卫星导航系统接收机抗干扰关键技术综述

合集下载

高精度卫星导航接收机抗干扰技术分析

高精度卫星导航接收机抗干扰技术分析

高精度卫星导航接收机抗干扰技术分析随着卫星定位技术的不断发展和应用,高精度卫星导航接收机已经广泛应用于航空、航海、车载、无人机等领域。

在实际的应用中,卫星导航接收机往往会受到各种干扰,影响其定位精度和可靠性。

为了提高卫星导航接收机的抗干扰能力,各国的科研机构和企业纷纷开展了相关技术研究。

本文将对高精度卫星导航接收机抗干扰技术进行深入分析,以期为相关研究和工程应用提供参考。

卫星导航接收机通常会受到以下几种干扰:天气环境中的大气干扰、人为干扰、多路径效应等。

1.天气环境中的大气干扰在恶劣的天气条件下,如雷暴、大雨、暴风雪等极端天气情况下,卫星导航接收机可能会受到大气干扰影响,导致信号衰减或者不稳定,从而影响其定位精度和可靠性。

2.人为干扰人为干扰包括恶意干扰和无意干扰。

恶意干扰是指恶意利用无线电技术对卫星导航系统进行干扰,以达到破坏定位服务的目的。

无意干扰则是指无意中产生的信号干扰,如电磁辐射、其他通信设备的频率冲突等。

3.多路径效应多路径效应是指卫星信号在传播过程中,会受到反射、折射、散射等影响,导致接收机接收到的信号包含主要信号和多径信号,从而产生定位误差。

以上干扰形式给高精度卫星导航接收机的性能带来了严重挑战,研究和提高卫星导航接收机的抗干扰能力迫在眉睫。

为了应对上述干扰形式对卫星导航接收机性能的影响,研究人员和工程师们提出了多种抗干扰技术,主要包括软件滤波技术、天线阵列技术、智能识别技术等。

1.软件滤波技术软件滤波技术是指利用数字信号处理技术对接收到的信号进行处理,消除或抑制干扰信号,提高导航接收机的抗干扰能力。

该技术主要包括滤波器设计、数字滤波算法、自适应滤波技术等。

通过对信号进行衰减、滤波、等方法,可以有效减少信号干扰对接收机的影响,提高定位精度和可靠性。

2.天线阵列技术天线阵列技术是指利用多个天线以及信号处理算法,抑制多径效应和人为干扰,提高信号的质量和稳定性。

通过改变天线的结构和信号处理算法,可以有效减少多路径效应的影响,提高接收机的定位精度和可靠性。

卫星导航系统的抗干扰技术探索

卫星导航系统的抗干扰技术探索

卫星导航系统的抗干扰技术探索在当今科技飞速发展的时代,卫星导航系统已经成为人们生活中不可或缺的一部分。

从日常出行中的导航应用,到航空航天、军事领域的精确制导,卫星导航系统的作用愈发关键。

然而,卫星导航信号在传输过程中容易受到各种干扰,这给其准确性和可靠性带来了巨大挑战。

因此,研究卫星导航系统的抗干扰技术具有极其重要的意义。

卫星导航系统的工作原理是通过卫星向地面发射特定频率的信号,接收机接收这些信号并进行处理,从而计算出自身的位置、速度和时间等信息。

但由于卫星信号在传输过程中相对较弱,且要穿过大气层和各种复杂的环境,这就使得其很容易受到有意或无意的干扰。

无意干扰主要包括自然现象和民用设备产生的干扰。

例如,太阳活动产生的电磁辐射可能会影响卫星信号的传播;城市中密集的建筑物会反射和散射信号,导致多径效应;一些大功率的电子设备也可能会产生电磁干扰。

有意干扰则往往是人为制造的,具有更强的针对性和破坏性。

比如,敌方可能会使用干扰设备发射大功率的同频或相近频率的信号,以阻塞合法的卫星导航信号;或者采用欺骗干扰的方式,发送虚假的导航信号,误导接收机得出错误的位置信息。

为了应对这些干扰,科研人员们研发了多种抗干扰技术。

其中,天线抗干扰技术是一种常见且有效的手段。

通过采用特殊设计的天线,如自适应天线阵列,可以根据干扰信号的方向和特征,自动调整天线的波束方向和增益,从而增强对有用信号的接收,抑制干扰信号。

这种天线能够实时感知干扰的存在,并迅速做出反应,就像是一个敏锐的“耳朵”,能够准确地捕捉到微弱的卫星信号,同时过滤掉嘈杂的干扰。

滤波技术也是抗干扰的重要方法之一。

通过数字滤波器,可以将接收到的信号中处于特定频段的干扰成分滤除,保留有用的卫星导航信号。

就好比是一个精细的筛子,只让符合要求的“细沙”通过,而把“杂质”挡在外面。

另外,扩频技术在卫星导航系统中也得到了广泛应用。

扩频通信将信号的频谱扩展到很宽的频带上,使得单位频带内的信号功率降低,从而提高了信号的抗干扰能力。

卫星导航欺骗干扰检测与抑制技术综述

卫星导航欺骗干扰检测与抑制技术综述

卫星导航欺骗干扰检测与抑制技术综述
倪淑燕;陈世淼;付琦玮;毛文轩;雷拓峰;宋鑫
【期刊名称】《电讯技术》
【年(卷),期】2024(64)5
【摘要】全球导航卫星系统(Global Navigation Satellite System,GNSS)欺骗式干扰具有隐蔽性强、危害性大的特点,对GNSS造成了严重的安全威胁。

介绍了生成式和转发式欺骗干扰的原理和关键技术,总结了现有的欺骗式干扰检测方法和抑制方法,并从成本、性能、复杂度、研究重点等方面对现有技术进行了详细分析。

以性能和成本为指标,对比分析了现有干扰攻击、检测和抑制方法。

最后,对未来欺骗式干扰防御研究值得关注的问题进行了展望,以期为后续研究提供思路。

【总页数】9页(P812-820)
【作者】倪淑燕;陈世淼;付琦玮;毛文轩;雷拓峰;宋鑫
【作者单位】航天工程大学电子与光学工程系;航天工程大学研究生院;军事科学院国防科技创新研究院
【正文语种】中文
【中图分类】TN967
【相关文献】
1.卫星导航欺骗干扰信号检测技术综述
2.卫星导航授时信号的抗干扰和欺骗检测技术综述
3.卫星导航欺骗式干扰抑制技术研究与分析
4.一种基于阵列天线的卫星导航欺骗干扰检测与抑制方法
5.卫星导航欺骗式干扰检测技术综述
因版权原因,仅展示原文概要,查看原文内容请购买。

浅谈GPS抗干扰技术

浅谈GPS抗干扰技术

浅谈GPS抗干扰技术作者:戴明雪韩婷来源:《科学与财富》2016年第34期(黑龙江省经济管理干部学院黑龙江省哈尔滨市 150080)摘要:全球定位系统(GPS),能够在全球范围内不间断的为需求者提供高精度的准确定位和精准的时间信息,用户终端设备易于实现、精度较高,应用领域广泛。

由于种种原因,GPS易受到干扰和攻,在电磁环境极度复杂的情况下,如何解决GPS的干扰问题成为了重点研究对象。

关键词:GPS;定位;抗干扰GPS接收机依靠GPS卫星射频信号工作,GPS卫星射频信号容易存在射频干扰。

这种影响会使GPS接收机导航定位系统精度下降。

射频干扰的存在形式分为宽带、窄带、无意及有意的。

而且这种干扰很难预测,一旦干扰信号串入, GPS信号的追踪准确度都会收到影响。

所以GPS抗干扰技术的研究意义重大。

首先,GPS的主要功能是为高动态用户提供实时的、连续的、精度高的数据信息。

GPS主要存在的干扰形式有三种:压制式干扰、欺骗式干扰、分布式立体干扰。

压制式干扰:利用噪声信号遮挡有效信号,致使GPS接收机失常。

有窄带、宽带两种形式,在干扰作用时间上有连续和脉冲两种形式。

这种干扰技术含量较低,功率较大。

欺骗式干扰:利用与GPS信号相近的信号进行干扰,致使GPS接收机失常。

此类干扰容易判断,显而易见,干扰功率偏小,但技术难度较高。

分布式立体干扰:应用不同类型干扰机对地对空进行全方位立体式干扰。

通过分析GPS技术的自身性质,可以采用以下技术来解决干扰问题。

运用操作策略:这是一种非实质性抗干扰法。

这种方法可以将GPS接收与干扰源隔绝。

可利用卫星信号与地平面至少有10°,可以抑制地面干扰。

但这种方法不能用于机载干扰机。

从RFI源进行控制:通过截断干扰源抑制干扰。

针对无线频率干扰(RFI),严格的规章制度控制,可以限制干扰源的发射波段。

对远离GPS的相同地点的发射频带源,可以对发射源实施屏蔽与滤波。

技术上的改进和调整:分局干扰信号的特征,考虑成本的前提下,可将抗干扰技术分为三种类型:自适应阵类:零控制,光束控制;多孔技术类:光束转换,多元对消法;单孔技术类:窄前后滤波器,窄辅助跟踪环,时相滤波,GPS/惯性集成和辅助,极化抗干扰技术。

卫星导航接收机自适应抗干扰方法研究

卫星导航接收机自适应抗干扰方法研究

卫星导航接收机自适应抗干扰方法研究卫星导航接收机自适应抗干扰方法研究摘要:随着卫星导航系统在日常生活中的广泛应用,其性能受到干扰的影响越来越大。

为了提高接收机抗干扰能力,研究人员开始探索各种自适应抗干扰方法。

本文综述了当前常用的一些卫星导航接收机自适应抗干扰方法,并介绍了其原理和实际应用。

我们的研究结果表明,自适应抗干扰方法可以显著提高接收机的抗干扰性能,实现更精确的定位和导航。

关键词:卫星导航系统;接收机;干扰;自适应抗干扰方法;定位;导航一、引言卫星导航系统是一种基于人造卫星提供定位和导航服务的技术。

它在交通、航空航天、物流配送等领域得到广泛应用,成为现代社会的重要组成部分。

然而,由于电磁波在传输过程中容易受到干扰的影响,导致卫星导航接收机在实际使用中容易受到各种干扰。

这些干扰包括人为干扰(如恶意干扰、无线电频率冲突等)和自然干扰(如天气、地形因素等)。

为了提高接收机的抗干扰能力,研究人员开始探索各种自适应抗干扰方法。

二、卫星导航接收机自适应抗干扰方法1. 自适应滤波器方法:自适应滤波器方法是一种常用的抗干扰技术。

它通过不断调整滤波器参数,使接收机在干扰环境下能够自适应地抑制干扰信号。

自适应滤波器方法的关键是通过算法估计干扰信号的特征,并将估计结果作为输入,使滤波器能够自动调整,从而达到抑制干扰信号的目的。

2. 自适应阻塞抑制方法:自适应阻塞抑制方法是一种针对频率相邻的无线电干扰的技术。

它通过分析接收机输入信号的频谱分布,在频域上对干扰信号进行抑制。

具体方法包括自适应滤波、频域抑制等。

3. 自适应跟踪环方法:自适应跟踪环方法是一种能够自动调整接收机跟踪环参数的技术。

它通过解析卫星导航信号,实时优化接收机的参数,使接收机能够更好地跟踪卫星导航信号,提高抗干扰能力。

三、实验与结果分析我们在实验中使用了一款商用卫星导航接收机,并分别运用了上述三种自适应抗干扰方法进行测试。

实验结果表明,在干扰环境下,自适应滤波器方法能够显著提高接收机的信号抗干扰能力。

北斗卫星导航系统及抗干扰算法研究

北斗卫星导航系统及抗干扰算法研究

北斗卫星导航系统及抗干扰算法研究摘要:本文主要介绍了北斗卫星导航系统(GNSS)组成、特点及应用,概述了北斗导航信号抗干扰算法,提出了改进后的抗干扰算法-空时频联合自适应抗干扰算法,推导出了具体算法及流程,对空时频联合自适应抗干扰算法进行了仿真计算验证,该抗干扰算法已在实际项目中验证其可靠性,具有很强的工程意义。

0 引文北斗卫星导航系统为我国自主研制开发的全球卫星导航系统,可实现全方位定位、导航、授时等功能,在国家经济建设以及国防安全方面扮演着十分重要的角色。

北斗导航接收机通常工作在复杂环境中,容易受到电磁干扰的影响,这会影响导航定位的正常运行。

为此,针对提高接收机抵抗电磁干扰,研究人员研制了卫星抗干扰设备为北斗导航设备的正常运行提供保障。

因此,对于北斗抗干扰技术仍有很大的研究空间。

目前,常见的抗干扰算法有空域抗干扰算法、时域抗干扰算法、频域抗干扰算法、空时抗干扰算法、空频抗干扰算法、LMS自适应窄带陷波抗干扰算法等。

国外已对导航抗干扰算法进行了大量的研究,例如文献给出了LMS变步长算法,文献针对共轭梯度抗干扰算法进行了分析与推导,给出了优化计算过程。

国内西安电子科技大学的王营营改进了扩频技术的GPS抗干扰方法,国防科技大学鲁祖坤开展了天仙阵抗干扰关键技术研究等。

现今对于抗干扰算法的改进优化以及仿真实现仍是行业热点。

本文针对北斗导航接收机设备提出了空时频联合抗干扰算法,给出了具体的推导过程及算法原理,实现了北斗三号卫星导航抗干扰平台系统,并在具体工程上进行了算法的实际验证与应用。

1 北斗卫星导航系统目前,全球卫星导航系统(GNSS-Global Navigation Satellite System)主要包括了以下几种:美国的全球定位系统(GPS- Global Positioning System)、欧洲的伽利略卫星定位系统(GALILEO-Galileo Satellite Navigation System)、俄罗斯的全球导航卫星系统(GLONASS- Global Navigation Satellite System)以及我国的北斗导航卫星定位系统(Bei Dou Navigation Satellite System)等。

卫星导航终端对抗技术综述

卫星导航终端对抗技术综述

0 背景卫星导航(GNSS)在军事应用和经济发展中得到日益广泛的应用,重要性日趋明显。

目前随着GPS、GLONASS 和北斗等卫星导航系统的蓬勃发展,在地理信息位置服务行业产生了巨大的经济价值,为精准农业、物流运输、电信电力、智慧交通、测绘建筑、防洪救灾等各个领域提供了大量精准的地理信息支撑。

同时,在现代高科技战争中卫星导航(GNSS)为信息化作战系统和精确制导武器提供了精确的时空基准,发挥着越来越重要的作用。

现代化战争的一个重要特征是精确打击手段,而卫星导航制导技术逐渐发展成为精确制导的重要手段。

从1991年的海湾战争到后来的科索沃、阿富汗、伊拉克、利比亚战争,卫星导航制导武器的比重越来越高,分别达到7.7%、30%、60%、90%和100%。

以上统计数据表明:卫星导航(GNSS)手段已经成为决定现代战争胜负的重要因素。

在卫星导航(GNSS)的军事和民用作用日益突出的背景下,对卫星导航系统及其无线电频谱资源的争夺和控制也日趋激烈,出现了导航战的概念和部署计划,形成了独特的导航战表现形式[1]。

导航战概念由来已久,起源于二战时期的导航对抗。

在GPS系统投入使用以后,导航战得到了广泛的关注和深入的研究。

自21世纪以来,美国发布了多个关于导航战的政策文件,不断形成和完善导航战的理论和规划,同时积极开展导航战方面的技术研究,并将其应用到军事演习和实际行动中。

导航战的概念内涵包括:阻止敌方使用卫星导航(GNSS)信息进行导航定位;在敌方实施导航战的情况下保证自己能够利用高精度导航定位信息;不影响战区外民用用户和平利用导航定位信息。

依据卫星导航系统的特点,目前现有卫星导航系统(美国GPS、俄罗斯GLONASS、欧洲Galileo、中国北斗系统以及日本QZSS、印度NAVIC)均是无线电信号测距的工作原理,为无源接收的方式。

普遍有信号频率公开、编码方式公开、导航电文公开、卫星信息公开、向广大用户开放的特点,很容易受到各种类型、各种方式的恶意干扰[1]。

三系统卫星导航接收机关键技术研究

三系统卫星导航接收机关键技术研究

三系统卫星导航接收机关键技术研究随着卫星导航技术的发展,全球定位系统(GPS)已经成为我们日常生活中不可或缺的一部分。

然而,由于GPS系统在一些特定环境下存在信号遮挡、干扰等问题,为了提高定位精度和可用性,许多国家纷纷研发并建立自己的导航卫星系统。

目前,全球导航卫星系统(GNSS)主要包括GPS、俄罗斯的格洛纳斯系统和中国的北斗系统。

为了实现对多个导航卫星系统的接收和处理,三系统卫星导航接收机的研究成为当前热点。

三系统卫星导航接收机的关键技术包括信号接收与处理、信号融合与算法设计以及精度评估。

首先是信号接收与处理。

三个系统的导航卫星信号在频率、调制方式和编码等方面存在一定差异。

因此,接收机需要能够同时接收和处理来自不同导航卫星系统的信号。

这就要求接收机具备宽频带和高动态范围的特性,以应对多个卫星系统信号同时接收的需求。

其次是信号融合与算法设计。

由于各卫星系统的定位精度和可用性各不相同,通过将多个系统的信号进行融合,可以提高导航定位的精度和可靠性。

对于三系统卫星导航接收机,如何选择合适的信号融合算法,以及如何对不同系统的信号进行权衡和优化,是需要重点研究的问题。

最后是精度评估。

三系统卫星导航接收机需要能够对导航定位的精度进行准确评估。

精度评估包括对接收机硬件和算法的准确性进行分析,以及对系统误差进行校正和修正。

只有准确评估了接收机的精度,才能保证导航定位的准确性和可靠性。

总之,随着多个导航卫星系统的发展和应用,研究和开发三系统卫星导航接收机的关键技术变得非常重要。

信号接收与处理、信号融合与算法设计以及精度评估是该领域的关键问题。

未来,随着技术的不断进步和应用的推广,三系统卫星导航接收机将在各个领域发挥更加重要的作用,为人们提供更精准、可靠的导航定位服务。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

卫星导航系统接收机抗干扰关键技术综述
卫星导航系统,就是用于对目标定位、导航、监管,提供目标位置、速度等相关信息的卫星系统。

卫星导航系统具有很多优点,定位精度非常高,如美国的GPS(全球定位系统)精度可达厘米和毫米级;效率高,体现在观测时间短,可随时定位;全天候的连续实时提供导航服务。

因此,卫星导航系统广泛应用于各个领域,发展前景十分广阔。

但是,卫星导航系统有一个缺点,就是卫星信号的功率比较低,信道容易受到其他形式的各种干扰,导致卫星导航接收机的性能下降。

因此,为了提升我国的卫星导航系统的抗干扰能力,本文主要研究探讨了卫星导航系统接收机抗干扰的关键技术。

1 卫星导航系统抗干扰技术
卫星导航系统接收机的干扰主要有三种形式,欺骗式干扰、压制式干扰、欺骗式/压制式组合干扰。

欺骗式干扰有针对民码的干扰和针对军码的干扰;压制式干扰有宽带压制式干扰和窄带压制式干扰。

为了应对各种干扰,卫星导航系统使用扩频技术,扩频技术具有很好的隐蔽性,能够精密测距,并且可以实现多址通信,抗干扰能力大大增加。

而对于连续波干扰、窄带干扰,就要采用带阻频谱滤波方法滤掉干扰信号。

而对于宽带干扰,这些方法效果都不理想,一般选择自适应阵列天线技术,这种技术能够根据外部的信号强弱,自动改变各个针元的加权系数,从而对准干扰信号方向。

1.1 自适应滤波技术
自适应滤波技术是随着自适应滤波理论与算法的发展而发展起来的,最小均方算法和最小二乘算法对自适应滤波技术起到的非常大的作用。

除此以外,采样矩阵求逆算法也属于另一种自适应算法,直接矩阵求逆算法使得系统处理速度大大提升。

1.2 卡尔曼滤波技术
卡尔曼滤波技术是卡尔曼在20世纪60年代提出的,卡尔曼滤波技术是在被提取信号的相关测量中利用实时递推算法来估计所需信号的一种滤波技术。

这种技术的理论基础是随机估计理论,在估计过程中,用观测方程、系统状态方程以及白噪声激励的特性作为滤波算法。

卡尔曼滤波技术不仅用于估计一维的平稳的随机过程,而且可以用于多维的非平稳随机过程估计。

卡尔曼滤波技术实质上属于一种最优估计方法。

虽然卡尔曼滤波技术操作简单,应用范围十分广泛,但有一个基本要求,就是必须在计算机上实现。

2 抗压制式宽带干扰技术
2.1 压制式宽带干扰的工作原理
所谓压制式干扰,就是指干扰信号的强度远远高于经过扩散后的卫星信号强度,进而使卫星导航系统接收机无法获取准确信号,从而达到干扰卫星导航系统的目的。

压制式干扰有窄带压制式和宽带压制式干扰。

窄带单频连续波干扰,是一台干扰机对卫星导航系统发射单频信号,当单频信号与用伪码调制的宽带进行混频后,就输出宽带干扰信号。

宽带扩频相关干扰,原理是利用卫星信号的伪码序列与干扰信号的伪码序列的强关联性来干扰接收机的接受能力。

这种干扰可以以较小的干扰功率就能达到有效干扰目的。

2.2 自适应阵列天线技术
阵列天线的结构决定抗干扰性能,阵列天线的几何结构对抗干扰性能的影响主要体现在三个方面。

第一,阵列天线的阵元间隔。

第二,阵列天线的几何布局。

第三,阵列天线的阵元个数。

确定阵元间的相对距离,要考虑的因素有,较小的阵元之间的间隔形成的互藕效应,和半波长的阵元间隔形成的旁瓣。

一般的阵元间隔选择半波长,能够有效避免大的旁瓣的产生,并且此时的互藕效应最小。

阵列天线的几何结构布局不同,对应的最佳阵元的个数就不同。

所以在进行干扰抑制性能的量化比较时,不能将阵元个数相同的,但阵元几何结构不同
的阵列进行比较。

天线阵元的个数和需要抑制的干扰信号、需要获取的期望信号个数有关。

2.3 空域自适应滤波算法
自适应阵列天线就是单纯的空域自适应滤波,当干扰方向和信号随着时间不断变化时,自适应滤波能够及时的从空间接受信号,自动感知存在的干扰同时加以抑制。

自适应阵列天线解决的是抗干扰,要达到在接受需要的信号的同时,又要抑制不需要的有意或无意的干扰信号。

自适应天线系统有阵列天线、数字波束形成网络、多通道信道接收机和自适应处理器组成。

自适应功率谱倒置算法较好的抑制比较强的干扰信号,并且自适应功率谱导致算法抑制干扰的能力随着干扰信号的增强而不断增强。

自适应天线阵列的抗干扰性能会随着天线阵列的规模的增大而提高,但是增大到超过7个阵元后,自适应天线阵列的抗干扰性能就不会明显提高。

尽管说自适应功率谱导致算法对干扰的抑制程度比较大,但是在信号与干扰的夹角小于20度时,功率谱倒置算法对干扰的抑制程度就会减弱,甚至会使卫星信号衰减。

2.4 联合空时滤波算法
与单纯的时域、频域技术相比,单纯的空域滤波技术有明显的优势,单纯的空域滤波技术涉及到的计算量比较小,比较简单。

缺点是,如果阵单元数为M,该阵最多能够消除的干扰数和最多能够产生的零陷数均为M1。

然而在实际应用中,由于阵的尺寸有限制,而且受到费用和功率消耗等的影响,阵元个数会有所限制,使得自适应阵的抗干扰性能下降。

针对这方面的不足,设计出的联合空时自适应技术,是指在阵元个数不变的前提下,增加阵列的自由度。

联合空时自适应技术在最优准则和阵列的设计方面的选择空间比较大。

联合空时自适应技术能够替代单纯的阵列处理方法,尤其是遇到干扰数目较多,干扰场景复杂情况。

联合空时自适应技术需要调整天线阵元的空域响应和时域响应。

调整时域能够补偿中频、射频,并且加深零点深度,增强宽带抗干扰能力。

除此以外,联合空时自适应技术还可以在不消耗空域自由度的基础上提高干扰抑制自由度
3 抗欺骗式干扰技术
3.1 欺骗式干扰的干扰机理
如果本地信号的相位、载频与干扰信号的相位、载频分别相同时,那么对应的干扰互相关项也会取得最大值。

这样一来,因为本地信号和接收到卫星信号不会一直一直不变,会相应滑动,使得互相关项可能取得最大值的同时,自相关项不会一直取得最大值。

卫星导航系统接收机的工作方式决定了欺骗式干扰可以分为转发式欺骗干扰和产生式欺骗干扰。

产生式干扰指的是干扰机产生高逼真的欺骗信号,这个欺骗信号能够被卫星导航系统的接收机接收,并且使卫星导航系统出现错误解码,受到干扰。

产生式干扰的发生有一定的条件,必须在知道当时的卫星电文数据和卫星信号的码型的基础上。

3.2 欺骗式干扰的干扰特征
欺骗式干扰的干扰特征体现在三个方面,即欺骗式干扰信号强度一般大于卫星信号强度,欺骗式干扰信号引入的实测伪距误差,欺骗式干扰信号的导航电文信息误差。

具体来说,首先,在高强度的干扰信号的条件下,欺骗式干扰进入接收机的捕获跟踪通道,进行欺骗式干扰。

其次,欺骗式干扰对接收机定位系统的欺骗式干扰途径主要是通过卫星位置和伪距测量值进行。

4 总结
由于卫星导航系统独特的技术优势,精准定位,以及连续实时等特点,卫星导航系统广泛应用于各个领域,发展前景十分广阔。

但是,卫星导航系统有一个缺点,就是卫星信号的功率比较低,信道容易受到其他形式的各种干扰。

因此本文主要研究卫星导航定位抗干扰接收机系统的一些关键技术,主要有抗压制式干扰自适应滤波算法,抗欺骗式干扰方案设计以及卫星导航系统的接收机抗干扰的改进设计研究,以此来提升我国的卫星导航系统的抗干扰
能力。

相关文档
最新文档