直线,∴ED⊥平面PAC.(4分)∵ED⊂平面PED∴平面PED⊥平面PAC(6分)(Ⅱ)由(Ⅰ)得平面PAC的一个法向量是,设直线PE与平面PAC所成的角为θ,则,解之得λ=±2∵λ>0,∴λ=2,可得P的坐标为(0,0,2)(8分)设平面PCD的一个法向量为=(x0,y0,z0),,由,,得到,令x0=1,可得y0=z0=﹣1,得=(1,﹣1,﹣1)(10分)∴cos<,(11分)由图形可得二面角A﹣PC﹣D的平面角是锐角,∴二面角A﹣PC﹣D的平面角的余弦值为.(12分)【点评】本题在四棱锥中证明面面垂直,并且在线面所成角的正弦情况下求二面角A﹣PC ﹣D的余弦值.着重考查了线面垂直、面面垂直的判定定理和利用空间向量研究直线与平面所成角和二面角大小的方法,属于中档题.16.如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD;(Ⅱ)若PD=AD,求二面角A﹣PB﹣C的余弦值.答案及解析:16.(Ⅰ)证明:因为∠DAB=60°,AB=2AD,由余弦定理得BD=,从而BD2+AD2=AB2,故BD⊥AD又PD⊥底面ABCD,可得BD⊥PD所以BD⊥平面PAD.故PA⊥BD(Ⅱ)如图,以D为坐标原点,AD的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D﹣xyz,则A(1,0,0),B(0,,0),C(﹣1,,0),P(0,0,1).=(﹣1,,0),=(0,,﹣1),=(﹣1,0,0),设平面PAB的法向量为=(x,y,z),则即,因此可取=(,1,)设平面PBC的法向量为=(x,y,z),则,即:可取=(0,1,),cos<>==故二面角A﹣PB﹣C的余弦值为:﹣.考点:直线与平面垂直的性质;用空间向量求平面间的夹角.专题:计算题;证明题;综合题;数形结合;转化思想.分析:(Ⅰ)因为∠DAB=60°,AB=2AD,由余弦定理得BD=,利用勾股定理证明BD⊥AD,根据PD⊥底面ABCD,易证BD⊥PD,根据线面垂直的判定定理和性质定理,可证PA⊥BD;(Ⅱ)建立空间直角坐标系,写出点A,B,C,P的坐标,求出向量,和平面PAB的法向量,平面PBC的法向量,求出这两个向量的夹角的余弦值即可.解答:(Ⅰ)证明:因为∠DAB=60°,AB=2AD,由余弦定理得BD=,从而BD2+AD2=AB2,故BD⊥AD又PD⊥底面ABCD,可得BD⊥PD所以BD⊥平面PAD.故PA⊥BD(Ⅱ)如图,以D为坐标原点,AD的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D﹣xyz,则A(1,0,0),B(0,,0),C(﹣1,,0),P(0,0,1).=(﹣1,,0),=(0,,﹣1),=(﹣1,0,0),设平面PAB的法向量为=(x,y,z),则即,因此可取=(,1,)设平面PBC的法向量为=(x,y,z),则,即:可取=(0,1,),cos<>==故二面角A﹣PB﹣C的余弦值为:﹣.点评:此题是个中档题.考查线面垂直的性质定理和判定定理,以及应用空间向量求空间角问题,查了同学们观察、推理以及创造性地分析问题、解决问题能力.17.如图,在三棱锥P﹣ABC中,∠ABC=90°,PA⊥平面ABC,E,F分别为PB,PC的中点.(1)求证:EF∥平面ABC;(2)求证:平面AEF⊥平面PAB.答案及解析:17.【考点】平面与平面垂直的判定;直线与平面平行的判定.【专题】空间位置关系与距离.【分析】(1)根据三角形中位线定理可得EF∥BC,进而根据线面平行的判定定理可得EF∥平面ABC;(2)根据PA⊥平面ABC,可得PA⊥BC,结合∠ABC=90°,及线面垂直的判定定理可得BC⊥平面PAB,进而由线面垂直的第二判定定理可得EF平面PAB,最后由面面垂直的判定定理可得平面AEF⊥平面PAB.【解答】证明:(1)∵E,F分别为PB,PC的中点.∴EF∥BC,又∵BC⊂平面ABC,EF⊄平面ABC,∴EF∥平面ABC;(2)∵PA⊥平面ABC,BC⊂平面ABC,∴PA⊥BC,又∵∠ABC=90°,∴AB⊥BC,又∵PA∩AB=A,PA,AB⊂平面PAB,∴BC⊥平面PAB,由(1)中EF∥BC,∴EF⊥平面PAB,又∵EF⊂平面AEF,∴平面AEF⊥平面PAB.【点评】本题考查的知识点是线面平行的判定定理,线面垂直的判定定理,面面垂直的判定定理,是空间线面关系的简单综合应用,难度中档.18.(14分)如图,已知AF⊥平面ABCD,四边形ABEF为矩形,四边形ABCD为直角梯形,∠DAB=90°,AB∥CD,AD=AF=CD=2,AB=4.(Ⅰ)求证:AC⊥平面BCE;(Ⅱ)求三棱锥A﹣CDE的体积;(Ⅲ)线段EF上是否存在一点M,使得BM⊥CE?若存在,确定M点的位置;若不存在,请说明理由.答案及解析:18.【考点】棱柱、棱锥、棱台的体积;直线与平面垂直的判定.【专题】空间位置关系与距离.【分析】(I)如图所示,取AB的中点N,连接CN,可得四边形ADCN是正方形,可得NA=NB=NC,可得AC⊥CB,利用AF⊥平面ABCD,AF∥BE,可得BE⊥平面ABCD,即可证明.=V三棱锥E﹣ACD=即可得出.(II)利用V三棱锥A﹣CDE(III)线段EF上存在一点M为线段EF的中点,使得BM⊥CE.连接MN,BM,EN,则四边形BEMN为正方形,可得BM⊥EN,利用线面面面垂直的判定与性质定理可得:CN⊥平面ABEF,可得CN⊥BM,又BM⊥CE.即可证明BM⊥平面CEN.【解答】(I)证明:如图所示,取AB的中点N,连接CN,则四边形ADCN是正方形,可得NA=NB=NC,∴AC⊥CB,∵AF⊥平面ABCD,AF∥BE,∴BE⊥平面ABCD,∴BE⊥AC,又BE∩BC=B,∴AC⊥平面BCE.=V三棱锥E﹣ACD===.(II)解:V三棱锥A﹣CDE(III)解:线段EF上存在一点M为线段EF的中点,使得BM⊥CE.连接MN,BM,EN,则四边形BEMN为正方形,∴BM⊥EN,∵CN⊥AB,平面ABEF⊥平面ABCD,平面ABEF∩平面ABCD=AB,∴CN⊥平面ABEF,∴CN⊥BM,又CN∩EN=N,∴BM⊥平面CEN,∴BM⊥CE.【点评】本题考查了线面面面垂直的判定与性质定理、正方形的判定与性质定理、三棱锥的体积计算公式,考查了推理能力与计算能力,属于中档题.19.(13分)如图,在正方体A1B1C1D1﹣ABCD中,(1)在正方体的12条棱中,与棱AA1是异面直线的有几条(只要写出结果)(2)证明:AC∥平面A1BC1;(3)证明:AC⊥平面BDD1B1.答案及解析:19.【考点】直线与平面垂直的判定;直线与平面平行的判定.【专题】证明题;数形结合;数形结合法;空间位置关系与距离.【分析】(1)画出正方体ABCD﹣A1B1C1D1,根据异面直线的概念即可找出与棱AA1异面的棱.(2)连接AC,A1C1,则A1C1∥AC,利用线面平行的判定定理即可证明;(3)由DD1⊥面AC,知DD1⊥AC,由DD1⊥BD,能够证明AC⊥平面BDD1B1.【解答】解:(1)与棱AA1异面的棱为:CD,C1D1,BC,B1C1,共4条.(2)证明:连接AC,A1C1,则A1C1∥AC,∵AC⊄平面A1BC1,A1C1⊂平面A1BC1,∴AC∥平面A1BC1;(3)证明:∵DD1⊥面AC,AC⊂平面AC,∴DD1⊥AC,∵AC⊥BD,DD1∩BD=D,BD⊂平面BDD1B1,DD1⊂平面BDD1B1∴AC⊥平面BDD1B1.【点评】考查异面直线的概念,直线与平面垂直的证明,直线与平面平行的判定,解题时要认真审题,仔细解答,注意合理地进行等价转化,属于中档题.20.如图,在正方体ABCD﹣A1B1C1D1中,(1)证明:BC1⊥面A1B1CD;(2)求直线A1B和平面A1B1CD所成的角.答案及解析:20.【考点】直线与平面所成的角;直线与平面垂直的判定.【分析】(1)要证BC1⊥面A1B1CD;应通过证明A1B1⊥BC1.BC1⊥B1C两个关系来实现,两关系容易证明.(2)因为BC1⊥平面A1B1CD,所以A1O为斜线A1B在平面A1B1CD内的射影,所以∠BA1O 为A1B与平面A1B1CD所成的角.在RT△A1BO中求解即可.【解答】解:(1)连接B1C交BC1于点O,连接A1O.在正方体ABCD﹣A1B1C1D1中因为A1B1⊥平面BCC1B1.所以A1B1⊥BC1.又∵BC1⊥B1C,又BC1∩B1C=O∴BC1⊥平面A1B1CD(2)因为BC1⊥平面A1B1CD,所以A1O为斜线A1B在平面A1B1CD内的射影,所以∠BA1O 为A1B与平面A1B1CD所成的角.设正方体的棱长为a在RT△A1BO中,A1B=a,BO=a,所以BO=A1B,∠BA1O=30°,即直线A1B和平面A1B1CD所成的角为30°.【点评】本题考查空间直线与平面垂直关系的判断,线面角大小求解,考查空间想象能力、推理论证、计算、转化能力.21.如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,E是PC的中点.(1)证明:PA∥平面EDB;(2)证明:平面PAC⊥平面PDB.答案及解析:21.【考点】平面与平面垂直的判定;直线与平面平行的判定.【专题】证明题;转化思想;综合法;空间位置关系与距离.【分析】(1)欲证PA∥平面EDB,根据直线与平面平行的判定定理可知只需证PA与平面EDB内一直线平行,连接AC,交BD于O,连接EO,根据中位线定理可知EO∥PA,PA⊄平面EDB,EO⊂平面EDB,满足定理所需条件;(2)证明AC⊥平面PBD,即可证明平面PAC⊥平面PDB.【解答】证明:(1)设AC与BD相交于点O,则O为AC的中点.∵E是P的中点,∴EO∥PA又∵EO⊂平面EDB,PA⊄平面EDB,∴PA∥平面EDB;(2)∵PO⊥平面ABCD,∴PD⊥AC又∵四边形ABCD为正方形,∴AC⊥BD从而AC⊥平面PBD,∴平面PAC⊥平面PBD.【点评】本题考查直线与平面平行的判定,以及平面与平面垂直的判定,考查空间想象能力,逻辑思维能力,计算能力,是中档题.22.如图,在直三棱柱ABC=A1B1C1中,AD⊥平面A1BC,其垂足D落在直线A1B上.(1)求证:BC⊥A1B;(2)若AD=,AB=BC=2,P为AC的中点,求二面角P﹣A1B﹣C的平面角的余弦值.答案及解析:22.【考点】用空间向量求平面间的夹角;空间中直线与直线之间的位置关系.【专题】空间位置关系与距离;空间角.【分析】(Ⅰ)由已知得A1A⊥平面ABC,A1A⊥BC,AD⊥BC.由此能证明BC⊥A1B.(Ⅱ)由(Ⅰ)知BC⊥平面A1AB,从而BC⊥AB,以B为原点建立空间直角坐标系B﹣xyz,利用向量法能求出二面角P﹣A1B﹣C的平面角的余弦值.【解答】(Ⅰ)证明:∵三棱柱ABC﹣A1B1C1为直三棱柱,∴A1A⊥平面ABC,又BC⊂平面ABC,∴A1A⊥BC,∵AD⊥平面A1BC,且BC⊂平面A1BC,∴AD⊥BC.又AA1⊂平面A1AB,AD⊂平面A1AB,A1A∩AD=A,∴BC⊥平面A1AB,又A1B⊂平面A1BC,∴BC⊥A1B.(Ⅱ)解:由(Ⅰ)知BC⊥平面A1AB,AB⊂平面A1AB,从而BC⊥AB,如图,以B为原点建立空间直角坐标系B﹣xyz∵AD⊥平面A1BC,其垂足D落在直线A1B上,∴AD⊥A1B.在Rt△ABD中,AD=,AB=2,sin∠ABD==,∠ABD=60°,在直三棱柱ABC﹣A1B1C1中,A1A⊥AB.在Rt△ABA1中,AA1=AB•tan60°=2,则B(0,0,0),A(0,2,0),C(2,0,0),P(1,1,0),A 1(0,2,2),,=(0,2,2),,设平面PA1B的一个法向量,则,即,得,设平面CA1B的一个法向量,则,即,得,,∴二面角P﹣A1B﹣C平面角的余弦值是.…【点评】本题考查异面直线垂直的证明,考查二面角的余弦值的求法,解题时要认真审题,注意空间思维能力的培养.23.(16分)如图,在正方体ABCD﹣A1B1C1D1的棱长为a,E为棱AB上的一动点.(1)若E为棱AB的中点,①求四棱锥B1﹣BCDE的体积②求证:面B1DC⊥面B1DE(2)若BC1∥面B1DE,求证:E为棱AB的中点.答案及解析:23.【考点】棱柱、棱锥、棱台的体积;直线与平面平行的判定;平面与平面垂直的判定.【专题】数形结合;数形结合法;空间位置关系与距离.【分析】(1)①四棱锥B1﹣BCDE的底面为直角梯形BEDC,棱锥的高为B1B,代入体积公式即可;②面B1DC∩面B1DE=B1D,故只需在平面B1DE找到垂直于交线B1D的直线即可,由DE=B1E=a可易知所找直线为等腰△EB1D底边中线;(2)辅助线同上,由中位线定理可得OF∥DC,且OF=DC,从而得出OF∥EB,由BC1∥面B1DE可得EO∥B1C,故四边形OEBF是平行四边形,得出结论.【解答】证明:(1)①∵正方体ABCD﹣A1B1C1D1∴B1B平面BEDC,•B1B=•(a+)•a•a=.∴V=•S梯形BCDE②取B1D的中点O,设BC1∩B1C=F,连接OF,∵O,F分别是B1D与B1C的中点,∴OF∥DC,且OF=DC,又∵E为AB中点,∴EB∥DC,且EB=DC,∴OF∥EB,OF=EB,即四边形OEBF是平行四边形,∴OE∥BF,∵DC⊥平面BCC1B1,BC1⊂平面BCC1B1,∴BC1⊥DC,∴OE⊥DC.又BC1⊥B1C,∴OE⊥B1C,又∵DC⊂平面B1DC,B1C⊂平面B1DC,DC∩B1C=C,∴OE⊥平面B1DC,。
立体几何训练及答案

空间几何体的结构及其三视图和直观图一、选择题1.下列命题中正确的个数是()①由五个面围成的多面体只能是四棱锥;②用一个平面去截棱锥便可得到棱台;③仅有一组对面平行的五面体是棱台;④有一个面是多边形,其余各面是三角形的几何体是棱锥.A.0个B.1个C.2个D.3个【解析】对于①,五个面围成的多面体也可以是三棱柱或三棱台,故①错;对于②,当平面与棱锥底面不平行时,截得的几何体不是棱台,故②错;对于③,仅有一组对面平行的五面体也可能是三棱柱,故③错;对于④,当三角形面没有一个公共顶点时,也不是棱锥,故④错.【答案】 A2.(2013·青岛质检)将长方体截去一个四棱锥,得到的几何体如图7-1-11所示,则该几何体的侧视图为()图7-1-11【解析】如图所示,点D1的投影为C1,点D的投影为C,点A的投影为B,故选D.【答案】 D3.如图7-1-12所示正三棱柱ABC—A1B1C1的主视图(又称正视图)是边长为4的正方形,则此正三棱柱的侧视图(又称左视图)的面积为()图7-1-12A.16 B.2 3C.4 3 D.8 3【解析】由主视图知,正三棱柱底面边长为4,侧棱长为4,则正三棱柱的侧视图是高为4,底边长为23的矩形,从而侧视图的面积为S=4×23=侧8 3.【答案】 D4.(2013·武汉模拟)如图7-1-13是一正方体被过棱的中点M、N和顶点A、D、C1的两个截面截去两个角后所得的几何体,则该几何体的正视图为()图7-1-13【解析】由几何体知,边界线AM可视,DC1不可视,且点M在正方体后侧面上的射影是边的中点,故选B.【答案】 B5.(2013·郑州模拟)已知正三棱锥V—ABC的主视图、俯视图如图7-1-14所示,其中VA=4,AC=23,则该三棱锥的左视图的面积为()图7-1-14A.9 B.6C.3 3 D.39【解析】由主视图和俯视图知,正三棱锥的底面边长为23,侧棱长为4,由俯视图知,正三棱锥的左视图是以BC为底边的等腰三角形,其高为正三棱锥的高,因为正三棱锥的高h=23,故左视图的面积S左=12×23×23=6.【答案】 B6.对于长和宽分别相等的两个矩形,给出下列三个命题:①存在三棱柱,其正(主)视图、俯视图如图7-1-15所示;②存在四棱柱,其正(主)视图、俯视图如图7-1-15所示;③存在圆柱,其正(主)视图、俯视图如图7-1-15所示.其中真命题的个数是()图7-1-15A.3 B.2C.1 D.0【解析】只要把底面为等腰直角三角形的直三棱柱的一个侧面放在水平面上,就可以使得这个三棱柱的正视图和俯视图符合要求,故命题①是真命题;把一个正四棱柱的一个侧面放置在水平面上,即可使得这个四棱柱的正视图和俯视图符合要求,命题②是真命题;只要把圆柱侧面的一条母线放置在水平面即符合要求,命题③也是真命题.【答案】 A二、填空题7.如图7-1-16,在正方体ABCD—A1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥P—ABC的主视图与左视图的面积的比值为________.图7-1-16【解析】三棱锥P—ABC的主视图与左视图为底边和高均相等的三角形,故它们的面积相等,面积比值为1.【答案】 18.已知△ABC是边长为a的等边三角形,则其直观图△A′B′C′的面积为________.【解析】如图所示,设△A′B′C′为△ABC的直观图,O′为A′B′的中点.由直观图的画法知A′B′=a,O′C′=12·3a2=3a4,∴S△A′B′C′=12·A′B′·(O′C′·sin 45°)=12·a·(3a4×22)=616a2.即边长为a的等边三角形的直观图的面积为6a2 16.【答案】6a2 169.(2013·长春模拟)已知一几何体的三视图如图7-1-17所示,正视图和侧视图都是矩形,俯视图为正方形,在该几何体上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,这些几何形体是(写出所有正确结论的编号)________.图7-1-17①矩形;②不是矩形的平行四边形;③有三个面为直角三角形,有一个面为等腰三角形的四面体;④每个面都是等腰三角形的四面体;⑤每个面都是直角三角形的四面体.【解析】由该几何体的三视图可知该几何体为底面边长为a,高为b的长方体,这四个顶点的几何形体若是平行四边形,则一定是矩形,故②不正确.【答案】①③④⑤三、解答题10.已知:图①是截去一个角的长方体,试按图示的方向画出其三视图;图②是某几何体的三视图,试说明该几何体的构成.图7-1-18【解】图①几何体的三视图为:图②所示的几何体是上面为正六棱柱,下面为倒立的正六棱锥的组合体. 11.如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).图7-1-19(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图; (2)按照给出的尺寸,求该多面体的体积; 【解】 (1)如图.(2)所求多面体的体积V =V 长方体-V 正三棱锥=4×4×6-13×(12×2×2)×2=2843(cm 3). 12.如图7-1-20是一个几何体的正视图和俯视图.图7-1-20(1)试判断该几何体是什么几何体;(2)画出其侧视图,并求该平面图形(侧视图)的面积.【解】 (1)由该几何体的正视图和俯视图可知该几何体是一个正六棱锥. (2)该几何体的侧视图,如图.其中AB =AC ,AD ⊥BC ,且BC 的长是俯视图正六边形对边间的距离,即BC =3a ,AD 是正棱锥的高,则AD =3a ,所以该平面图形(侧视图)的面积为 S =12×3a ×3a =32a 2.课后作业(四十一) 空间几何体的表面积与体积一、选择题1.(2012·课标全国卷)如图7-2-11,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )图7-2-11A .6B .9C .12D .18【解析】 由题意知,此几何体是三棱锥,其高h =3,相应底面面积为S =12×6×3=9,∴V =13Sh =13×9×3=9.【答案】 B2.长方体的三个相邻面的面积分别为2,3,6,这个长方体的顶点都在同一个球面上,则这个球的面积为( )A.72πB .56πC .14πD .64π【解析】设长方体的过同一顶点的三条棱长分别为a ,b ,c ,则⎩⎨⎧ab =2bc =3ac =6,得⎩⎨⎧a =2b =1,c =3令球的半径为R ,则(2R )2=22+12+32=14, ∴R 2=72,∴S 球=4πR 2=14π. 【答案】 C3.如图7-2-12所示,已知三棱柱ABC —A 1B 1C 1的所有棱长均为1,且AA 1⊥底面ABC ,则三棱锥B 1—ABC 1的体积为( )图7-2-12A.312B.34C.612D.64【解析】 在△ABC 中,BC 边长的高为32,即棱锥A —BB 1C 1上的高为32,又S △BB 1C 1=12,∴VB 1—ABC 1=VA —BB 1C 1=13×32×12=312. 【答案】 A4.(2013·西安八校联考)若一个底面是正三角形的三棱柱的正视图如图7-2-13所示,其顶点都在一个球面上,则球的表面积为( )图7-2-13A.43πB.163πC.19π3D.19π12【解析】 如图所示,F 、H 是正三棱柱上下底面的中心,则球心O 是FH 的中点,由三视图知AB =2,FH =1,则AE =3, AF =233,OF =12, ∴OA =(12)2+(233)2=1912,∴球的表面积S 球=4πOA 2=19π3. 【答案】 C5.(2013·潍坊模拟)如图7-2-14为某个几何体的三视图,则该几何体的侧面积为( )图7-2-14A .16+4πB .12+4πC .16+8πD .12+8π【解析】 易知该几何体是一个半圆柱和一个三棱柱的组合体,其侧面积为4π+6+10=16+4π.【答案】 A6.(2013·广州模拟)如图7-2-15,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为( )图7-2-15A .4 3B .4C .2 3D .2【解析】 由三视图知,该几何体为四棱锥,如图所示.依题意AB =23,菱形BCDE 中BE =EC =2.∴BO =22-12=3,则AO =AB 2-BO 2=3, 因此V A —BCDE =13·AO ·S 四边形BCDE =13×3×2×232=2 3. 【答案】 C 二、填空题7.(2012·辽宁高考)一个几何体的三视图如图7-2-16所示,则该几何体的表面积为________.图7-2-16【解析】 根据三视图可知几何体是一个长方体挖去一个圆柱,所以S =2×(4+3+12)+2π-2π=38.【答案】 388.圆锥的全面积为15π cm 2,侧面展开图的圆心角为60°,则该圆锥的体积为________cm 3.【解析】 设底面圆的半径为r ,母线长为a ,则侧面积为12×(2πr )a =πra .由题意得⎩⎪⎨⎪⎧πra +πr 2=15ππra =16πa 2,解得⎩⎪⎨⎪⎧r 2=157a 2=36×157,故圆锥的高h =a 2-r 2=53,所以体积为V =13πr 2h =13π×157×53=2537π(cm 3).【答案】 2573π9.一个几何体的三视图如图7-2-17,该几何体的表面积为________.图7-2-17【解析】 该几何体的直观图如图所示,将小长方体的上底面补到大长方体被遮住的部分,则所求的表面积为小长方体的侧面积加上大长方体的表面积,∴S =S 侧+S 表=6×8×2+2×8×2+(2×8+2×10+8×10)×2=360. 【答案】 360 三、解答题10.若一个底面边长为62,侧棱长为6的正六棱柱的所有顶点都在一个球面上,求该球的体积和表面积.【解】 在底面正六边形ABCDEF 中,连接BE 、AD 交于O ,连接BE 1, 则BE =2OE =2DE ,∴BE =6,在Rt △BEE 1中, BE 1=BE 2+E 1E 2=23, ∴2R =23,则R =3,∴球的体积V 球=43πR 3=43π,球的表面积S 球=4πR 2=12π. 11.如图7-2-18,已知某几何体的三视图如下(单位:cm).图7-2-18(1)画出这个几何体的直观图(不要求写画法); (2)求这个几何体的表面积及体积. 【解】 (1)这个几何体的直观图如图所示.(2)这个几何体可看成是正方体AC 1及直三棱柱B 1C 1Q —A 1D 1P 的组合体. 由P A 1=PD 1=2,A 1D 1=AD =2,可得P A 1⊥PD 1. 故所求几何体的表面积S =5×22+2×2×2+2×12×(2)2=(22+42)(cm 2),所求几何体的体积V =23+12×(2)2×2=10(cm 3).12.如图7-2-19,已知平行四边形ABCD 中,BC =2,BD ⊥CD ,四边形ADEF 为正方形,平面ADEF ⊥平面ABCD ,G ,H 分别是DF ,BE 的中点.记CD =x ,V (x )表示四棱锥F —ABCD 的体积.图7-2-19(1)求V (x )的表达式; (2)求V (x )的最大值.【解】 (1)∵平面ADEF ⊥平面ABCD ,交线为AD 且F A ⊥AD ,∴F A ⊥平面ABCD .∵BD ⊥CD ,BC =2,CD =x , ∴F A =2,BD =4-x 2(0<x <2), ∴S ▱ABCD =CD ·BD =x 4-x 2,∴V (x )=13S ▱ABCD ·F A =23x 4-x 2(0<x <2). (2)V (x )=23x 4-x 2=23-x 4+4x 2 =23-(x 2-2)2+4.∵0<x <2,∴0<x 2<4,∴当x 2=2,即x =2时,V (x )取得最大值,且V (x )max =43.课后作业(四十二) 空间点、直线、平面之间的位置关系一、选择题阿1.(2013·台州模拟)以下四个命题中 ①不共面的四点中,其中任意三点不共线;②若点A 、B 、C 、D 共面,点A 、B 、C 、E 共面,则点A 、B 、C 、D 、E 共面;③若直线a 、b 共面,直线a 、c 共面,则直线b 、c 共面; ④依次首尾相接的四条线段必共面. 正确命题的个数是( ) A .0 B .1 C .2D .3【解析】 ①中显然是正确的;②中若A 、B 、C 三点共线则A 、B 、C 、D 、E 五点不一定共面.③构造长方体或正方体,如图显然b 、c 异面故不正确.④中空间四边形中四条线段不共面,故只有①正确.【答案】 B2.已知异面直线a,b分别在平面α,β内,且α∩β=c,那么直线c一定() A.与a,b都相交B.只能与a,b中的一条相交C.至少与a,b中的一条相交D.与a,b都平行【解析】若c与a,b都不相交,则c与a,b都平行,则a∥b与a,b异面相矛盾.【答案】 C3.如图7-3-8所示,ABCD—A1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确的是()图7-3-8A.A,M,O三点共线B.A,M,O,A1不共面C.A,M,C,O不共面D.B,B1,O,M共面【解析】连接A1C1,AC,则A1C1∥AC,∴A1,C1,A,C四点共面,∴A1C⊂平面ACC1A1,∵M∈A1C,∴M∈平面ACC1A1,又M∈平面AB1D1,∴M在平面ACC1A1与平面AB1D1的交线上,同理O在平面ACC1A1与平面AB1D1的交线上.∴A,M,O三点共线.【答案】 A4.如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,这四个点不共面的一个图是( )【解析】 在A 图中分别连接PS ,QR , 易证PS ∥QR ,∴P ,Q ,R ,S 共面; 在C 图中分别连接PQ ,RS , 易证PQ ∥RS ,∴P ,Q ,R ,S 共面.如图,在B 图中过P ,Q ,R ,S 可作一正六边形,故四点共面; D 图中PS 与QR 为异面直线,∴四点不共面,故选D. 【答案】 D5.(2013·青岛质检)如图7-3-9,正三棱柱ABC —A 1B 1C 1的各棱长(包括底面边长)都是2,E ,F 分别是AB ,A 1C 1的中点,则EF 与侧棱C 1C 所成的角的余弦值是( )图7-3-9A.55B.255C.12D .2【解析】 如图,取AC 中点G ,连FG 、EG ,则FG ∥C 1C ,FG =C 1C ;EG ∥BC ,EG =12BC ,故∠EFG 即为EF 与C 1C 所成的角,在Rt △EFG 中,cos ∠EFG =FG FE =25=255.【答案】 B6.设A,B,C,D是空间四个不同的点,在下列命题中,不正确的是() A.若AC与BD共面,则AD与BC共面B.若AC与BD是异面直线,则AD与BC是异面直线C.若AB=AC,DB=DC,则AD=BCD.若AB=AC,DB=DC,则AD⊥BC【解析】由公理1知,命题A正确.对于B,假设AD与BC共面,由A正确得AC与BD共面,这与题设矛盾,故假设不成立,从而结论正确.对于C,如图,当AB=AC,DB=DC,使二面角A—BC—D的大小变化时,AD与BC不一定相等,故不正确.对于D,如图,取BC的中点E,连接AE,DE,则由题设得BC⊥AE,BC ⊥DE.根据线面垂直的判定定理得BC⊥平面ADE,从而AD⊥BC.故D正确.【答案】 C二、填空题7.(2013·合肥质检)如图7-3-10是正四面体的平面展开图,G、H、M、N 分别为DE、BE、EF、EC的中点,在这个正四面体中,图7-3-10①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是________.【解析】还原成正四面体知GH与EF为异面直线,BD与MN为异面直线,GH与MN成60°角,DE⊥MN.【答案】②③④8.(2013·杭州模拟)设a,b,c是空间中的三条直线,下面给出五个命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a∥c;③若a与b相交,b与c相交,则a与c相交;④若a⊂平面α,b⊂平面β,则a,b一定是异面直线;⑤若a,b与c成等角,则a∥b.上述命题中正确的命题是________(只填序号).【解析】由公理4知①正确;当a⊥b,b⊥c时,a与c可以相交、平行,也可以异面,故②不正确;当a与b相交,b与c相交时,a与c可以相交、平行,也可以异面,故③不正确;a⊂α,b⊂β,并不能说明a与b“不同在任何一个平面内”,故④不正确;当a,b与c成等角时,a与b可以相交、平行,也可以异面,故⑤不正确.【答案】①9.如图7-3-11所示,在正三棱柱ABC—A1B1C1中,D是AC的中点,AA1∶AB=2∶1,则异面直线AB1与BD所成的角为________.图7-3-11【解析】 取A 1C 1的中点D 1,连接B 1D 1, 因为D 是AC 的中点, 所以B 1D 1∥BD ,所以∠AB 1D 1即为异面直线AB 1与BD 所成的角. 连接AD 1,设AB =a , 则AA 1=2a ,所以AB 1=3a ,B 1D 1=32a , AD 1=14a 2+2a 2=32a .所以cos ∠AB 1D 1=3a 2+34a 2-94a 22×3a ×32a =12,所以∠AB 1D 1=60°. 【答案】 60° 三、解答题10.如图7-3-12所示,在正方体ABCD —A 1B 1C 1D 1中,E ,F 分别为CC 1,AA 1的中点,画出平面BED 1F 与平面ABCD 的交线.图7-3-12【解】 在平面AA 1D 1D 内,延长D 1F , ∵D 1F 与DA 不平行,∴D 1F 与DA 必相交于一点,设为P ,则P∈D1F,P∈DA.又∵D1F⊂平面BED1F,AD⊂平面ABCD,∴P∈平面BED1F,P∈平面ABCD.又B为平面ABCD与平面BED1F的公共点,连接PB,∴PB即为平面BED1F与平面ABCD的交线.如图所示.11.如图7-3-13所示,在正方体ABCD—A1B1C1D1中,E,F分别为A1A,C1C的中点,求证:四边形EBFD1是菱形.图7-3-13【证明】如图所示,取B1B的中点G,连接GC1,EG,∵GB∥C1F,且GB=C1F,∴四边形C1FBG是平行四边形,∴FB∥C1G,且FB=C1G,∵D1C1∥EG,且D1C1=EG,∴四边形D1C1GE为平行四边形.∴GC1∥D1E,且GC1=D1E,∴FB∥D1E,且FB=D1E,∴四边形EBFD1为平行四边形.又∵FB=FD1,∴四边形EBFD1是菱形.12.已知正方体ABCD—A1B1C1D1中,E、F分别为D1C1、C1B1的中点,AC∩BD=P,A1C1∩EF=Q.求证:(1)D、B、F、E四点共面;(2)若A1C交平面DBFE于R点,则P、Q、R三点共线.【证明】(1)如图所示,因为EF是△D1B1C1的中位线,所以EF∥B1D1.在正方体AC1中,B1D1∥BD,所以EF∥BD.所以EF,BD确定一个平面,即D、B、F、E四点共面.(2)在正方体AC1中,设平面A1ACC1确定的平面为α,又设平面BDEF为β.因为Q∈A1C1,所以Q∈α.又Q∈EF,所以Q∈β.则Q是α与β的公共点,同理,P点也是α与β的公共点.所以α∩β=PQ.又A1C∩β=R,所以R∈A1C,R∈α且R∈β.则R∈PQ,故P、Q、R三点共线.课后作业(四十三) 直线、平面平行的判定及其性质一、选择题1.(2013·威海模拟)设α、β是两个不同的平面,m、n是平面α内的两条不同直线,l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是()A.m∥β且l1∥αB.m∥β且n∥l2C.m∥β且n∥βD.m∥l1且n∥l2【解析】m∥l1,且n∥l2⇒α∥β,但α∥βD/⇒m∥l1且n∥l2,∴“m∥l1,且n∥l2”是“α∥β”的一个充分不必要条件.【答案】 D2.在空间四边形ABCD中,E、F分别是AB和BC上的点,若AE∶EB=CF∶FB=1∶2,则对角线AC和平面DEF的位置关系是() A.平行B.相交C.在平面内D.不能确定【解析】如图,由AEEB=CFFB得AC∥EF.又因为EF⊂平面DEF,AC⊄平面DEF,所以AC∥平面DEF.【答案】 A3.(2013·西安模拟)设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①若m⊥α,n∥α,则m⊥n;②若α∥β,β∥γ,m⊥α,则m⊥γ;③若m∥α,n∥α,则m∥n;④若α⊥γ,β⊥γ,则α∥β.其中正确命题的序号是()A.①和②B.②和③C.③和④D.①和④【解析】对于①,由线面平行的性质及线面垂直的定义可知正确;对于②,由α∥β,β∥γ知α∥γ,由m⊥α知m⊥γ,故②正确;对于③,m与n可能平行,相交或异面,故③错;对于④,α与β可能相交,故④错.【答案】 A4.(2013·石家庄模拟)给出下列关于互不相同的直线l、m、n和平面α、β、γ的三个命题:①若l与m为异面直线,l⊂α,m⊂β,则α∥β;②若α∥β,l⊂α,m⊂β,则l∥m;③若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n.其中真命题的个数为()A .3B .2C .1D .0【解析】 ①中当α与β不平行时,也可能存在符合题意的l 、m . ②中l 与m 也可能异面.③中⎭⎬⎫l ∥γl ⊂ββ∩γ=m ⇒l ∥m ,同理l ∥n ,则m ∥n ,正确. 【答案】 C5.如图7-4-10所示,若Ω是长方体ABCD —A 1B 1C 1D 1被平面EFGH 截去几何体EFGHB 1C 1后得到的几何体,其中E 为线段A 1B 1上异于B 1的点,F 为线段BB 1上异于B 1的点,且EH ∥A 1D 1,则下列结论中不正确的....是()图7-4-10A .EH ∥FGB .四边形EFGH 是矩形C .Ω是棱柱D .Ω是棱台【解析】 ∵EH ∥A 1D 1,∴EH ∥B 1C 1, ∴EH ∥平面BB 1C 1C .由线面平行性质,EH ∥FG . 同理EF ∥GH .且B 1C 1⊥面EB 1F .由直棱柱定义知几何体B 1EF —C 1HG 为直三棱柱, ∴四边形EFGH 为矩形,Ω为五棱柱.故选D. 【答案】 D6.在三棱锥P —ABC 中,点D 在P A 上,且PD =12DA ,过点D 作平行于底面ABC 的平面,交PB ,PC 于点E ,F ,若△ABC 的面积为9,则△DEF 的面积是( )A .1B .2C .4D.94【解析】 由于平面DEF ∥底面ABC ,因此DE ∥AB ,DF ∥AC ,EF ∥BC ,所以DE AB =DF AC =EFBC ,所以△DEF ∽△ABC ,所以S △DEF S △ABC =(13)2,而S △ABC =9,所以S △DEF =1,故选A.【答案】 A 二、填空题7.在四面体A —BCD 中,M 、N 分别是△ACD 、△BCD 的重心,则四面体的四个面中与MN 平行的是________.【解析】 如图,取CD 的中点E .则EM ∶MA =1∶2,EN ∶BN =1∶2, 所以MN ∥AB .所以MN ∥面ABD ,MN ∥面ABC . 【答案】 面ABD 与面ABC8.如图7-4-11所示,棱柱ABC —A 1B 1C 1的侧面BCC 1B 1是菱形,设D 是A 1C 1上的点且A 1B ∥平面B 1CD ,则A 1D ∶DC 1的值为________.图7-4-11【解析】 设BC 1∩B 1C =O ,连接OD ,∵A1B∥平面B1CD且平面A1BC1∩平面B1CD=OD,∴A1B∥OD,∵四边形BCC1B1是菱形,∴O为BC1的中点,∴D为A1C1的中点,则A1D∶DC1=1.【答案】 19.(2013·徐州模拟)如图7-4-12所示,在四面体ABCD中,截面PQMN 是正方形,则在下列结论中,错误的为________.图7-4-12(1)AC⊥BD;(2)AC∥截面PQMN;(3)AC=BD;(4)异面直线PM与BD所成的角为45°.【解析】∵PQMN是正方形,∴MN∥PQ,则MN∥平面ABC,由线面平行的性质知MN∥AC,则AC∥平面PQMN,同理可得MQ∥BD,又MN⊥QM,则AC⊥BD,故(1)(2)正确.又∵BD∥MQ,∴异面直线PM与BD所成的角即为∠PMQ=45°,故(4)正确.【答案】(3)三、解答题10.在多面体ABCDEF中,点O是矩形ABCD的对角线的交点,三角形CDE是等边三角形,棱EF∥BC且EF=12BC.求证:FO∥平面CDE.图7-4-13 【证明】取CD中点M,连接OM,EM,在矩形ABCD中,OM∥BC且OM=12BC,又EF∥BC且EF=12BC,则EF∥OM且EF=OM.所以四边形EFOM为平行四边形,所以FO∥EM.又因为FO⊄平面CDE,且EM⊂平面CDE,所以FO∥平面CDE.11.在长方体ABCD—A1B1C1D1中,AB=BC=1,AA1=2,点M是BC的中点,点N是AA1的中点.图7-4-14(1)求证:MN∥平面A1CD;(2)过N,C,D三点的平面把长方体ABCD—A1B1C1D1截成两部分几何体,求所截成的两部分几何体的体积的比值.【解】(1)证明取AD的中点P,A1D的中点E,连接NE、EC.又∵N是AA1的中点,∴NE 綊AP 綊MC ,∴四边形NECM 为平行四边形, ∴MN ∥EC ,又∵EC ⊂平面A 1CD , MN ⊄平面A 1CD , ∴MN ∥平面A 1CD .(2)取BB 1的中点Q ,连接NQ 、CQ 、ND , 因为点N 是AA 1的中点,所以NQ ∥AB . 因为AB ∥CD ,所以NQ ∥CD ,所以过N 、C 、D 三点的平面NQCD 把长方体ABCD —A 1B 1C 1D 1截成两部分几何体,其中一部分几何体为直三棱柱QBC —NAD ,另一部分几何体为直四棱柱B 1QCC 1—A 1NDD 1.所以S △QBC =12QB ·BC =12×1×1=12. 所以直三棱柱QBC —NAD 的体积 V 1=S △QBC ·AB =12.因为长方体ABCD —A 1B 1C 1D 1的体积V =1×1×2=2. 所以直四棱柱B 1QCC 1—A 1NDD 1的体积 V 2=V -V 1=32,所以V 1V 2=1232=13.所以所截成的两部分几何体的体积的比值为13.12.如图7-4-15所示,在四面体ABCD 中,截面EFGH 平行于对棱AB和CD .图7-4-15(1)判断截面的形状;(2)试问截面在什么位置时其截面面积最大. 【解】 (1)∵AB ∥平面EFGH ,平面EFGH 与平面ABC 和平面ABD 分别交于FG 、EH . ∴AB ∥FG ,AB ∥EH ,∴FG ∥EH ,同理可证EF ∥GH ,∴截面EFGH 是平行四边形. (2)设AB =a ,CD =b ,∠FGH =α.又设FG =x ,GH =y , 则由平面几何知识可得x a =CG BC ,y b =BGBC , 两式相加得x a +y b =1,即y =ba (a -x ), ∴S ▱EFGH =FG ·GH ·sin α=x ·b a ·(a -x )·sin α=b sin αa x (a -x )≤ab sin α4. ∵x >0,a -x >0,且x +(a -x )=a 为定值. ∴当且仅当x =a -x , x =a 2时,S ▱EFGH 最大为ab sin α4.即当截面EFGH 的顶点E 、F 、G 、H 为棱AD 、AC 、BC 、BD 的中点时,截面面积最大.课后作业(四十四) 直线、平面垂直的判定及其性质一、选择题1.(2013·宝鸡模拟)α、β、γ为不同的平面,m ,n ,l 为不同的直线,则m ⊥β的一个充分条件是()A.n⊥α,n⊥β,m⊥αB.α∩γ=m,α⊥γ,β⊥γC.α⊥γ,β⊥γ,m⊥αD.α⊥β,α∩β=l,m⊥l【解析】由n⊥α,n⊥β知α∥β,又m⊥α,∴m⊥β,但当m⊥β时,n⊥α,n⊥β不一定成立,故选A.【答案】 A2.(2013·深圳模拟)设a,b是两条不同的直线,α、β是两个不同的平面,则下列四个命题中正确命题的个数是()①若a⊥b,a⊥α,b⊄α,则b∥α;②若a∥α,a⊥β,则α⊥β;③若a⊥β,α⊥β,则a∥α或a⊂α;④若a⊥b,a⊥α,b⊥β,则α⊥β.A.1 B.2C.3 D.4【解析】由空间线面位置关系容易判断①②③④均正确.【答案】 D3.如图7-5-9,P A⊥正方形ABCD,下列结论中不正确的是()图7-5-9A.PB⊥BC B.PD⊥CDC.PD⊥BD D.P A⊥BD【解析】由CB⊥BA,CB⊥P A,P A∩BA=A,知CB⊥平面P AB,故CB ⊥PB,即A正确;同理B正确;由条件易知D正确,故选C.【答案】 C4.(2013·银川模拟)如图7-5-10正方体ABCD—A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F,且EF=12,则下列结论中错误的是()图7-5-10A.AC⊥BEB.EF∥平面ABCDC.三棱锥A—BEF的体积为定值D.△AEF的面积与△BEF的面积相等【解析】连接BD,则AC⊥平面BB1D1D,BD∥B1D1,从而A、B、C正确.因为点A、B到直线B1D1的距离不相等,所以△AEF与△BEF的面积不相等,故选D.【答案】 D5.如图7-5-11所示,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.将△ADB沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A—BCD.则在三棱锥A—BCD中,下列命题正确的是()图7-5-11A.AD⊥平面BCD B.AB⊥平面BCDC.平面BCD⊥平面ABC D.平面ADC⊥平面ABC【解析】在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD =90°,∴BD⊥CD,又平面ABD⊥平面BCD,且平面ABD∩平面BCD=BD,∴CD⊥平面ABD,∴CD⊥AB,又AD⊥AB,故AB⊥平面ADC,从而平面ABC⊥平面ADC.【答案】 D6.(2013·杭州模拟)如图7-5-12,正三角形P AD所在平面与正方形ABCD 所在平面互相垂直,O为正方形ABCD的中心,M为正方形ABCD内一点,且满足MP=MC,则点M的轨迹为()图7-5-12【解析】取AD的中点E,连接PE,PC,CE.由PE⊥AD知PE⊥平面ABCD,从而平面PEC⊥平面ABCD,取PC、AB的中点F、G,连接DF、DG、FG,由PD=DC知DF⊥PC,由DG⊥EC知,DG⊥平面PEC,又PC⊂平面PEC,∴DG⊥PC,DF∩DG=D,∴PC⊥平面DFG,又点F是PC的中点,因此线段DG上的点满足MP=MC,故选A.【答案】 A二、填空题7.(2012·江苏高考)如图7-5-13,在长方体ABCD-A1B1C1D1中,AB=AD =3 cm,AA1=2 cm,则四棱锥A-BB1D1D的体积为________cm3.图7-5-13【解析】关键是求出四棱锥A-BB1D1D的高.连接AC 交BD 于O ,在长方体中,∵AB =AD =3,∴BD =32且AC ⊥BD .又∵BB 1⊥底面ABCD ,∴BB 1⊥AC .又DB ∩BB 1=B ,∴AC ⊥平面BB 1D 1D ,∴AO 为四棱锥A -BB 1D 1D 的高且AO =12BD =322.∵S 矩形BB 1D 1D =BD ×BB 1=32×2=62,∴VA -BB 1D 1D =13S 矩形BB 1D 1D ·AO =13×62×322=6(cm 3).【答案】 68.如图7-5-14所示,在四棱锥P —ABCD 中,P A ⊥底面ABCD ,且底面各边都相等,M 是PC 上的一动点,当点M 满足________时,平面MBD ⊥平面PCD .(只要填写一个你认为是正确的条件即可).图7-5-14【解析】 由定理可知,BD ⊥PC .∴当DM ⊥PC 时,即有PC ⊥平面MBD ,而PC ⊂平面PCD .∴平面MBD ⊥平面PCD .【答案】 DM ⊥PC (答案不唯一)9.如图7-5-15所示,P A ⊥圆O 所在的平面,AB 是圆O 的直径,C 是圆O 上的一点,E 、F 分别是点A 在PB 、PC 上的正投影,给出下列结论:图7-5-15①AF ⊥PB ;②EF ⊥PB ;③AF ⊥BC ;④AE ⊥平面PBC .其中正确结论的序号是________.【解析】由题意知P A⊥平面ABC,∴P A⊥BC,又AC⊥BC,P A∩AC=A,∴BC⊥平面P AC.∴BC⊥AF.∵AF⊥PC,BC∩PC=C,∴AF⊥平面PBC,∴AF⊥PB,AF⊥BC.又AE⊥PB,AE∩AF=A,∴PB⊥平面AEF.∴PB⊥EF.故①②③正确.【答案】①②③三、解答题10.(2012·江苏高考)如图7-5-16,在直三棱柱ABC-A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D不同于点C),且AD⊥DE,F为B1C1的中点.图7-5-16求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.【证明】(1)因为ABC-A1B1C1是直三棱柱,所以CC1⊥平面ABC.又AD⊂平面ABC,所以CC1⊥AD.又因为AD⊥DE,CC1,DE⊂平面BCC1B1,CC1∩DE=E,所以AD⊥平面BCC1B1.又AD⊂平面ADE,所以平面ADE⊥平面BCC1B1.(2)因为A1B1=A1C1,F为B1C1的中点,所以A1F⊥B1C1.因为CC1⊥平面A1B1C1,且A1F⊂平面A1B1C1,所以CC1⊥A1F.又因为CC1,B1C1⊂平面BCC1B1,CC1∩B1C1=C1,所以A 1F ⊥平面BCC 1B 1.由(1)知AD ⊥平面BCC 1B 1,所以A 1F ∥AD .又AD ⊂平面ADE ,A 1F ⊄平面ADE ,所以A 1F ∥平面ADE .11.(2013·济南模拟)如图7-5-17,在四棱锥S —ABCD 中,平面SAD ⊥平面ABCD .四边形ABCD 为正方形,且P 为AD 的中点,Q 为SB 的中点.图7-5-17(1)求证:CD ⊥平面SAD ;(2)求证:PQ ∥平面SCD ;(3)若SA =SD ,M 为BC 的中点,在棱SC 上是否存在点N ,使得平面DMN ⊥平面ABCD ,并证明你的结论.【解】 (1)证明 因为四边形ABCD 为正方形,所以CD ⊥AD .又平面SAD ⊥平面ABCD ,且平面SAD ∩平面ABCD =AD ,所以CD ⊥平面SAD .(2)证明 取SC 的中点R ,连接QR ,DR .由题意知:PD ∥BC 且PD =12BC .在△SBC 中,Q 为SB 的中点,R 为SC 的中点,所以QR ∥BC 且QR =12BC .所以QR ∥PD 且QR =PD ,则四边形PDRQ 为平行四边形,所以PQ ∥DR .又PQ ⊄平面SCD ,DR ⊂平面SCD ,所以PQ ∥平面SCD .(3)存在点N 为SC 的中点,使得平面DMN ⊥平面ABCD .连接PC 、DM 交于点O ,连接PM 、SP 、NM 、ND 、NO ,因为PD ∥CM ,且PD =CM ,所以四边形PMCD为平行四边形,所以PO=CO.又因为N为SC的中点,所以NO∥SP.易知SP⊥AD,因为平面SAD⊥平面ABCD,平面SAD∩平面ABCD=AD,并且SP⊥AD,所以SP⊥平面ABCD,所以NO⊥平面ABCD.又因为NO⊂平面DMN,所以平面DMN⊥平面ABCD.12.(2012·江西高考)如图7-5-18所示,在梯形ABCD中,AB∥CD,E、F是线段AB上的两点,且DE⊥AB,CF⊥AB,AB=12,AD=5,BC=42,DE=4.现将△ADE,△CFB分别沿DE,CF折起,使A,B两点重合于点G,得到多面体CDEFG.图7-5-18(1)求证:平面DEG⊥平面CFG;(2)求多面体CDEFG的体积.【解】(1)证明因为DE⊥EF,CF⊥EF,所以四边形CDEF为矩形.由GD=5,DE=4,得GE=GD2-DE2=3.由GC=42,CF=4,得FG=GC2-CF2=4,所以EF=5.在△EFG中,有EF2=GE2+FG2,所以EG⊥GF.又因为CF⊥EF,CF⊥FG,所以CF⊥平面EFG.所以CF⊥EG,所以EG⊥平面CFG.又EG⊂平面DEG,所以平面DEG⊥平面CFG.(2)如图,在平面EGF中,过点G作GH⊥EF于点H,则GH=EG·GFEF=125.因为平面CDEF ⊥平面EFG , 所以GH ⊥平面CDEF ,所以V 多面体CDEFG =13S 矩形CDEF ·GH =16.。
立体几何练习题及解答

立体几何练习题及解答《立体几何练习题及解答》练习一:体积计算题目:一个正方体箱子的边长为3cm,请计算该正方体箱子的体积。
解答:正方体的体积计算公式为边长的立方,即V = a³,其中a为正方体的边长。
代入已知条件,正方体箱子的边长a = 3cm。
则体积V = 3³ = 27cm³。
所以该正方体箱子的体积为27cm³。
练习二:表面积计算题目:一个长方体的长为5cm,宽为3cm,高为4cm,请计算该长方体的表面积。
解答:长方体的表面积计算公式为2ab + 2bc + 2ac,其中a、b、c分别为长方体的三个边长。
代入已知条件,长方体的长a = 5cm,宽b = 3cm,高c = 4cm。
则表面积S = 2(5×3) + 2(3×4) + 2(5×4) = 30 + 24 + 40 = 94cm²。
所以该长方体的表面积为94cm²。
练习三:棱柱的体积计算题目:一个棱柱的底面为边长为5cm的正方形,高为8cm,请计算该棱柱的体积。
解答:棱柱的体积计算公式为底面积乘以高,即V = S × h,其中S为底面积,h为高度。
代入已知条件,棱柱的底面为正方形,边长a = 5cm,高度h = 8cm。
底面积S = a² = 5×5 = 25cm²。
则体积V = S × h = 25 × 8 = 200cm³。
所以该棱柱的体积为200cm³。
练习四:金字塔的体积计算题目:一个金字塔的底边是边长为6cm的正方形,高为10cm,请计算该金字塔的体积。
解答:金字塔的体积计算公式为底面积乘以高再除以3,即V = S ×h ÷ 3,其中S为底面积,h为高度。
代入已知条件,金字塔的底边为正方形,边长a = 6cm,高度h =10cm。
底面积S = a² = 6×6 = 36cm²。
立体几何练习题及解析

立体几何练习题及解析一、选择题1. 下列哪个是正方体?A. 圆柱体B. 球体C. 锥体D. 正四面体解析:正确答案为D。
正四面体是一个具有四个等边三角形面的多面体,也是一种立体几何体。
2. 以下哪个是圆锥体?A. 立方体B. 正方形C. 圆柱体D. 球体解析:正确答案为C。
圆柱体的两个底面都是同心圆,且高度与底面的半径相等。
3. 以下哪个不是球体的属性?A. 没有棱B. 没有边C. 没有顶点D. 没有底面解析:正确答案为D。
球体没有底面,它是由无数个相同半径的小球面组成的。
二、填空题1. 立方体有多少个面?解析:立方体有6个面。
2. 锥体有多少个顶点?解析:锥体有1个顶点。
3. 正四面体有多少个边?解析:正四面体有6个边。
三、计算题1. 一个圆柱体的底面半径为5 cm,高度为8 cm,计算其体积和表面积。
解析:圆柱体的体积公式为V = πr²h,表面积公式为S = 2πrh + 2πr²。
将底面半径r = 5 cm,高度h = 8 cm代入公式计算得:V = π(5)²(8) = 200π cm³S = 2π(5)(8) + 2π(5)² = 80π + 50π = 130π cm²2. 一个球体的半径为10 cm,计算其体积和表面积。
解析:球体的体积公式为V = (4/3)πr³,表面积公式为S = 4πr²。
将半径r = 10 cm代入公式计算得:V = (4/3)π(10)³ = 4000π/3 cm³S = 4π(10)² = 400π cm²3. 一个正方体的边长为6 cm,计算其体积和表面积。
解析:正方体的体积公式为V = a³,表面积公式为S = 6a²。
将边长a = 6 cm代入公式计算得:V = 6³ = 216 cm³S = 6(6)² = 216 cm²四、解答题1. 画出一个平行六面体,其中底面是边长为4 cm的正方形,高度为6 cm。
立体几何基础题题库(360道附详细答案)

S P
S
SS
S
PP
P
R
RR
Pபைடு நூலகம்
Q
R Q
QR
R
P
QR P PQ
Q
R
P
R
Q
QS
R
SS
Q
R
S
SQ R
Q
Q
RP
Q
P
R
S SQ R
P S
R Q
(A)
(B)
(C)
(D)
D
解析: A 项: PS 底面对应的中线,中线平行 QS,PQRS 是个梯形
D'
P
A'
S
C'
B'
R
D
A
B 项: 如图
Q
C B
C 项:是个平行四边形
EG2 FH 2 =2 (EF 2 FG2 ) = 1 ( AC2 BD2 ) 1 (a2 2b)
2
2
27. 如图,在三角形⊿ABC 中,∠ACB=90º, AC=b,BC=a,P 是⊿ABC 所在平面外一点,PB⊥AB, 点,AB⊥MC,求异面直 MC 与 PB 间的距离.
M 是 PA 的中
四边形矛盾。∴EF 和 AD 为异面直线.
26. 在空间四边形 ABCD 中,E,H 分别是 AB,AD 的中点,F,G 分别是 CB,CD 的中点,若 AC + BD
= a ,AC BD =b,求 EG2 FH 2 . A
解析:四边形 EFGH 是平行四边形,…………(4 分)
E H
B F
D
G C
得 OX2+OY2+OZ2=37,OP= 37 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何G5 空间中的垂直关系18.、[2014·广东卷] 如图14,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E.(1)证明:CF⊥平面ADF;(2)求二面角D AF E的余弦值.图1419.、[2014·湖南卷] 如图16所示,四棱柱ABCDA1B1C1D1的所有棱长都相等,AC∩BD =O,A1C1∩B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形.(1)证明:O1O⊥底面ABCD;(2)若∠CBA=60°,求二面角C1OB1D的余弦值.19.解:(1)如图(a),因为四边形ACC1A1为矩形,所以CC1⊥AC.同理DD1⊥BD.因为CC1∥DD1,所以CC1⊥BD.而AC∩BD=O,因此CC1⊥底面ABCD.由题设知,O1O∥C1C.故O1O⊥底面ABCD.(2)方法一:如图(a),过O1作O1H⊥OB1于H,连接HC1.由(1)知,O1O⊥底面ABCD O1O⊥A1C1.又因为四棱柱ABCDA1B1C1D1的所有棱长都相等,所以四边形A1B1C1D1是菱形,因此A1C1⊥B1D1,从而A1C1⊥平面BDD1B1,所以A1C1⊥OB1,于是OB1⊥平面O1HC1.进而OB1⊥C1H.故∠C1HO1是二面角C1OB1D的平面角.不妨设AB =2.因为∠CBA =60°,所以OB =3,OC =1,OB 1=7.在Rt △OO 1B 1中,易知O 1H =OO 1·O 1B 1OB 1=237.而O 1C 1=1,于是C 1H =O 1C 21+O 1H 2=1+127=197. 故cos ∠C 1HO 1=O 1HC 1H=237197=25719.即二面角C 1OB 1D 的余弦值为25719.方法二:因为四棱柱ABCD A 1B 1C 1D 1的所有棱长都相等,所以四边形ABCD 是菱形,因此AC ⊥BD .又O 1O ⊥底面ABCD ,从而OB ,OC ,OO 1两两垂直.如图(b),以O 为坐标原点,OB ,OC ,OO 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系O xyz ,不妨设AB =2.因为∠CBA =60°,所以OB =3,OC =1,于是相关各点的坐标为O (0,0,0),B 1(3,0,2),C 1(0,1,2).易知,n 1=(0,1,0)是平面BDD 1B 1的一个法向量.设n 2=(x ,y ,z )是平面OB 1C 1的一个法向量,则⎩⎪⎨⎪⎧n 2·OB →1=0,n 2·OC →1=0,即⎩⎨⎧3x +2z =0,y +2z =0.取z =-3,则x =2,y =23,所以n 2=(2,23,-3). 设二面角C 1OB 1D 的大小为θ,易知θ是锐角,于是cos θ=|cos 〈,〉|=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1|·|n 2|=2319=25719.故二面角C 1OB 1D 的余弦值为25719.19.、、[2014·江西卷] 如图16,四棱锥P ABCD 中,ABCD 为矩形,平面PAD ⊥平面ABCD .图16(1)求证:AB ⊥PD .(2)若∠BPC =90°,PB =2,PC =2,问AB 为何值时,四棱锥P ABCD 的体积最大?并求此时平面BPC 与平面DPC 夹角的余弦值.19.解:(1)证明:因为ABCD 为矩形,所以AB ⊥AD . 又平面PAD ⊥平面ABCD , 平面PAD ∩平面ABCD =AD , 所以AB ⊥平面PAD ,故AB ⊥PD .(2)过P 作AD 的垂线,垂足为O ,过O 作BC 的垂线,垂足为G ,连接PG . 故PO ⊥平面ABCD ,BC ⊥平面POG ,BC ⊥PG .在Rt △BPC 中,PG =2 33,GC =2 63,BG =63.设AB =m ,则OP =PG 2-OG 2=43-m 2,故四棱锥P ABCD 的体积为 V =13×6·m ·43-m 2=m 38-6m 2. 因为m 8-6m 2=8m 2-6m 4=-6⎝⎛⎭⎪⎫m 2-232+83,所以当m =63,即AB =63时,四棱锥P ABCD 的体积最大.此时,建立如图所示的空间直角坐标系,各点的坐标分别为O (0,0,0),B ⎝⎛⎭⎪⎫63,-63,0,C ⎝ ⎛⎭⎪⎫63,263,0,D ⎝ ⎛⎭⎪⎫0,263,0,P ⎝⎛⎭⎪⎫0,0,63,故PC →=⎝ ⎛⎭⎪⎫63,263,-63,BC →=(0,6,0),CD =⎝ ⎛⎭⎪⎫-63,0,0.设平面BPC 的一个法向量为n 1=(x ,y ,1),则由n 1⊥PC →,n 1⊥BC →,得⎩⎪⎨⎪⎧63x +2 63y -63=0,6y =0,解得x =1,y =0,则n 1=(1,0,1). 同理可求出平面DPC 的一个法向量为n 2=⎝ ⎛⎭⎪⎫0,12,1.设平面BPC 与平面DPC 的夹角为θ,则cos θ=|n 1·n 2||n 1||n 2|=12·14+1=105. 19.、[2014·辽宁卷] 如图15所示,△ABC 和△BCD 所在平面互相垂直,且AB =BC =BD =2,∠ABC =∠DBC =120°,E ,F 分别为AC ,DC 的中点.(1)求证:EF ⊥BC ;(2)求二面角E BF C 的正弦值.19.解:(1)证明:方法一,过点E 作EO ⊥BC ,垂足为O ,连接OF .由△ABC ≌△DBC 可证出△EOC ≌△FOC ,所以∠EOC =∠FOC =π2,即FO ⊥BC .又EO ⊥BC ,EO ∩FO =O ,所以BC ⊥平面EFO .又EF ⊂平面EFO ,所以EF方法二,由题意,以B 为坐标原点,在平面DBC 内过B 作垂直BC 的直线,并将其作为x 轴,BC 所在直线为y 轴,在平面ABC 内过B 作垂直BC 的直线,并将其作为z 轴,建立如图所示的空间直角坐标系,易得B (0,0,0),A (0,-1,3),D (3,-1,0),C (0,2,0),因而E (0,12,32),F (32,12,0),所以EF →=(32,0,-32),BC →=(0,2,0),因此EF →·BC→=0,从而EF →⊥BC →,所以EF ⊥BC .(2)方法一,在图1中,过点O 作OG ⊥BF ,垂足为G ,连接EG .因为平面ABC ⊥平面BDC ,所以EO ⊥面BDC ,又OG ⊥BF ,所以由三垂线定理知EG ⊥BF ,因此∠EGO 为二面角E BF C 的平面角.在△EOC 中,EO =12EC =12BC ·cos 30°=32.由△BGO ∽△BFC 知,OG =BOBC ·FC =34,因此tan ∠EGO =EO OG =2,从而得sin ∠EGO =255,即二面角E BF C 的正弦值为2 55. 方法二,在图2中,平面BFC 的一个法向量为n 1=(0,0,1).设平面BEF 的法向量n 2=(x ,y ,z ),又BF →=(32,12,0),BE →=(0,12,32),所以⎩⎪⎨⎪⎧n 2·BF →=0,n 2·BE →=0,得其中一个n 2=(1,-3,1).设二面角E BF C 的大小为θ,且由题知θ为锐角,则cos θ=|cos 〈n 1,n 2〉|=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1||n 2|=15, 因此sin θ=25=2 55,即所求二面角正弦值为2 55.19.G 5、G 11[2014·新课标全国卷Ⅰ] 如图15,三棱柱ABC A 1B 1C 1中,侧面BB 1C 1C 为菱形,AB ⊥B 1C .图15(1)证明:AC =AB 1;(2)若AC ⊥AB 1,∠CBB 1=60°,AB =BC ,求二面角A A 1B 1 C 1的余弦值.19.解:(1)证明:连接BC 1,交B 1C 于点O ,连接AO ,因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1,且O 为B 1C 及BC 1的中点.又AB ⊥B 1C ,所以B 1C ⊥平面ABO . 由于AO ⊂平面ABO ,故B 1C ⊥AO . 又B 1O =CO ,故AC =AB 1.(2)因为AC ⊥AB 1,且O 为B 1C 的中点,所以AO =CO .又因为AB =BC ,所以△BOA ≌ △BOC .故OA ⊥OB ,从而OA ,OB ,OB 1两两垂直.以O 为坐标原点,OB 的方向为x 轴正方向,|OB |为单位长,建立如图所示的空间直角坐标系O xyz .因为∠CBB 1=60°,所以△CBB 1为等边三角形,又AB =BC ,则A ⎝ ⎛⎭⎪⎫0,0,33,B (1,0,0),B 1⎝ ⎛⎭⎪⎫0,33,0,C ⎝ ⎛⎭⎪⎫0,-33,0. AB 1→=⎝⎛⎭⎪⎫0,33,-33, A 1B 1→=AB =⎝ ⎛⎭⎪⎫1,0,-33,B 1C →1=BC =⎝⎛⎭⎪⎫-1,-33,0. 设n =(x ,y ,z )是平面AA 1B 1的法向量,则⎩⎨⎧n ·AB 1=0,n ·A 1B 1→=0,即⎩⎪⎨⎪⎧33y -33z =0,x -33z =0.所以可取n =(1,3,3).设m 是平面A 1B 1C 1的法向量, 则⎩⎪⎨⎪⎧m ·A 1B 1→=0,m ·B 1C 1→=0,同理可取m =(1,-3,3).则cos 〈n ,m 〉=n ·m |n ||m |=17.所以结合图形知二面角A A 1B 1 C 1的余弦值为17.18.,,,[2014·四川卷] 三棱锥A BCD 及其侧视图、俯视图如图14所示.设M ,N 分别为线段AD ,AB 的中点,P 为线段BC 上的点,且MN ⊥NP .(1)证明:P 是线段BC 的中点;(2)求二面角A NP M 的余弦值.图1418.解:(1)如图所示,取BD 的中点O ,连接AO ,CO . 由侧视图及俯视图知,△ABD ,△BCD 为正三角形,所以AO ⊥BD ,OC ⊥BD .因为AO ,OC ⊂平面AOC ,且AO ∩OC =O , 所以BD ⊥平面AOC .又因为AC ⊂平面AOC ,所以BD ⊥AC . 取BO 的中点H ,连接NH ,PH .又M ,N ,H 分别为线段AD ,AB ,BO 的中点,所以MN ∥BD ,NH ∥AO , 因为AO ⊥BD ,所以NH ⊥BD .因为MN ⊥NP ,所以NP ⊥BD .因为NH ,NP ⊂平面NHP ,且NH ∩NP =N ,所以BD ⊥平面NHP . 又因为HP ⊂平面NHP ,所以BD ⊥HP .又OC ⊥BD ,HP ⊂平面BCD ,OC ⊂平面BCD ,所以HP ∥OC . 因为H 为BO 的中点,所以P 为BC 的中点.(2)方法一:如图所示,作NQ ⊥AC 于Q ,连接MQ.由(1)知,NP ∥AC ,所以NQ ⊥NP .因为MN ⊥NP ,所以∠MNQ 为二面角A NP M 的一个平面角. 由(1)知,△ABD ,△BCD 为边长为2的正三角形,所以AO =OC = 3. 由俯视图可知,AO ⊥平面BCD .因为OC ⊂平面BCD ,所以AO ⊥OC ,因此在等腰直角△AOC 中,AC = 6. 作BR ⊥AC 于R因为在△ABC 中,AB =BC ,所以R 为AC 的中点, 所以BR =AB 2-⎝ ⎛⎭⎪⎫AC 22=102. 因为在平面ABC 内,NQ ⊥AC ,BR ⊥AC ,所以NQ ∥BR .又因为N 为AB 的中点,所以Q 为AR 的中点,所以NQ =BR 2=104.同理,可得MQ =104. 故△MNQ 为等腰三角形, 所以在等腰△MNQ 中,cos ∠MNQ =MN 2NQ =BD4NQ =105.故二面角A NP M 的余弦值是105. 方法二:由俯视图及(1)可知,AO ⊥平面BCD . 因为OC ,OB ⊂平面BCD ,所以AO ⊥OC ,AO ⊥OB . 又OC ⊥OB ,所以直线OA ,OB ,OC 两两垂直.如图所示,以O 为坐标原点,以OB ,OC ,OA 的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O xyz .则A (0,0,3),B (1,0,0),C (0,3,0),D (-1,0,0). 因为M ,N 分别为线段AD ,AB 的中点, 又由(1)知,P 为线段BC 的中点,所以M ⎝ ⎛⎭⎪⎫-12,0,32,N ⎝ ⎛⎭⎪⎫12,0,32,P ⎝ ⎛⎭⎪⎫12,32,0,于是AB =(1,0,-3),BC =(-1,3,0),MN =(1,0,0),NP =⎝⎛⎭⎪⎫0,32,-32. 设平面ABC 的一个法向量n 1=(x 1,y 1,z 1),由⎩⎪⎨⎪⎧n 1⊥AB ,n 1⊥BC ,得⎩⎪⎨⎪⎧n 1·AB =0,n 1·BC =0,即 ⎩⎨⎧(x 1,y 1,z 1)·(1,0,-3)=0,(x 1,y 1,z 1)·(-1,3,0)=0, 从而⎩⎨⎧x 1-3z 1=0,-x 1+3y 1=0.取z 1=1,则x 1=3,y 1=1,所以n 1=(3,1,1). 设平面MNP 的一个法向量n 2=(x 2,y 2,z 2),由,⎩⎪⎨⎪⎧n 2⊥MN ,n 2⊥NP ,得⎩⎪⎨⎪⎧n 2·MN =0,n 2·NP =0, 即⎩⎪⎨⎪⎧(x 2,y 2,z 2)·(1,0,0)=0,(x 2,y 2,z 2)·⎝⎛⎭⎪⎫0,32,-32=0, 从而⎩⎪⎨⎪⎧x 2=0,32y 2-32z 2=0. 取z 2=1,则y 2=1,x 2=0,所以n 2=(0,1,1).设二面角A NP M 的大小为θ,则cos θ=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1|·|n 2|=⎪⎪⎪⎪⎪⎪(3,1,1)·(0,1,1)5×2=105.故二面角A NP M 的余弦值是105. 17.、[2014·天津卷] 如图14所示,在四棱锥P ABCD 中,PA ⊥底面ABCD, AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点.(1)证明:BE ⊥DC ;(2)求直线BE 与平面PBD 所成角的正弦值;(3)若F 为棱PC 上一点,满足BF ⊥AC ,求二面角F AB P 的余弦值.图1417.解:方法一:依题意,以点A 为原点建立空间直角坐标系(如图所示),可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2).C 由E 为棱PC 的中点,得E (1,1,1).(1)证明:向量BE =(0,1,1),DC =(2,0,0), 故BE ·DC =0, 所以BE ⊥DC .(2)向量BD =(-1,2,0),PB =(1,0,-2). 设n =(x ,y ,z )为平面PBD 的法向量,则⎩⎪⎨⎪⎧n ·BD =0,n ·PB =0,即⎩⎪⎨⎪⎧-x +2y =0,x -2z =0. 不妨令y =1,可得n =(2,1,1)为平面PBD 的一个法向量.于是有cos 〈n ,BE 〉=n ·BE |n |·|BE |=26×2=33,所以直线BE 与平面PBD 所成角的正弦值为33. (3) 向量BC =(1,2,0),CP =(-2,-2,2),AC =(2,2,0),AB =(1,0,0).由点F 在棱PC 上,设CF =λCP →,0≤λ≤1.故BF =BC +CF =BC +λCP →=(1-2λ,2-2λ,2λ).由BF ⊥AC ,得BF ·AC =0,因此2(1-2λ)+2(2-2λ)=0,解得λ=34,即BF =⎝ ⎛⎭⎪⎫-12,12,32.设n 1=(x ,y ,z )为平面FAB的法向量,则⎩⎪⎨⎪⎧n 1·AB =0,n 1·BF =0,即⎩⎪⎨⎪⎧x =0,-12x +12y +32z =0.不妨令z =1,可得n 1=(0,-3,1)为平面FAB 的一个法向量.取平面ABP 的法向量n 2=(0,1,0),则cos 〈,〉=n 1·n 2|n 1|·|n 2|=-310×1=-31010.易知二面角F AB P 是锐角,所以其余弦值为31010.方法二:(1)证明:如图所示,取PD 中点M ,连接EM ,AM .由于E ,M 分别为PC ,PD 的中点,故EM ∥DC ,且EM =12DC .又由已知,可得EM ∥AB 且EM =AB ,故四边形ABEM 为平行四边形,所以BE ∥AM .因为PA ⊥底面ABCD ,故PA ⊥CD ,而CD ⊥DA ,从而CD ⊥平面PAD .因为AM ⊂平面PAD ,所以CD ⊥AM .又BE ∥AM ,所以BE ⊥CD .(2)连接BM ,由(1)有CD ⊥平面PAD ,得CD ⊥PD .而EM ∥CD ,故PD ⊥EM .又因为AD =AP ,M 为PD 的中点,所以PD ⊥AM ,可得PD ⊥BE ,所以PD ⊥平面BEM ,故平面BEM ⊥平面PBD ,所以直线BE 在平面PBD 内的射影为直线BM .而BE ⊥EM ,可得∠EBM 为锐角,故∠EBM 为直线BE 与平面PBD 所成的角.依题意,有PD =22,而M 为PD 中点,可得AM =2,进而BE = 2.故在直角三角形BEM 中,tan ∠EBM =EM BE =AB BE =12,因此sin ∠EBM =33,所以直线BE 与平面PBD 所成角的正弦值为33. (3)如图所示,在△PAC 中,过点F 作FH ∥PA 交AC 于点H .因为PA ⊥底面ABCD ,所以FH ⊥底面ABCD ,从而FH ⊥AC .又BF ⊥AC ,得AC ⊥平面FHB ,因此AC ⊥BH .在底面ABCD 内,可得CH =3HA ,从而CF =3FP .在平面PDC 内,作FG ∥DC 交PD 于点G ,于是DG =3GP .由于DC ∥AB ,故GF ∥AB ,所以A ,B ,F ,G 四点共面.由AB ⊥PA ,AB ⊥AD ,得AB ⊥平面PAD ,故AB ⊥AG ,所以∠PAG 为二面角F AB P 的平面角.在△PAG 中,PA =2,PG =14PD =22,∠APG =45°.由余弦定理可得AG =102,cos ∠PAG=31010,所以二面角F AB P 的余弦值为31010.20.、[2014·浙江卷] 如图15,在四棱锥A BCDE 中,平面ABC ⊥平面BCDE ,∠CDE =∠BED =90°,AB =CD =2,DE =BE =1,AC = 2.(1)证明:DE ⊥平面ACD ;(2)求二面角B AD E 的大小.20.解:(1)证明:在直角梯形BCDE 中,由DE =BE =1,CD =2,得BD =BC =2, 由AC =2,AB =2,得AB 2=AC 2+BC 2,即AC ⊥BC .又平面ABC ⊥平面BCDE ,从而AC ⊥平面BCDE , 所以AC ⊥DE .又DE ⊥DC ,从而DE ⊥平面ACD . (2)方法一:过B 作BF ⊥AD ,与AD 交于点F ,过点F 作FG ∥DE ,与AE 交于点G ,连接BG .由(1)知DE ⊥AD ,则FG ⊥AD .所以∠BFG 是二面角B AD E 的平面角.在直角梯形BCDE 中,由CD 2=BC 2+BD 2, 得BD ⊥BC .又平面ABC ⊥平面BCDE ,得BD .由AC ⊥平面BCDE ,得AC ⊥CD . 在Rt △ACD 中,由DC =2,AC =2,得AD = 6. 在Rt △AED 中,由ED =1,AD =6,得AE =7.在Rt △ABD 中,由BD =2,AB =2,AD =6,得BF =2 33,AF =23AD .从而GF =23ED =23.在△ABE ,△ABG 中,利用余弦定理分别可得cos ∠BAE =5 714,BG =23.在△BFG 中,cos ∠BFG =GF 2+BF 2-BG 22BF ·GF =32.所以,∠BFG =π6,即二面角B AD E 的大小是π6.方法二:以D 为原点,分别以射线DE ,DC 为x ,y 轴的正半轴,建立空间直角坐标系D xyz ,如图所示.由题意知各点坐标如下:D (0,0,0),E (1,0,0),C (0,2,0), A (0,2,2),B (1,1,0).设平面ADE 的法向量为m =(x 1,y 1,z 1), 平面ABD 的法向量为n =(x 2,y 2,z 2).可算得AD =(0,-2,-2),AE =(1,-2,-2),DB →=(1,1,0). 由⎩⎨⎧m ·AD =0,m ·AE →=0,即⎩⎨⎧-2y 1-2z 1=0,x 1-2y 1-2z 1=0, 可取m =(0,1,-2).由⎩⎪⎨⎪⎧n ·AD →=0,n ·DB →=0,即⎩⎨⎧-2y 2-2z 2=0,x 2+y 2=0,可取n =(1,-1,2).于是|cos 〈m ,n 〉|=|m ·n ||m |·|n |=33×2=32.由题意可知,所求二面角是锐角,故二面角B AD E 的大小是π6.19.,[2014·重庆卷]如图13所示,四棱锥P ABCD 中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,AB =2,∠BAD =π3,M 为BC 上一点,且BM =12,MP ⊥AP .(1)求PO 的长;(2)求二面角A PM C 的正弦值.19.解:(1)如图所示,连接AC ,BD ,因为四边形ABCD 为菱形,所以AC ∩ BD =O ,且AC ⊥BD .以O 为坐标原点,OA →,OB →,OP →的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系O xyz .因为∠BAD =π3,所以OA =AB ·cos π6=3,OB =AB ·sin π6=1,所以O (0,0,0),A (3,0,0),B (0,1,0),C (-3,0,0),OB →=(0,1,0),BC →=(-3,-1,0).由BM =12,BC =2知,BM →=14BC →=⎝ ⎛⎭⎪⎫-34,-14,0,从而OM →=OB →+BM →=⎝ ⎛⎭⎪⎫-34,34,0,即M ⎝ ⎛⎭⎪⎫-34,34,0. 设P (0,0,a ),a >0,则AP →=(-3,0,a ),MP →=⎝ ⎛⎭⎪⎫34,-34,a .因为MP ⊥AP ,所以MP →·AP→=0,即-34+a 2=0,所以a =32或a =-32(舍去),即PO =32.(2)由(1)知,AP →=⎝ ⎛⎭⎪⎫-3,0,32,MP →=⎝ ⎛⎭⎪⎫34,-34,32,CP →=⎝⎛⎭⎪⎫3,0,32.设平面APM 的法向量为n 1=(x 1,y 1,z 1),平面PMC 的法向量为n 2=(x 2,y 2,z 2).由n 1·AP →=0, n 1·MP →=0,得⎩⎪⎨⎪⎧-3x 1+32z 1=0,34x 1-34y 1+32z 1=0,故可取n 1=⎝ ⎛⎭⎪⎫1,533,2.由n 2·MP →=0,n 2·CP →=0,得⎩⎪⎨⎪⎧34x 2-34y 2+32z 2=0,3x 2+32z 2=0,故可取n 2=(1,-3,-2).从而法向量n 1,n 2的夹角的余弦值为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-155,故所求二面角A PM C 的正弦值为105.G3 平面的基本性质、空间两条直线 4.[2014·辽宁卷] 已知m ,n 表示两条不同直线,α表示平面.下列说法正确的是( ) A .若m ∥α,n ∥α,则m ∥nB .若m ⊥α,n ⊂α,则m ⊥nC .若m ⊥α,m ⊥n ,则n ∥αD .若m ∥α,m ⊥n ,则n ⊥α4.B [解析] B [解析] 由题可知,若m ∥α,n ∥α,则m 与n 平行、相交或异面,所以A 错误;若m ⊥α,n ⊂α,则m ⊥n ,故B 正确;若m ⊥α,m ⊥n ,则n ∥α或n ⊂α,故C 错误.若m ∥α,m ⊥n ,则n ∥α或n ⊥α或n 与a 相交,故D 错误.17.、、[2014·福建卷] 在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD .将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图15所示.(1)求证:AB ⊥CD ;(2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.图1517.解:(1)证明:∵平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,AB ⊂平面ABD ,AB ⊥BD ,∴AB ⊥平面BCD .又CD ⊂平面BCD ,∴AB ⊥CD .(2)过点B 在平面BCD 内作BE ⊥BD .由(1)知AB ⊥平面BCD ,BE ⊂平面BCD ,BD ⊂平面BCD ,∴AB ⊥BE ,AB ⊥BD .以B 为坐标原点,分别以BE →,BD →,BA →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图所示).依题意,得B (0,0,0),C (1,1,0),D (0,1,0),A (0,0,1),M ⎝ ⎛⎭⎪⎫0,12,12. 则BC →=(1,1,0),BM →=⎝ ⎛⎭⎪⎫0,12,12,AD →=(0,1,-1).设平面MBC 的法向量n =(x 0,y 0,z 0),则⎩⎪⎨⎪⎧n ·BC →=0,n ·BM →=0,即⎩⎪⎨⎪⎧x 0+y 0=0,12y 0+12z 0=0, 取z 0=1,得平面MBC 的一个法向量n =(1,-1,1). 设直线AD 与平面MBC 所成角为θ,则sin θ=||cos 〈n ,AD →〉=|n ·AD →||n |·|AD →|=63.即直线AD 与平面MBC 所成角的正弦值为63. 11.[2014·新课标全国卷Ⅱ] 直三棱柱ABC A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( )A.110B.25C.3010D.2211.C [解析] 如图,E 为BC 的中点.由于M ,N 分别是A 1B 1,A 1C 1的中点,故MN ∥B 1C 1且MN =12B 1C 1,故MN 綊BE ,所以四边形MNEB 为平行四边形,所以EN 綊BM ,所以直线AN ,NE 所成的角即为直线BM ,AN 所成的角.设BC =1,则B 1M =12B 1A 1=22,所以MB =1+12=62=NE ,AN =AE =52, 在△ANE 中,根据余弦定理得cos ∠ANE =64+54-542×62×52=3010.18.,,,[2014·四川卷] 三棱锥A 14所示.设M ,N 分别为线段AD ,AB 的中点,P 为线段BC 上的点,且MN ⊥NP .(1)证明:P 是线段BC 的中点;(2)求二面角A NP M 的余弦值.图1418.解:(1)如图所示,取BD 的中点O ,连接AO ,CO . 由侧视图及俯视图知,△ABD ,△BCD 为正三角形,所以AO ⊥BD ,OC ⊥BD .因为AO ,OC ⊂平面AOC ,且AO ∩OC =O , 所以BD ⊥平面AOC .又因为AC ⊂平面AOC ,所以BD ⊥AC . 取BO 的中点H ,连接NH ,PH .又M ,N ,H 分别为线段AD ,AB ,BO 的中点,所以MN ∥BD ,NH ∥AO , 因为AO ⊥BD ,所以NH ⊥BD . 因为MN ⊥NP ,所以NP ⊥BD .因为NH ,NP ⊂平面NHP ,且NH ∩NP =N ,所以BD ⊥平面NHP . 又因为HP ⊂平面NHP ,所以BD ⊥HP .又OC ⊥BD ,HP ⊂平面BCD ,OC ⊂平面BCD ,所以HP ∥OC . 因为H 为BO 的中点,所以P 为BC 的中点.(2)方法一:如图所示,作NQ ⊥AC 于Q ,连接MQ.由(1)知,NP ∥AC ,所以NQ ⊥NP .因为MN ⊥NP ,所以∠MNQ 为二面角A NP M 的一个平面角. 由(1)知,△ABD ,△BCD 为边长为2的正三角形,所以AO =OC = 3. 由俯视图可知,AO ⊥平面BCD .因为OC ⊂平面BCD ,所以AO ⊥OC ,因此在等腰直角△AOC 中,AC = 6. 作BR ⊥AC 于R因为在△ABC 中,AB =BC ,所以R 为AC 的中点, 所以BR =AB 2-⎝ ⎛⎭⎪⎫AC 22=102. 因为在平面ABC 内,NQ ⊥AC ,BR ⊥AC ,所以NQ ∥BR .又因为N 为AB 的中点,所以Q 为AR 的中点,所以NQ =BR 2=104.同理,可得MQ =104. 故△MNQ 为等腰三角形, 所以在等腰△MNQ 中,cos ∠MNQ =MN 2NQ =BD4NQ =105.故二面角A NP M 的余弦值是105. 方法二:由俯视图及(1)可知,AO ⊥平面BCD . 因为OC ,OB ⊂平面BCD ,所以AO ⊥OC ,AO ⊥OB . 又OC ⊥OB ,所以直线OA ,OB ,OC 两两垂直.如图所示,以O 为坐标原点,以OB ,OC ,OA 的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O xyz .则A (0,0,3),B (1,0,0),C (0,3,0),D (-1,0,0). 因为M ,N 分别为线段AD ,AB 的中点, 又由(1)知,P 为线段BC 的中点,所以M ⎝ ⎛⎭⎪⎫-12,0,32,N ⎝ ⎛⎭⎪⎫12,0,32,P ⎝ ⎛⎭⎪⎫12,32,0,于是AB =(1,0,-3),BC =(-1,3,0),MN =(1,0,0),NP =⎝ ⎛⎭⎪⎫0,32,-32. 设平面ABC 的一个法向量n 1=(x 1,y 1,z 1), 由⎩⎪⎨⎪⎧n 1⊥AB ,n 1⊥BC ,得⎩⎪⎨⎪⎧n 1·AB =0,n 1·BC =0,即⎩⎨⎧(x 1,y 1,z 1)·(1,0,-3)=0,(x 1,y 1,z 1)·(-1,3,0)=0, 从而⎩⎨⎧x 1-3z 1=0,-x 1+3y 1=0.取z 1=1,则x 1=3,y 1=1,所以n 1=(3,1,1). 设平面MNP 的一个法向量n 2=(x 2,y 2,z 2),由,⎩⎪⎨⎪⎧n 2⊥MN ,n 2⊥NP ,得⎩⎪⎨⎪⎧n 2·MN =0,n 2·NP =0, 即⎩⎪⎨⎪⎧(x 2,y 2,z 2)·(1,0,0)=0,(x 2,y 2,z 2)·⎝⎛⎭⎪⎫0,32,-32=0, 从而⎩⎪⎨⎪⎧x 2=0,32y 2-32z 2=0. 取z 2=1,则y 2=1,x 2=0,所以n 2=(0,1,1).设二面角A NP M 的大小为θ,则cos θ=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1|·|n 2|=⎪⎪⎪⎪⎪⎪(3,1,1)·(0,1,1)5×2=105.故二面角A NP M 的余弦值是105. G4 空间中的平行关系 20.、、[2014·安徽卷] 如图15,四棱柱ABCD A 1B 1C 1D 1中,A 1A ⊥底面ABCD ,四边形ABCD 为梯形,AD ∥BC ,且AD =2BC .过A 1,C ,D 三点的平面记为α,BB 1与α的交点为Q .图15(1)证明:Q 为BB 1的中点;(2)求此四棱柱被平面α所分成上下两部分的体积之比;(3)若AA 1=4,CD =2,梯形ABCD 的面积为6,求平面α与底面ABCD 所成二面角的大小.20.解: (1)证明:因为BQ ∥AA 1,BC ∥AD , BC ∩BQ =B ,AD ∩AA 1=A , 所以平面QBC ∥平面A 1AD ,从而平面A 1CD 与这两个平面的交线相互平行, 即QC ∥A 1D .故△QBC 与△A 1AD 的对应边相互平行, 于是△QBC ∽△A 1AD ,所以BQ BB 1=BQ AA 1=BC AD =12,即Q 为BB 1的中点. (2)如图1所示,连接QA ,QD .设AA 1=h ,梯形ABCD 的高为d ,四棱柱被平面α所分成上下两部分的体积分别为V 上和V 下,BC =a ,则AD =2a .图1V 三棱锥Q A 1AD =13×12·2a ·h ·d =13ahd ,V 四棱锥Q ABCD =13·a +2a 2·d ·⎝ ⎛⎭⎪⎫12h =14ahd ,所以V 下=V 三棱锥Q A 1AD +V 四棱锥Q ABCD =712ahd .又V 四棱柱A 1B 1C 1D 1 ABCD =32ahd ,所以V 上=V 四棱柱A 1B 1C 1D 1 ABCD -V 下=32ahd -712ahd =1112ahd ,故V 上V 下=117.(3)方法一:如图1所示,在△ADC 中,作AE ⊥DC ,垂足为E ,连接A 1E .又DE ⊥AA 1,且AA 1∩AE =A ,所以DE ⊥平面AEA 1,所以DE ⊥A 1E .所以∠AEA 1为平面α与底面ABCD 所成二面角的平面角. 因为BC ∥AD ,AD =2BC ,所以S △ADC =2S △BCA . 又因为梯形ABCD 的面积为6,DC =2, 所以S △ADC =4,AE =4. 于是tan ∠AEA 1=AA 1AE =1,∠AEA 1=π4. 故平面α与底面ABCD 所成二面角的大小为π4.方法二:如图2所示,以D 为原点,DA ,DD 1→分别为x 轴和z 轴正方向建立空间直角坐标系.设∠CDA =θ,BC =a ,则AD =2a .因为S 四边形ABCD =a +2a2·2sin θ=6,所以a =2sin θ.图2从而可得C (2cos θ,2sin θ,0),A 1⎝⎛⎭⎪⎫4sin θ,0,4,所以DC =(2cos θ,2sin θ,0),DA 1→=⎝ ⎛⎭⎪⎫4sin θ,0,4.设平面A 1DC 的法向量n =(x ,y ,1), 由⎩⎨⎧DA 1→·n =4sin θ x +4=0,DC →·n =2x cos θ+2y sin θ=0,得⎩⎪⎨⎪⎧x =-sin θ,y =cos θ,所以n =(-sin θ,cos θ,1).又因为平面ABCD 的法向量m =(0,0,1), 所以cos 〈n ,m 〉=n·m |n||m|=22,故平面α与底面ABCD 所成二面角的大小为π4.17.、[2014·北京卷] 如图13,正方形AMDE 的边长为2,B ,C 分别为AM ,MD 的中点.在五棱锥P ABCDE 中,F 为棱PE 的中点,平面ABF 与棱PD ,PC 分别交于点G ,H .(1)求证:AB ∥FG ;(2)若PA ⊥底面ABCDE ,且PA =AE ,求直线BC 与平面ABF 所成角的大小,并求线段PH 的长.图1317.解:(1)证明:在正方形AMDE 中,因为B 是AM 的中点,所以AB ∥DE . 又因为AB ⊄平面PDE , 所以AB ∥平面PDE .因为AB ⊂平面ABF ,且平面ABF ∩平面PDE =FG , 所以AB ∥FG .(2)因为PA ⊥底面ABCDE , 所以PA ⊥AB ,PA ⊥AE .建立空间直角坐标系Axyz ,如图所示,则A (0,0,0),B (1,0,0),C (2,1,0),P (0,0,2),F (0,1,1),BC →=(1,1,0).设平面ABF 的法向量为n =(x ,y ,z ),则 ⎩⎪⎨⎪⎧n ·AB →=0,n ·AF →=0,即⎩⎪⎨⎪⎧x =0,y +z =0. 令z =1,则y =-1.所以n =(0,-1,1).设直线BC 与平面ABF 所成角为α,则sin α=|cos 〈n ,BC →〉|=⎪⎪⎪⎪⎪⎪⎪⎪n ·BC→|n ||BC →|=12. 因此直线BC 与平面ABF 所成角的大小为π6.设点H 的坐标为(u ,v ,w ).因为点H 在棱PC 上,所以可设PH →=λPC →(0<λ<1).即(u ,v ,w -2)=λ(2,1,-2),所以u =2λ,v =λ,w =2-2λ. 因为n 是平面ABF 的一个法向量, 所以n ·AH →=0,即(0,-1,1)·(2λ,λ,2-2λ)=0,解得λ=23,所以点H 的坐标为⎝ ⎛⎭⎪⎫43,23,23. 所以PH =⎝ ⎛⎭⎪⎫432+⎝ ⎛⎭⎪⎫232+⎝ ⎛⎭⎪⎫-432=2.19.、、、[2014·湖北卷] 如图14,在棱长为2的正方体ABCD A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2).(1)当λ=1时,证明:直线BC 1∥平面EFPQ .(2)是否存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.19.解:方法一(几何方法):(1)证明:如图①,连接AD 1,由ABCD A 1B 1C 1D 1是正方体,知BC 1∥AD 1.当λ=1时,P 是DD 1的中点,又F 是AD 的中点,所以FP ∥AD 1,所以BC 1∥FP . 而FP ⊂平面EFPQ ,且BC 1⊄平面EFPQ ,故直线BC 1∥平面EFPQ .(2)如图②,连接BD .因为E ,F 分别是AB ,AD 的中点,所以EF ∥BD ,且EF =12BD .又DP =BQ ,DP ∥BQ ,所以四边形PQBD 是平行四边形,故PQ ∥BD ,且PQ =BD ,从而EF ∥PQ ,且EF =12PQ .在Rt △EBQ 和Rt △FDP 中,因为BQ =DP =λ,BE =DF =1,于是EQ =FP =1+λ2,所以四边形EFPQ 也是等腰梯形. 同理可证四边形PQMN 也是等腰梯形.分别取EF ,PQ ,MN 的中点为H ,O ,G ,连接OH ,OG , 则GO ⊥PQ ,HO ⊥PQ ,而GO ∩HO =O ,故∠GOH 是面EFPQ 与面PQMN 所成的二面角的平面角.若存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角,则∠GOH =90°. 连接EM ,FN ,则由EF ∥MN ,且EF =MN 知四边形EFNM 是平行四边形. 连接GH ,因为H ,G 是EF ,MN 的中点, 所以GH =ME =2.在△GOH 中,GH 2=4,OH 2=1+λ2-⎝ ⎛⎭⎪⎫222=λ2+12,OG 2=1+(2-λ)2-⎝ ⎛⎭⎪⎫222=(2-λ)2+12,由OG 2+OH 2=GH 2,得(2-λ)2+12+λ2+12=4,解得λ=1±22,故存在λ=1±22,使面EFPQ 与面PQMN 所成的二面角为直二面角. 方法二(向量方法):以D 为原点,射线DA ,DC ,DD 1分别为x ,y ,z 轴的正半轴建立如图③所示的空间直角坐标系.由已知得B (2,2,0),C 1(0,2,2),E (2,1,0),F (1,0,0),P (0,0,λ).BC 1→=(-2,0,2),FP =(-1,0,λ),FE =(1,1,0). (1)证明:当λ=1时,FP =(-1,0,1),因为BC 1→=(-2,0,2),所以BC 1→=2FP →,即BC 1∥FP .而FP ⊂平面EFPQ ,且BC 1⊄平面EFPQ ,故直线BC 1∥平面EFPQ .(2)设平面EFPQ 的一个法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧FE →·n =0,FP →·n =0可得⎩⎪⎨⎪⎧x +y =0,-x +λz =0.于是可取n =(λ,-λ,1).同理可得平面MNPQ 的一个法向量为m =(λ-2,2-λ,1). 若存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角, 则m ·n =(λ-2,2-λ,1)·(λ,-λ,1)=0,即λ(λ-2)-λ(2-λ)+1=0,解得λ=1±22.故存在λ=1±22,使面EFPQ 与面PQMN 所成的二面角为直二面角. 18.、[2014·新课标全国卷Ⅱ] 如图13,四棱锥P ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(1)证明:PB ∥平面AEC ;(2)设二面角D AE C 为60ACD 的体积.18.解:(1)证明:连接BD 交AC 于点O ,连接EO . 因为ABCD 为矩形,所以O 为BD 的中点. 又E 为PD 的中点,所以EO ∥PB . 因为EO ⊂平面AEC ,PB ⊄平面AEC , 所以PB ∥平面AEC .(2)因为PA ⊥平面ABCD ,ABCD 为矩形, 所以AB ,AD ,AP 两两垂直.如图,以A 为坐标原点,AB →,AD ,AP 的方向为x 轴、y 轴、z 轴的正方向,|AP →|为单位长,建立空间直角坐标系A xyz ,则D ()0,3,0,E ⎝ ⎛⎭⎪⎫0,32,12,AE →=⎝⎛⎭⎪⎫0,32,12.设B (m ,0,0)(m >0),则C (m ,3,0),AC =(m ,3,0). 设n 1=(x ,y ,z )为平面ACE 的法向量,则⎩⎪⎨⎪⎧n 1·AC →=0,n 1·AE →=0,即⎩⎪⎨⎪⎧mx +3y =0,32y +12z =0,可取n 1=⎝⎛⎭⎪⎫3m ,-1,3. 又n 2=(1,0,0)为平面DAE 的法向量,由题设易知|cos 〈n 1,n 2〉|=12,即33+4m 2=12,解得m =32. 因为E 为PD 的中点,所以三棱锥E ACD 的高为12.三棱锥E ACD 的体积V =13×12×3×32×12=38. 17.,[2014·山东卷] 如图13所示,在四棱柱ABCD A 1B 1C 1D 1中,底面ABCD 是等腰梯形,∠DAB=60°,AB=2CD=2,M是线段AB的中点.图13(1)求证:C1M∥平面A1ADD1;(2)若CD1垂直于平面ABCD且CD1=3,求平面C1D1M和平面ABCD所成的角(锐角)的余弦值.17.解:(1)证明:因为四边形ABCD是等腰梯形,且AB=2CD,所以AB∥DC,又M是AB的中点,所以CD∥MA且CD=MA.连接AD1.因为在四棱柱ABCD A1B1C1D1中,CD∥C1D1,CD=C1D1,所以C1D1∥MA,C1D1=MA,所以四边形AMC1D1为平行四边形,因此,C1M∥D1A.又C1M⊄平面A1ADD1,D1A⊂平面A1ADD1,所以C1M∥平面A1ADD1.(2)方法一:连接AC,MC.由(1)知,CD∥AM且CD=AM,所以四边形AMCD为平行四边形,所以BC=AD=MC.由题意∠ABC=∠DAB=60°,所以△MBC为正三角形,因此AB=2BC=2,CA=3,因此CA⊥CB.设C为坐标原点,建立如图所示的空间直角坐标系Cxyz.所以A (3,0,0),B (0,1因此M ⎝⎛⎭⎪⎫32,12,0, 所以MD 1→=⎝ ⎛⎭⎪⎫-32,-12,3,D 1C 1→=MB →=⎝ ⎛⎭⎪⎫-32,12,0.设平面C 1D 1M 的一个法向量n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·D 1C 1→=0,n ·MD 1→=0,得⎩⎨⎧3x -y =0,3x +y -2 3z =0,可得平面C 1D 1M 的一个法向量n =(1,3,1). 又CD 1→=(0,0,3)为平面ABCD 的一个法向量. 因此cos 〈CD 1→,n 〉=CD 1→·n|CD 1→||n |=55, 所以平面C 1D 1M 和平面ABCD 所成的角(锐角)的余弦值为55. 方法二:由(1)知,平面D 1C 1M ∩平面ABCD =AB ,点过C 向AB 引垂线交AB 于点N ,连接D 1N .由CD 1⊥平面ABCD ,可得D 1N ⊥AB ,因此∠D 1NC 为二面角C 1 AB C 的平面角. 在Rt △BNC 中,BC =1,∠NBC =60°, 可得CN =32, 所以ND 1=CD 21+CN 2=152.在Rt△D1CN中,cos∠D1NC=CND1N=32152=55,所以平面C1D1M和平面ABCD所成的角(锐角)的余弦值为55.18.,,,[2014·四川卷] 三棱锥A BCD及其侧视图、俯视图如图14所示.设M,N 分别为线段AD,AB的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A NP M的余弦值.图1418.解:(1)如图所示,取BD的中点O,连接AO,CO.由侧视图及俯视图知,△ABD,△BCD为正三角形,所以AO⊥BD,OC⊥BD.因为AO,OC⊂平面AOC,且AO∩OC=O,所以BD⊥平面AOC.又因为AC⊂平面AOC,所以BD⊥AC.取BO的中点H,连接NH,PH.又M,N,H分别为线段AD,AB,BO的中点,所以MN∥BD,NH∥AO,因为AO⊥BD,所以NH⊥BD.因为MN⊥NP,所以NP⊥BD.因为NH,NP⊂平面NHP,且NH∩NP=N,所以BD⊥平面NHP.又因为HP⊂平面NHP,所以BD⊥HP.又OC⊥BD,HP⊂平面BCD,OC⊂平面BCD,所以HP∥OC.因为H为BO的中点,所以P为BC的中点.(2)方法一:如图所示,作NQ⊥AC于Q,连接MQ.由(1)知,NP∥AC,所以NQ⊥NP.因为MN⊥NP,所以∠MNQ为二面角A NP M的一个平面角.由(1)知,△ABD ,△BCD 为边长为2的正三角形,所以AO =OC = 3. 由俯视图可知,AO ⊥平面BCD .因为OC ⊂平面BCD ,所以AO ⊥OC ,因此在等腰直角△AOC 中,AC = 6. 作BR ⊥AC 于R因为在△ABC 中,AB =BC ,所以R 为AC 的中点, 所以BR =AB 2-⎝ ⎛⎭⎪⎫AC 22=102. 因为在平面ABC 内,NQ ⊥AC ,BR ⊥AC ,所以NQ ∥BR .又因为N 为AB 的中点,所以Q 为AR 的中点,所以NQ =BR 2=104.同理,可得MQ =104. 故△MNQ 为等腰三角形, 所以在等腰△MNQ 中,cos ∠MNQ =MN 2NQ =BD4NQ =105.故二面角A NP M 的余弦值是105. 方法二:由俯视图及(1)可知,AO ⊥平面BCD . 因为OC ,OB ⊂平面BCD ,所以AO ⊥OC ,AO ⊥OB . 又OC ⊥OB ,所以直线OA ,OB ,OC 两两垂直.如图所示,以O 为坐标原点,以OB ,OC ,OA 的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O xyz .则A (0,0,3),B (1,0,0),C (0,3,0),D (-1,0,0). 因为M ,N 分别为线段AD ,AB 的中点, 又由(1)知,P 为线段BC 的中点,所以M ⎝ ⎛⎭⎪⎫-12,0,32,N ⎝ ⎛⎭⎪⎫12,0,32,P ⎝ ⎛⎭⎪⎫12,32,0,于是AB =(1,0,-3),BC =(-1,3,0),MN =(1,0,0),NP =⎝⎛⎭⎪⎫0,32,-32. 设平面ABC 的一个法向量n 1=(x 1,y 1,z 1),由⎩⎪⎨⎪⎧n 1⊥AB ,n 1⊥BC ,得⎩⎪⎨⎪⎧n 1·AB =0,n 1·BC =0,即⎩⎨⎧(x 1,y 1,z 1)·(1,0,-3)=0,(x 1,y 1,z 1)·(-1,3,0)=0, 从而⎩⎨⎧x 1-3z 1=0,-x 1+3y 1=0.取z 1=1,则x 1=3,y 1=1,所以n 1=(3,1,1). 设平面MNP 的一个法向量n 2=(x 2,y 2,z 2),由,⎩⎪⎨⎪⎧n 2⊥MN ,n 2⊥NP ,得⎩⎪⎨⎪⎧n 2·MN =0,n 2·NP =0, 即⎩⎪⎨⎪⎧(x 2,y 2,z 2)·(1,0,0)=0,(x 2,y 2,z 2)·⎝⎛⎭⎪⎫0,32,-32=0, 从而⎩⎪⎨⎪⎧x 2=0,32y 2-32z 2=0. 取z 2=1,则y 2=1,x 2=0,所以n 2=(0,1,1).设二面角A NP M 的大小为θ,则cos θ=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1|·|n 2|=⎪⎪⎪⎪⎪⎪(3,1,1)·(0,1,1)5×2=105.故二面角A NP M 的余弦值是105.G7 棱柱与棱锥13.[2014·山东卷] 三棱锥P ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D ABE 的体积为V 1,P ABC 的体积为V 2,则V 1V 2=________.13.14 [解析] 如图所示,由于D ,E 分别是边PB 与PC 的中点,所以S △BDE =14S △PBC .又因为三棱锥A BDE 与三棱锥A PBC 的高长度相等,所以V 1V 2=14.19.、、[2014·江西卷] 如图16,四棱锥P ABCD 中,ABCD 为矩形,平面PAD ⊥平面ABCD .图16(1)求证:AB ⊥PD .(2)若∠BPC =90°,PB =2,PC =2,问AB 为何值时,四棱锥P ABCD 的体积最大?并求此时平面BPC 与平面DPC 夹角的余弦值.19.解:(1)证明:因为ABCD 为矩形,所以AB ⊥AD . 又平面PAD ⊥平面ABCD , 平面PAD ∩平面ABCD =AD , 所以AB ⊥平面PAD ,故AB ⊥PD .(2)过P 作AD 的垂线,垂足为O ,过O 作BC 的垂线,垂足为G ,连接PG . 故PO ⊥平面ABCD ,BC ⊥平面POG ,BC ⊥PG .在Rt △BPC 中,PG =2 33,GC =2 63,BG =63.设AB =m ,则OP =PG 2-OG 2=43-m 2,故四棱锥P ABCD 的体积为 V =13×6·m ·43-m 2=m 38-6m 2. 因为m 8-6m 2=8m 2-6m 4=-6⎝⎛⎭⎪⎫m 2-232+83,所以当m =63,即AB =63时,四棱锥P ABCD 的体积最大.此时,建立如图所示的空间直角坐标系,各点的坐标分别为O (0,0,0),B ⎝⎛⎭⎪⎫63,-63,0,C ⎝ ⎛⎭⎪⎫63,263,0,D ⎝ ⎛⎭⎪⎫0,263,0,P ⎝⎛⎭⎪⎫0,0,63,故PC →=⎝ ⎛⎭⎪⎫63,263,-63,BC →=(0,6,0),CD =⎝ ⎛⎭⎪⎫-63,0,0.设平面BPC 的一个法向量为n 1=(x ,y ,1),则由n 1⊥PC →,n 1⊥BC →,得⎩⎪⎨⎪⎧63x +2 63y -63=0,6y =0,解得x =1,y =0,则n 1=(1,0,1). 同理可求出平面DPC 的一个法向量为n 2=⎝ ⎛⎭⎪⎫0,12,1.设平面BPC 与平面DPC 的夹角为θ,则cos θ=|n 1·n 2||n 1||n 2|=12·14+1=105. 8.、[2014·全国卷] 正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16π C .9π D.27π48.A [解析] 如图所示,因为正四棱锥的底面边长为2,所以AE =12AC = 2.设球心为O ,球的半径为R ,则OE =4-R ,OA =R ,又知△AOE 为直角三角形,根据勾股定理可得,OA 2=OE 2+AE 2,即R 2=(4-R )2+2,解得R =94,所以球的表面积S =4πR 2=4π×⎝ ⎛⎭⎪⎫942=81π4.G8 多面体与球 7.、[2014·湖南卷] 一块石材表示的几何体的三视图如图12所示,将该石材切削、( )图12A .1B .2C .3D .47.B [解析] 由三视图可知,石材为一个三棱柱(相对应的长方体的一半),故可知能得到的最大球为三棱柱的内切球.由题意可知正视图三角形的内切圆的半径即为球的半径,可得r =6+8-102=2.8.、[2014·全国卷] 正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16π C .9π D.27π48.A [解析] 如图所示,因为正四棱锥的底面边长为2,所以AE =12AC = 2.设球心为O ,球的半径为R ,则OE =4-R ,OA =R ,又知△AOE 为直角三角形,根据勾股定理可得,OA 2=OE 2+AE 2,即R 2=(4-R )2+2,解得R =94,所以球的表面积S =4πR 2=4π×⎝ ⎛⎭⎪⎫942=81π4.5.[2014·陕西卷] 已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( )A.32π3 B .4π C .2π D.4π35.D [解析] 设该球的半径为R ,根据正四棱柱的外接球的直径长为正四棱柱的体对角线长,可得(2R )2=(2)2+12+12,解得R =1,所以该球的体积为V =43πR 3=43π.G9 空间向量及运算 5.[2014·广东卷] 已知向量a =(1,0,-1),则下列向量中与a 成60°夹角的是( ) A .(-1,1,0) B .(1,-1,0) C .(0,-1,1) D .(-1,0,1)5.B [解析] 本题考查空间直角坐标系中数量积的坐标表示.设所求向量是b ,若b 与a 成60°夹角,则根据数量积公式,只要满足a ·b |a ||b |=12即可,所以B 选项满足题意. 19.,[2014·重庆卷]如图13所示,四棱锥P ABCD 中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,AB =2,∠BAD =π3,M 为BC 上一点,且BM =12,MP ⊥AP . (1)求PO 的长;(2)求二面角A PM C 的正弦值.19.解:(1)如图所示,连接AC ,BD ,因为四边形ABCD 为菱形,所以AC ∩ BD =O ,且AC ⊥BD .以O 为坐标原点,OA →,OB →,OP →的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系O xyz .。