汽轮机开题报告
汽轮机生产管理系统的设计与实现的开题报告

汽轮机生产管理系统的设计与实现的开题报告一、题目汽轮机生产管理系统的设计与实现。
二、研究背景汽轮机作为一种重要的动力设备,在能源、化工、船舶、航空等领域有着广泛的应用。
目前,国内汽轮机制造业已进入快速增长阶段,但在生产管理方面仍存在较大的问题,例如人工管理模式下容易出现信息不对称、订单执行效率低、质量无法保证等问题。
为此,开发一套汽轮机生产管理系统,能够实现物料采购、生产计划、生产过程跟踪、质量管理等功能,将能够提高生产效率、保证产品质量、降低企业运营成本。
三、研究目的本研究的主要目的是设计并实现一套完整的汽轮机生产管理系统,实现以下功能:1. 全生命周期物料管理:实现物料采购、入库、出库、库存管理等功能,确保物料的充足和流转。
2. 生产计划管理:根据市场需求和企业能力,制定合理的生产计划,安排生产任务,确保生产任务的及时完成。
3. 质量管理:对生产过程中的每个环节开展质量控制和质量检验,确保产品质量的稳定性和可控性。
4. 生产过程跟踪:对生产过程进行实时监控,跟踪各级别生产任务的执行情况,及时调整生产计划,并以此优化生产效率。
5. 数据分析和决策支持:通过系统内置的各种数据分析功能,为企业管理者提供数据支持,以基于数据的方式进行管理决策。
四、研究方法与技术路线本研究将采用软件开发过程中的经典阶段化模型(即需求分析、设计、编码、测试和维护),并结合敏捷开发的理念进行开发。
针对系统需求,本研究将采用面向对象的分析和设计方法,并利用统一建模语言(UML)对系统进行建模。
技术路线主要包括:1. 前端技术:采用HTML、CSS、JavaScript等前端技术,实现系统用户界面的设计和开发。
2. 后端技术:采用Java语言开发后端业务逻辑,使用SpringMVC、Mybatis等框架,实现业务逻辑的处理和数据持久化操作。
3. 数据库技术:使用MySQL数据库,存储系统数据。
4. 系统集成技术:采用RESTful或SOAP协议与其他系统进行通讯。
燃气轮机控制技术研究的开题报告

燃气轮机控制技术研究的开题报告一、选题背景和意义燃气轮机是一种重要的热力设备,在能源转换中具有广泛的应用。
随着国家经济和技术的不断发展,燃气轮机的运行效率、稳定性和安全性等方面提出了更高的要求。
为实现燃气轮机的更加稳定高效运行,燃气轮机控制技术成为当前燃气轮机技术研究领域的热门话题。
本次研究旨在通过对燃气轮机控制技术的深入研究,掌握先进的燃气轮机控制技术,并对燃气轮机的稳定运行提供一定的理论和实践参考。
二、研究内容和目标1.燃气轮机控制技术现状和发展趋势分析2.燃气轮机控制系统的组成和功能分析3.燃气轮机控制系统中各个模块的设计和关键技术研究4.基于MATLAB的燃气轮机控制系统的仿真研究三、研究方法和技术路线1.文献综述法:对燃气轮机控制技术领域的学术文献进行系统综述,了解其历史迭代,现状和未来发展趋势。
2.理论分析法:对燃气轮机控制技术进行深入理论探讨,梳理燃气轮机控制系统的组成和功能,并分析其各个模块的设计和关键技术。
3.实验仿真法:基于MATLAB软件,搭建燃气轮机控制系统的仿真平台,实现燃气轮机控制系统的仿真研究。
四、研究计划与进度安排1.燃气轮机控制技术文献综述,完成时间:1周2. 燃气轮机控制系统的组成和功能分析,完成时间:1周3.燃气轮机控制系统中各个模块的设计和关键技术研究,完成时间:2周4.基于MATLAB的燃气轮机控制系统的仿真研究,完成时间:3周5.论文撰写和论文答辩,完成时间:2周五、预期成果1.掌握一定的燃气轮机控制技术和仿真技能2.具有较强的文献和理论综述能力3. 完成燃气轮机控制技术的研究并形成论文4. 在燃气轮机控制技术领域取得一定的实践和理论探索成果。
QF-35-2 10500V空冷汽轮发电机的开题报告

QF-35-2 10500V空冷汽轮发电机的开题报告一、选题的背景随着工业化的不断发展,电力成为城乡居民和企事业单位生产、生活中必不可少的能源。
在大规模电力生产中,使用的发电机通常为汽轮发电机。
汽轮发电机具有效率高、启动快、可靠性强等特点,因此得到广泛应用。
本课题选择的是QF-35-2 10500V空冷汽轮发电机,该发电机是国内较先进的一种汽轮发电机,具有输出功率大、运行稳定等优点,在电力系统中得到广泛应用。
运用理论与实验方法,对QF-35-2发电机从结构、转子动力学、热特性等方面进行分析研究,对发电机的性能提升和运行稳定性的保证具有重要意义。
二、研究的目的和意义1.分析QF-35-2发电机的结构和工作原理,掌握其基本运行规律;2.研究QF-35-2发电机的性能特点,评价其应用价值;3.分析QF-35-2发电机的转子动力学特性,进一步提高其转子系统的稳定性和可靠性;4.研究QF-35-2发电机在不同负载下的热特性,掌握其热工能力和效率;5.为发电机的后期维护提供理论基础和技术支持,对于提高电力系统的稳定性和可靠性有一定的意义。
三、研究内容和步骤1. QF-35-2发电机的结构原理分析;2. 分析QF-35-2发电机的基本运行规律,包括启动、加速、定转速等;3. 研究并评价QF-35-2发电机的静态/动态/热特性;4. 分析QF-35-2发电机转子动力学特性,并研究影响发电机稳定性和可靠性的因素;5. 将理论分析结果与实验数据进行对比,对发电机进行性能评价;6. 探究QF-35-2发电机的优化改进措施。
四、论文的组成和要求本论文应按照学术论文的通常形式进行撰写,应包括以下主要部分:1.绪论:课题研究背景、研究目的和意义、国内外研究现状;2.理论分析:对QF-35-2发电机的结构和工作原理进行分析,并探究其基本运行规律;3.实验研究:通过实验数据对发电机性能进行评估,并研究其转子动力学特性、热特性等;4.研究结果与分析:将理论研究结果和实验数据进行对比,对发电机进行性能评价,并探究其优化改进措施;5.结论与展望:对课题研究的主要结论进行总结,给出进一步研究的建议和展望。
汽轮机DEH系统参数优化及故障查询研究的开题报告

汽轮机DEH系统参数优化及故障查询研究的开题报告一、研究背景汽轮机是一种常见的动力系统,广泛应用于电力、化工、船舶和飞机等领域。
其发电效率和运行稳定性对于能源和经济发展具有重要意义。
因此,汽轮机DEH(差分扩张控制系统)作为汽轮机的主要控制系统,对于保证汽轮机的稳定运行和提高发电效率至关重要。
优化汽轮机DEH系统参数和故障查询具有非常重要的实际意义和理论价值。
本文旨在探索汽轮机DEH系统参数优化及故障查询的相关研究。
二、研究目的本文的研究目的是:1. 分析汽轮机DEH系统的结构和原理,研究其参数优化方法。
2. 探究汽轮机DEH系统中出现的常见故障类型、故障检测和故障诊断方法。
3. 建立汽轮机DEH系统的数学模型,应用优化算法,利用仿真软件进行实验验证,实现DEH优化参数。
4. 设计故障诊断系统,应用机器学习方法对汽轮机DEH系统进行故障检测和诊断,并对该系统进行实验验证。
三、研究方法本文将采用以下研究方法:1. 汽轮机DEH系统原理和参数优化方法的文献综述,了解目前研究现状和相关技术,为后续研究做好理论准备。
2. 对汽轮机DEH系统进行建模和仿真,采用优化算法进行参数调整,并通过仿真软件进行实验验证。
3. 基于数据挖掘和机器学习技术,设计汽轮机DEH系统的故障检测和诊断系统,并进行实验验证。
四、研究内容和进度安排本文的主要研究内容及安排如下:1. 第一阶段(时间安排:一个月)分析汽轮机DEH系统的结构和原理,深入了解其参数优化方法。
具体工作包括:(1)汽轮机DEH系统的相关文献综述。
(2)分析汽轮机DEH系统的结构和工作原理。
(3)研究汽轮机DEH系统参数优化的方法。
2. 第二阶段(时间安排:两个月)建立汽轮机DEH系统的数学模型,利用仿真软件进行实验验证。
具体工作包括:(1)基于DEH系统的数学模型的建立,包括控制模型和平衡模型。
(2)使用MATLAB等仿真软件进行模型验证实验。
(3)利用优化算法,对模型进行参数调整并比较模型的稳定性和性能。
1000MW汽轮机的开题报告和中期检查报告

3.特色或创新点
紧跟国内火电机组的发展状况,有前瞻性的对超超临界机组进行了解和研究。
三、审批意见
可行性:□是 □否 任务量大小: □ 较大 □ 适中 □偏小
是否同意开题:□是 □否
指导教师签名:
年 月 日
本科毕业设计(论文)中期检查表
题目名称
1000MW超超临界机组结构分析及原则性热力计算
3.超超临界火电机组国内外现状
美国是发展超临界机组最早的国家,世界上第一台超临界机组1957年在Philo电厂(6#)投运,该机组由B&W和GE公司设计制造。据统计,到1986年为止,美国已投运的超临界机组有166台,其中多数为超超临界机组,平均每台机组容量为669MW,而到1992年为止,美国在役的117台800MW及以上火电机组均为超临界和超超临界机组,最大单机容量为1300MW。1999年美国能源部(DOE)提出了火电新技术发展的Vision计划,美国计划开发蒸汽参数为35MPa/760℃/760℃/760℃的大功率超超临界火电机组,热效率将高于55%(比蒸汽温度600℃的超超临界机组热效率提高8%~10%),CO2和其他污染物的排放约减少30%.
2.发展超超临界火电机组的战略意义
2003年7月中国机械联合会根据对我国能源结构、国家能源政策和未来发电用能源供应状况的分析,在充分考虑水电、天然气、核电和新能源资源的开发基础上,再考虑煤电的开发,经过分析、测算,虽然煤电所占比重从2000年到2020年在逐年下降(从72.7%下降到64.4%),但煤电在电源结构中的主导地位没有改变。由于超超临界机组与常规火电机组相比,超临界机组的可用率与亚临界机组相当,效率比亚临界机组约提高2%。超超临界机组效率可比超临界机组再提高约2%~3%,若再提高其主汽压力到28MPa以上,效率还可再提高约2个百分点。因此它具有明显的高效、节能和环保优势,已成为当今世界发达国家竞相采用和发展的新技术。我国的能源装备政策是要发展大容量高参数的火电机组,国家计委明确新建600MW及以上容量燃煤机组原则上采用超临界或超超临界参数的火电机组。
600MW汽轮机控制系统分析与研究的开题报告

600MW汽轮机控制系统分析与研究的开题报告一、研究背景随着我国经济的快速发展,能源需求呈上升趋势。
化石能源依然是我国主要的能源供给形式,其中以煤电厂为主要的发电形式。
汽轮机是煤电厂的核心设备之一,它能够将燃料的热能转化为机械能,从而驱动发电机发电。
然而,在汽轮机的运行过程中,由于温度、压力等参数的变化以及其它原因,可能会出现一些异常情况,包括振动过大、温度过高等情况,这些异常情况可能会导致汽轮机发生故障。
因此,汽轮机控制系统的设计和研究具有重要意义。
二、研究内容本研究的主要内容是针对一台600MW的汽轮机控制系统进行分析与研究。
具体的研究内容包括以下几个方面:1.汽轮机的工作原理和结构分析,包括汽轮机的基本构造和工作原理,在此基础上分析汽轮机开机、负荷调节、停机等不同状态下的运行特点。
2.汽轮机控制系统的组成和结构分析,包括汽轮机控制系统的硬件和软件组成,以及控制逻辑和控制策略的设计。
3.汽轮机控制系统的工作原理和稳态性能分析,在此基础上设计出满足控制要求的PID控制器,并进行参数调节。
4.汽轮机控制系统的鲁棒性与鲁棒设计研究,包括汽轮机控制系统的最优设计、鲁棒控制性能分析以及鲁棒控制器设计等。
三、研究方法本研究采用实验和仿真相结合的方法,通过搭建仿真实验平台和实验平台,分析和研究汽轮机控制系统的稳态控制性能,并进行参数调节和控制策略设计。
同时,还将通过模型预测控制、最优控制等方法进行系统鲁棒性分析和鲁棒控制器设计。
四、研究意义对汽轮机控制系统的分析和研究,有利于设计出性能更优、鲁棒性更强的控制系统,提高汽轮机的稳态控制能力和运行的安全性。
同时,这也有助于推动我国煤电厂的可持续发展,提高我国能源的利用效率和减少环境污染。
汽轮机运行参数优化方法研究的开题报告

汽轮机运行参数优化方法研究的开题报告一、研究背景和研究意义汽轮机是一种非常重要的发电设备,其运行参数的优化与调节对于提高发电效率、降低能源消耗、减少环境污染具有重要意义。
随着国家对于能源消耗和环境污染的要求越来越高,汽轮机运行参数优化已经成为了热门研究领域。
二、研究目的与研究内容研究目的:本研究主要目的是深入了解汽轮机运行参数优化方法,探讨汽轮机运行参数的优化策略,提高发电效率,降低能源消耗、减少环境污染。
研究内容:1. 汽轮机运行参数优化的意义及研究现状。
2. 基于能量平衡原理的汽轮机运行参数优化方法。
3. 基于神经网络的汽轮机运行参数优化方法。
4. 基于遗传算法的汽轮机运行参数优化方法。
5. 汽轮机运行参数优化方法的实验验证。
三、研究方法和技术路线研究方法:1.文献阅读法。
通过阅读相关文献,梳理汽轮机运行参数优化方法的发展历程和最新研究成果。
2. 理论分析法。
基于汽轮机工作原理和能量平衡原理,探讨汽轮机运行参数优化的理论基础。
3. 数值模拟法。
采用数值模拟软件对汽轮机进行模拟,分析汽轮机在不同运行参数下的能量消耗情况。
4. 实验验证法。
通过实验验证汽轮机不同优化方案的能效表现,验证汽轮机运行参数优化的可行性与有效性。
技术路线:1. 文献调研和理论分析:综合国内外文献,梳理汽轮机运行参数优化方法的研究现状和发展历程,并理论分析汽轮机运行参数优化方法的原理与基础。
2. 数值模拟:使用ANSYS等数值模拟软件对汽轮机进行模拟,得到在不同运行参数下的能量消耗等数据。
3. 优化策略设计:依据数值模拟结果,设计基于能量平衡原理、神经网络、遗传算法等多种优化策略。
4. 实验验证:通过实验验证优化策略的有效性和可行性,优化汽轮机的运行参数。
4、论文框架与进度安排借鉴以往论文经验,本研究论文的框架如下:第一章研究背景和研究意义第二章汽轮机运行参数优化的理论基础第三章基于能量平衡原理的汽轮机运行参数优化方法第四章基于神经网络的汽轮机运行参数优化方法第五章基于遗传算法的汽轮机运行参数优化方法第六章汽轮机运行参数优化方法的实验验证第七章总结与展望进度安排:1. 文献调研和理论分析:2个月。
600MW汽轮发电机进相运行研究的开题报告

600MW汽轮发电机进相运行研究的开题报告一、选题的背景和意义汽轮机是电力工业的核心设备之一,具有结构简单、效率高、运行稳定等优点,广泛应用于火力、核电、燃气等发电和工业生产过程中。
汽轮机的工作过程中,进相运行是其中的一种操作模式,即在监测到平衡点之后直接进入电网运行。
目前,国内外存在一些已经建成的大型汽轮机电站,但是在进相运行方面还缺乏系统的研究。
而现实中,进相运行所需的技术手段和设备性能要求较高,其操作控制、稳定性等方面的问题也需要广泛的研究和探讨。
因此,研究汽轮发电机进相运行的科学性和实用价值十分有必要。
二、文献综述从已有研究可以看出,汽轮发电机进相运行的研究存在着以下几个方面的问题:1. 进相运行的理论和实际应用尚未达到一致。
国内外对于汽轮机进相运行的研究虽然已经有了一定的进展,但是在进相运行方面需要继续进行研究和探索,以进一步提高汽轮机的效率和稳定性。
2. 进相运行对汽轮机的性能和运行管理都有着重要的影响。
随着技术的不断改进和发展,如何优化汽轮机的进相运行在工业领域内受到了广泛关注。
3. 汽轮机进相运行的应用范围有限。
目前,进相运行还没有在大型的汽轮机电站中得到广泛应用。
因此,未来需要进一步研究汽轮机的进相运行,在实际应用中得到更多的应用和推广。
三、选题的研究内容和思路本文主要研究600MW汽轮发电机的进相运行,通过对汽轮发电机进相运行的过程进行分析和探究,探索汽轮发电机进相运行的关键技术和机理,以优化汽轮机的运行效率和稳定性,并提出相应的控制策略和技术方案。
具体研究思路如下:1. 对汽轮机的进相运行原理进行分析和探讨,研究进相运行模式下汽轮机的状态和特性。
2. 建立汽轮机进相运行模型,分析汽轮机在进相运行模式下的运行状态和特性,并结合实际应用探讨其影响因素和机理。
3. 组织实验验证,深入实验研究汽轮机的进相运行特性、性能、稳定性等指标,提出进一步的优化方案和技术措施。
4. 组织成果交流和推广,将研究结果推广到汽轮发电机的实际应用中,并形成一定的理论和技术基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南华大学本科生毕业设计(论文)开题报告设计(论文)题目12MW机组抽汽汽轮机总体设计设计(论文)题目来源自选课题设计(论文)题目类型工程设计类起止时间20150112~20150530设计(论文)依据及研究意义:本设计研究的依据:1883年瑞典工程师拉法尔创造出第一台轴流式汽轮机,它是一台3.7kw的单级冲动式汽轮机,转速高达26000r/min,相应的轮轴速度为475m/s。
1884到1894年,英国工程师巴森斯相机创造出了现在复速级单级汽轮机。
为了满足其他工业部门对蒸汽的需要,在1903到1907年间,出现了热能、电能联合生产的汽轮机,即背压式及调节抽汽式汽轮机。
1920年左右,出现了给水回热式汽轮机。
到1925年,出现了第一台中间再热式汽轮机。
上个世纪40年代以后,汽轮机发展特别迅速。
自70年代以来,工业发达国家汽轮机的制造水平普遍进入百万级。
最大单机功率达到1300MW。
1980年苏联制造的1200WM单轴汽轮机投入运行。
我国自1955年制造第一台中压6MW汽轮机以来,在之后的30几年时间里,已经走完了从中压机组到亚临界600WM机组的全部过程。
目前我国超高压、亚临界参数125MW以上到60MW功率等级范围内汽轮机产品的制造质量、运行性能、可靠信等综合指标已达到国际同类机组的水平。
我国已具有了与国际跨国公司相当的亚临界、常规超临界参数大功率汽轮机的设计制造能力。
对于小功率汽轮机具有如下特点:1)初参数低。
小功率汽轮机一般为中低压机组,初参数在3.4MPa/435℃以下。
但是也有个别次高压(4.9~5.9MPa/435~450℃)或高压(8.9MPa/500℃)机组。
2)热力系统简单。
小功率汽轮机一般为1~3级回热系统,无中间过热循环,热力系统简单。
3)结构简单。
小功率汽轮机通常是单缸、单轴、定转速(3000rpm或1500rpm)汽轮机,个别机组为双缸及高转速(附加变速装置)。
现在火电厂基本都是高参数大容量机组,抽汽汽轮机主要是用于发电和供暖,能源利用率高,与普通凝汽式汽轮机相比也更为节能。
因此设计12MW机组抽汽汽轮机有一定研究意义。
本设计研究的意义:在汽轮机中,有部分做过功的蒸汽可在一定调节范围内从汽轮机中抽出用于供热,而其余蒸汽仍然进入凝汽器,这种汽轮机称之为抽汽式汽轮机。
热电联产是国际上公认的节能措施,实现蒸汽动力装置的热电联产就必须使用背压或抽汽式汽轮机。
由于背压式汽轮机热负荷和电负荷相互制约,使用受到一定限制,抽汽式机组被广泛用在热电厂。
可调节抽汽汽轮机能够在电负荷变化的一定范围内实行供汽压力不变,在热负荷从零到最大抽汽量时,机组可供出额定的电能。
1)抽汽式汽轮机以发电为主、供热为辅,其供电与供热的能量比通常为3:1,而背压式汽轮机则以供热为主,以热定电。
2)抽汽式汽轮机以发电为主,所以要求尽量提高机组效率,降低热耗,因而同凝汽式汽轮机一样,采用较低的背压和回热给水循环,以提高机组的经济性。
但系统较复杂,成本增加。
3)抽汽式汽轮机供热量可以在最大抽汽量以下范围内调节,即使在抽汽量为零时(无热负荷),也可以保证汽轮机发出额定功率。
因而可以在较大范围内同时满足热负荷和电负荷的需求。
4)抽汽式汽轮机为了保证在抽汽量变化时,机组发出额定功率,通常将功率和抽汽量为额定值时的总进汽量作为高压段的设计流量,而最大流量则取此流量的1.2倍。
低压段设计流量取高压段设计流量的70~80%。
因而在通常运行时,通流部分面积过大,效率较低。
但是,抽汽式汽轮机所能发出的最大功率比额定功率要大,一般允许在超过额定功率25~30%的情况下长期运行。
设计主要研究的内容、预期目标:(技术方案、路线)本设计研究的主要内容:1) 汽轮机结构形式的选择查阅国内外相关文献资料,全面掌握抽汽式汽轮机各组成部分的工作原理,根据给定的技术参数及要求确定汽轮机的初终参数、型式。
根据几种调节方式的优缺点及适用范围选定汽轮机的调节方式。
汽轮机的热力计算,汽轮机变工况热力校核确定高低压加热器个数、关键点参数、各加热器温升分布、各抽汽参数,画出热力系统图,拟定热力系统。
计算各缸进排气参数、压损、内效率,绘制焓熵图,拟定汽轮机的热力过程线。
确定调节级主要参数即调节级理想比焓降、调节级速比、反动度、平均直径、叶型。
在汽轮机进行热力设计时,需对额定工况、最大工况及几个部分负荷工况进行热力核算,以取得这些工况下机组的经济指标,并为机组主要零部件强度计算和运行提供数据,以保证机组安全、经济运行。
汽轮机通流部分的计算调节抽汽轮机不能仅仅按照发出功率的大小来区别各种工况,而且是必须同时考虑很多有关因素,如最大工业抽汽量,最大供暖抽汽量,汽轮机各个机组的最大流通量等。
尽管调节抽汽轮机能较大范围内同时适应外界热、电负荷的不同需求,但它在某些工况下经济性是不高的,只有当高、低压各部分流量接近设计值时,才具有较高的经济性。
汽轮机整体方案的设计;绘制汽轮机纵剖图查找相关资料,确定汽轮机整体方案设计,根据汽轮机的设计计算确定合理的外部形状以及内外部的尺寸结构。
运用AutoCAD绘制汽轮机纵剖图。
绘制汽轮机转子组件图根据汽轮机转子的结构尺寸,运用AutoCAD绘制汽轮机转子组件图。
汽轮机通流部分主要零部件的强度校核计算校核汽机的叶片和隔板、转子、气缸和轴承,其中包括气缸法兰螺栓和主进气阀门及气封结构的确定。
7) 整理资料,撰写详细的设计说明书。
预期的目标:根据12MW汽轮机的设计要求以及相关的技术参数,掌握汽轮机的热力计算的方法,绘制汽轮机纵剖图、转子组件图等相关图纸,有详细的设计说明书。
对汽轮机主要零部件进行校核,在满足设计要求的前提下力求能够投产运行。
锻炼自我,提高自己解决工程实际问题的能力,培养创新意识,为将来进入工作岗位打下基础。
三、设计(论文)的研究重点及难点:本设计(论文)研究的重点:汽轮机的结构设计1)汽轮机转子汽轮机的转子是所有转动部分的组合体,担负着工质能量转换及扭矩传递的重任。
汽轮机转子为彻底消除残余内应力的锻造转子,汽轮机设计允许不揭缸进行转子的动平衡,为确保安全可靠,汽轮机转子必须具有一定刚度和强度。
汽轮机叶片叶片的设计应是精确的、成熟的,使叶片在允许的周波变化范围内不致产生共振,叶根安装尺寸应十分准确,有良好互换性,以便顺利更换备品叶片。
此外叶片组有防止围带断裂的措施。
汽轮机汽缸汽缸的主要作用是将汽轮机通流部分与外界隔开,保证蒸汽在汽轮机内完成做功过程。
所以汽缸铸件做到彻底消除残余内应力,使汽轮机在起动、带负荷、连续稳定运行及冷却过程中,能始终保持正确的同心度。
高压缸进汽部分及喷嘴室设计应适当加强,以确保运行稳定、振动小。
汽缸端部汽封及隔板汽封应该有适当的弹性和推让间隙,当转子与汽缸偶有少许碰触时,可不致损伤转子或导致大轴弯曲。
4)级、隔板、汽封、轴承联轴器、盘车装置等设计汽轮机热力设计1)热力设计系统调节抽汽轮机各级组的流量相差很多,回热抽汽量与总进汽量比例较小。
2)通流部分热力设计由于调节抽汽轮机低压部分的设计流量通常比高压部分低许多,即使是功率较大的抽汽机组,其低压部分通流尺寸也比同等功率下凝汽机组小。
3)设计流量的选择两个相邻机组之间有大量抽汽,所以各级组流量和功率相差很多。
4)轴向推力的变化特点调节抽汽式汽轮机轴向推力的变化规律很复杂,最大轴向推力不在最大负荷下出现。
5)调节抽汽压力的选择一次调节抽汽压力应在满足外界热用户的要求下,尽量降低其设计值,抽汽份额在汽轮机内的理想比焓降较大,可以提高机组的发电量,改善其经济性。
本设计研究的难点:1)设计流量的选择由于两个相邻机组之间有大量抽汽,所以各级组流量和功率相差很多,而且在工况变化时彼此之间的关系要比普通多级汽轮机复杂。
因此,要保证机组在长期运行中均能有较高的经济性,必须在设计时,详细了解该机组的主要运行条件,合理地确定各汽缸的设计流量。
2)通流部分热力设计抽汽式汽轮机不能仅仅按照发出功率的大小来区别各种工况,而是必须同时考虑很多有关因素,如最大工业抽汽量,最大供暖抽汽量,汽轮机各级组的最大通流量等。
不能用一种工况作为汽轮机装置的设计工况。
3)轴承的校核除了蒸汽量外,抽汽室中抽汽压力的波动和变化也会引起高、低压部分轴向推力的变化,而且抽汽压力的这种变化有时是在高、低压部分蒸汽量均保持不变的情况下出现的。
因此,轴向推力的变化有时不能被汽轮机前端轴封处的轴向推力平衡装置所抵消,致使推力轴承过载。
设计(论文)研究方法及步骤(进度安排):本设计研究的方法:1) 查阅国内外相关文献资料,了解国内外研究趋势,全面掌握抽汽式汽轮机各组成部分的工作原理,拟定初步的设计方案;2) 查找相关设计案例,完成汽轮机的热力计算;3) 进行校核计算,完成汽轮机整体方案的设计,绘制汽轮机纵剖图及相关图纸;4) 整理资料,撰写详细的设计说明书。
本设计研究的进度安排:20150112 接受任务书;20150112~20150114 搜集资料,熟悉参考资料及设计课题;20150115~20150121 搭建开题报告框架,完成开题报告初稿,提交老师检查;20150122~20150124 根据导师的建议修改开题报告;20150125~20150201 完善开题报告;20150202~20150208 初步拟定设计方案;(寒假)20150209~20150223 消化零件图,做好零件图的绘制工作,查阅热力计算相关资料,做好热力计算准备;(寒假)20150224~20150308 热力计算;(寒假)20150309~20150317 消化通流部分尺寸计算原理;20150318~20150325 通流部分尺寸计算;20150326~20150402 汽轮机其他部分尺寸计算;20150403~20150416 绘制汽轮机纵剖图;20150417~20150425 绘制汽轮机转子组件图;20150426~20150501 完成汽轮机通流部分主要零部件的强度校核计算;20140502~20140509 撰写毕业设计说明书,完善图纸;20140501~20140510 上交设计图纸及设计说明书;20140511~20140520 打印毕业设计说明书;20140520~20140530 打印图纸,装订毕业设计说明书。
进行设计(论文)所需条件:硬件条件:学校图书馆、计算机。
软件条件:Excel、PowerPoint、Word、AutoCAD。
主要参考文献[1] 黄树红主编.汽轮机原理[M].北京:中国电力出版社,2008[2] 肖增弘,盛伟主编.汽轮机设备及系统[M].北京:中国电力出版社, 2008[3] 叶涛.热力发电厂(第二版)[M].北京:中国电力出版社,2008[4] 道中编.汽轮机设计基础[M].北京:机械工业出版社,1990[5] 史月涛,丁兴武,盖永光等编著.汽轮机设计与运行[M].北京:中国电力出版社,2008[6] 西安电力学校汽轮机教研组.小型火力发电厂汽轮机设备及运行(修订版)[M].北京:水利电力出版社,1987[7] 王汝武.一种新型可调节抽汽汽轮机[J].热电技术,2005(2):8-11[8] 霍子忠.提高小型汽轮机运行经济性的方法[J].黑龙江科学,2014,5(7):283[9] 陈强,程天宇,王君庆.小型汽轮机在热电联产的经济效益分析[J].区域供热,2007(2):27-28[10] 赵欣亮,蒋昭辉.12MW抽汽背压式汽轮机应用总结[J].化肥设计,2012,50(4):36-39[11] 张素心,杨其国,王为民.我国汽轮机行业的发展与展望[J].热力透平,2003,(1):1-5[12] 郑云之.现代汽轮机在我国的发展与展望[J].动力工程,1997,17(5):27-34[13] 冯亮,刘勇.采用调整抽汽汽轮机替代纯凝机组的节能效果[J].有色冶金节能,2004,21(5):87-88[14] 王汝武.凝汽式汽轮机改为可调节抽汽轮机的实用方法[J].节能与环保,2001(1):46-47[15] 董小泊,矫立强,肖鑫利.火电厂汽轮机运行评价研究[J].科技前沿,20013(9):10-11[16] MOOG Industrial Controls Division.Electro-hydraulic Valves-A Technical Look[EB/OL].WWW.moog.c.om,2001[17] Modern Supervisory and Diagnostics Systems for Steam Turbine,Dr.R.L.Osbo-rne,L.R.Southall[18] An Artificial Intelligence Chemistry Diagnostic System,James C .Bellows指导教师意见:(此处手写)签名:(手签)年月日。