风电机组变桨系统分享

合集下载

SL1500风电机组变桨系统 ppt课件

SL1500风电机组变桨系统  ppt课件

16
伺服电机
带位置反馈和电热调节器 相关参数:1.5MW 功率: 4.8kW 额定扭矩:23Nm 额定转速:2000rpm
ppt课件
17
制动器
当制动器供电时,叶片能够向两个方向运行; 当制动器断电时,叶片只能向顺桨的方向运动, 不能向工作位置运动。1.5MW变桨制动器都是单向 的,工作时,一直供电,双方向都能运动,只有 出现紧急情况才断电,限制一个方向运动。
变桨限ppt课位件撞块
24
当叶片变桨趋 于顺桨位置时,顺 桨接近撞块就会运 行到接近开关上方, 接近开关接受信号 后会传递给变桨系 统,提示叶片已经 处于顺桨位置。
ppt课变件 (顺)桨接近撞块
25
顺桨接近撞块和变桨限位撞块的基本维护
a.检查变桨接近开关的清洁度,以保证能够 正常接受信号。
b.检查易损件缓冲块,做到及时更换。 c.检查各撞块螺栓的紧固。
ppt课件
4
二、变桨系统工作示意图
变桨调节范围
风向
顺桨位置
极限工作位置
变桨驱动装置
ppt课件
变桨齿轮边缘
5
顺桨位置
停机
启动
变桨保护
满发
ppt课件
6
工作位置
1.5MW轮毂装置示意图
导流帽
轮毂
极限工作位置撞块
轮毂变 桨控制 柜
变桨限 位撞块
轮毂罩 分隔壁
极限工作位置 开关
变桨制动器
ppt课件
缓冲器 变桨接 近开关
ppt课件28Fra bibliotek1.5MW变桨调节范围
ppt课件
29
ppt课件
30
置撞块、接近开关、限位开关、缓冲器
ppt课件

变桨系统原理及维护方案

变桨系统原理及维护方案

1.5MW风力发电机组变桨系统原理及维护国电联合动力技术有限公司培训中心(内部资料严禁外泄)UP77/82 风电机组变桨控制及维护目录1、变桨系统控制原理2、变桨系统简介3、变桨系统故障及处理4、LUST与SSB变桨系统的异同5、变桨系统维护定桨失速风机与变桨变速风机之比较定桨失速型风电机组发电量随着风速的提高而增长,在额定风速下达到满发,但风速若再增加,机组出力反而下降很快,叶片呈现失速特性。

优点:机械结构简单,易于制造;控制原理简单,运行可靠性高。

缺点:额定风速高,风轮转换效率低;电能质量差,对电网影响大;叶片复杂,重量大,不适合制造大风机变桨变速型风电机组风机的每个叶片可跟随风速变化独立同步的变化桨距角,控制机组在任何转速下始终工作在最佳状态,额定风速得以有效降低,提高了低风速下机组的发电能力;当风速继续提高时,功率曲线能够维持恒定,有效地提高了风轮的转换效率。

优点:发电效率高,超出定桨机组10%以上;电能质量提高,电网兼容性好;高风速时停机并顺桨,降低载荷,保护机组安全;叶片相对简单,重量轻,利于制造大型兆瓦级风机缺点:变桨机械、电气和控制系统复杂,运行维护难度大。

变桨距双馈变速恒频风力发电机组成为当前国内兆瓦级风力发电机组的主流。

变桨系统组成部分简介变桨控制系统简介✓主控制柜✓轴柜✓蓄电池柜✓驱动电机✓减速齿轮箱✓变桨轴承✓限位开关✓编码器▪变桨主控柜变桨轴柜▪蓄电池柜▪电机编码器GM 400绝对值编码器共10根线,引入变桨控制柜,需按线号及颜色接入变桨控制柜端子排上。

▪限位开关变桨系统工作流程:●机组主控通过滑环传输的控制指令;●将变桨命令分配至三个轴柜;●轴柜通过各自独立整流装置同步变换直流来驱动电机;●通过减速齿轮箱传递扭矩至变桨齿轮带动每个叶片旋转至精准的角度;●将该叶片角度值反馈至机组主控系统变桨系统控制原理风机不同运行状态下的变桨控制1、静止——起动状态2、起动——加速状态3、加速——风机并网状态3.1、低于额定功率下发电运行3.2 达到额定功率后维持满发状态运行4、运行——停机状态1、静止——起动状态下的变桨调节桨距角调节至50°迎风;开桨速度不能超过2 ° /s;顺桨速度不能超过5° /s;变桨加速度不能超过20 ° /s²;目标:叶轮转速升至3 r/s(低速轴)2、起动——加速状态下的变桨调节桨距角在(50 °,0°)范围内调节迎风;开桨速度不能超过2 ° /s;顺桨速度不能超过5° /s;变桨加速度不能超过20 ° /s²;目标:叶轮转速升至10 r/s(低速轴)3、加速——并网发电状态下的变桨调节3.1 低于额定功率下的变桨调节桨距角在维持0°迎风;开桨速度不能超过2 ° /s;顺桨速度不能超过5° /s;变桨加速度不能超过20 ° /s²;变频系统通过转矩控制达到最大风能利用系数, 目标:叶轮转速升至17.5 r/s(低速轴)3.2 达到额定功率后维持满发状态运行桨距角在(90 °,0°)范围内调节;开桨速度不能超过5 ° /s;顺桨速度不能超过5° /s;变桨加速度不能超过20 ° /s²;通过变桨控制使机组保持额定输出功率不变,目标:叶轮转速保持17.5 r/s(低速轴)4、运行——停机状态4.1 正常停机叶片正常顺桨至89°;变桨主控柜的顺桨命令通过轴柜执行;顺桨速度控制为5° /s;叶轮空转,机械刹车不动作;4.2 快速停机叶片快速顺桨至89°;变桨主控柜的顺桨命令通过轴柜执行;顺桨速度控制为7° /s;叶轮空转,机械刹车不动作;4.3 紧急停机叶片紧急顺桨至91°或96 °限位开关;紧急顺桨命令通过蓄电池柜执行;顺桨速度不受控制;叶轮转速低于5 r/s后,液压机械刹车抱闸,将叶轮转速降至为零;独立变桨:三个叶片通过各自的轴柜和蓄电池柜实现开桨和顺桨的同步调节;如果某一个驱动器发生故障,另两个驱动器依然可以安全地使风机顺桨并安全停机。

变桨系统原理及维护

变桨系统原理及维护

变桨系统原理及维护变桨系统是风力发电系统中的核心部件,用于控制风机的叶片角度,以适应不同风速下的转速和输出功率。

它由电气控制系统、机械传动系统和叶片角度测量系统组成。

本文将介绍变桨系统的原理和维护。

首先,变桨系统的原理是根据环境气象条件和主轴转速实时监测风力发电机的转速和功率输出,通过调整叶片角度控制风机的输出功率。

当风速较低时,变桨系统将自动调整叶片角度,使风机转矩增加,从而提高转速和功率输出;当风速较高时,变桨系统将减小叶片角度,减少风机转矩,以防止过载。

变桨系统的主要任务是保证风机在不同风速下的安全运行和最大功率输出。

变桨系统的维护包括定期检查和维修工作。

首先,需要定期检查变桨系统的电气控制部件,包括传感器、控制器、电机和电缆等,确保其运行正常。

其次,需要检查机械传动系统,包括转动轴、齿轮和传动带等,保证其没有松动或磨损,并注油润滑。

同时,应定期检查叶片角度测量系统,确保测量准确,及时调整或更换传感器。

另外,还需检查电缆连接是否牢固,机械部件是否有异常噪声和振动等。

如果发现故障或异常,应及时维修或更换受损部件。

对于变桨系统的维护,还需要注意以下几点。

首先,要定期清洁变桨系统的尘埃和污垢,以防止对系统运行产生干扰。

其次,应定期校准传感器,确保测量准确。

此外,需要备好备件,以备紧急更换。

在维护期间,应使用专业工具和设备,以确保操作安全和有效。

最后,为了保证变桨系统的正常运行和延长使用寿命,还应定期对系统进行性能测试和分析,通过数据监测和故障诊断,及时发现和解决潜在问题。

此外,还应进行系统的升级和改进,以适应新的技术和需求。

总之,变桨系统是风力发电系统中不可缺少的关键部件,通过调整叶片角度实现对风机输出功率的控制。

正确维护和保养变桨系统可以保证其正常运行和延长使用寿命,同时还需不断通过技术升级和改进提高系统性能和可靠性。

风电机组变桨系统PPT演示课件

风电机组变桨系统PPT演示课件
当绝对编码器组件不起作用时通过限位开关来保证变 桨角度不会过大。
在安装好控制系统后要设计合理的接线方法,把各控 制系统组件的线固定好,以防止轮毂在转动时发生接 线的故障。
18
变桨系统工作流程: 机组主控通过滑环传输的控制指令; 将变桨命令分配至三个轴柜; 轴柜通过各自独立整流装置同步变换直流
8
9
通过机舱上面的风速仪测量风速,把信息传 送到塔底柜,经过分析信息把变桨的信息传送到 轮毂变桨系统的中心箱,中心箱再把信息转发给3 个轴箱,轴箱在通过变桨驱动来调节叶片的变桨 角度。
变桨角度的信息是通过绝对编码器组件来测 量的。叶片轴承的内齿圈和绝对编码器的测量小 齿轮啮合,测量小齿轮把叶片转动的信息传给绝 对编码器,经过绝对编码器的记数作用把叶片转 动的角度进行测量
6
叶片轴承 变桨齿轮箱 叶片锁组件
7
叶片轴承是连接轮毂和叶片的组件。叶片轴承的内 圈连接叶片,外圈固定在轮毂上。叶片轴承的内齿 与变桨齿轮箱啮合。 变桨齿轮箱固定在轮毂的工艺安装面上,通过变桨 齿轮箱齿轮的转动实现叶片轴承内圈的转动完成叶 片的变桨。 (注意叶片轴承和变桨齿轮箱之间要调整合理的齿 隙) 叶片锁组件是为了对叶片检修或轮毂检修而设计的 防止叶片转动的机械装置。
当电池由于故障导致较长时间未被使用时, 风机主控制器将引发一个充电操作和电池状 况检查以检查电池的功能是否正常。
29
LUST变桨系统故障列表
30
LUST变桨系统故障列表
31
LUST变桨系统故障列表
32
SSB变桨系统故障列表
33
SSB变桨系统故障列表
34
SSB变桨系统故障列表
叶片锁组件:是为了对叶片检修或轮毂检修而设计 的防止叶片转动的机械装置。

变桨系统分析范文

变桨系统分析范文

变桨系统分析范文变桨系统是风力发电机组中的一个重要组成部分,其主要功能是控制风力发电机的转动速度以及调整叶片的角度,以最大限度地捕捉风能并转化为电能。

变桨系统的设计和分析对于提高风力发电机组的性能和效率至关重要。

首先,变桨系统的设计要考虑到风力的不稳定性以及不同桨叶之间的协调。

由于风速和风向会不断变化,变桨系统需要能够实时监测风速和风向,并根据这些信息来调整叶片角度。

这样可以确保叶片始终与风的方向保持一致,使得风能能够最大化地被转化为电能。

其次,变桨系统的设计还需要考虑到风力发电机组的安全性和稳定性。

在风力风速超过预设范围或者发生异常情况时,变桨系统需要能够快速响应并采取相应措施,例如自动停机等,以保证风力发电机组的安全运行。

此外,变桨系统还需要考虑到桨叶与风轮之间的匹配,以避免不必要的振动和损耗。

另外,变桨系统的设计还需要考虑到节能和环保的因素。

在设计中需要采用先进的变桨技术和材料,以提高变桨系统的效率并减少能源的消耗。

例如,使用轻量化的材料可以减轻叶片的负荷,从而减少能耗。

同时,变桨系统还可以根据风速和负载状况自动调整变桨角度,以实现最佳风能转化效果。

此外,变桨系统的设计还要考虑到系统的可靠性和可维护性。

风力发电机组通常安装在海上或者偏远地区,维护困难且成本较高。

因此,变桨系统需要具有自动故障检测和诊断功能,并能够通过远程监控进行实时数据传输和维护。

这样可以大大提高系统的可靠性,并减少维护成本和停机时间。

最后,变桨系统的设计还需要兼顾成本的因素。

变桨系统通常占据整个风力发电机组的一定比重,因此需要在设计中考虑到成本效益和性能之间的平衡。

这可能涉及到不同变桨系统的选择和优化,以找到最佳的设计方案。

综上所述,变桨系统的设计和分析需要综合考虑风力的不稳定性、风力发电机组的安全性和稳定性、节能环保、系统可靠性和可维护性以及成本效益等因素。

通过合理的设计和分析,可以提高风力发电机组的性能和效率,从而实现更高效的风能转化。

风电机组变桨系统介绍

风电机组变桨系统介绍

• 变桨距伺服控制控制算法
位置反馈 速度给定
速度反馈 电流 反馈
M
PLC执行位置 环控制,驱动 器实现电流环 和速度环控制
PLC
AC输入
电机驱动器
串励直 编码器 流电机
电机伺服驱动系统结构图
• 变桨距系统电气原理
主控箱
3*400V+N+PE
滑 防 雷 及
控制信号 配 电

通信
充电 机
PLC
电源 24V
• 变桨系统的作用
变桨系 统功能
变桨距系统的失 效可导致机组飞
车灾难
调节功率 在较高风速时调 节桨距角,使发 电机输出功率维 持在额定功率附
近。
气动刹车 在机组或电网故 障情况执行顺桨 动作,使机组迅
速停下来。
• 变桨系统分类
变桨系 统分类
电动变桨距系统 电动机作为执行 机构。
液压变桨系统 采用液压系统作 为执行机构。不 需要配备后备电 源;存在漏油问
2、编码器故障
• 现象: 编码器跳变,或者编码器通讯不正常
• 原因: 1)编码器受到强电磁干扰引起跳变,尤其是磁感应式编码器;
2)机械振动或者受力过大导致损坏;3)编码器电源没电(对于 电子式绝对值编码器而言)。 解决方案:更换编码器,如果是强电磁干扰引起的跳变解决干扰 源问题,也可以更换光电式编码器。
题。
• 变桨系统分类
变桨电 机类型
直流变桨系统
优点:故障情况可 直接通过后备电源 供电顺桨,可靠性 高
缺点:电机成本高 ,碳刷需要维护; 体积较大,维护不 方便。
交流变桨系统 优点:电机体积小 ,维护量小;电机 成本低; 缺点:故障情况时 必须通过伺服驱动 器驱动电机顺桨, 不能通过后备电源

风力发电机组变桨系统的优化设计

风力发电机组变桨系统的优化设计

风力发电机组变桨系统的优化设计一、引言风力发电是一种清洁、可再生的能源,受到越来越多国家的重视和广泛应用。

在风力发电站中,风力发电机组的变桨系统是其中一个重要部分,它负责调整叶片的角度来适应不同的风速和风向,以获取最大的风能转换效率。

本文将针对风力发电机组的变桨系统进行优化设计,以实现更高的发电效率。

二、变桨系统的工作原理风力发电机组的顶部装有三个或更多的叶片,在风的作用下转动。

为了在不同的风速和风向下都能高效转换风能,变桨系统起到重要作用。

变桨系统通常由电机、控制器和叶片构成,通过控制器感知风速、方向的变化,然后通过电机调整叶片的角度来获得最佳的风能转换效率。

三、优化设计方案1. 变桨系统感知风速和风向的精准度为了获得最佳的发电效率,变桨系统需要精确感知风速和风向的变化。

目前常用的风速传感器包括热线式、超声波式和激光式等。

优化设计中,可以选择合适的传感器,提高其精准度和可靠性,以确保系统能够准确感知风速和风向的变化。

2. 变桨系统叶片的材料选择和结构设计叶片的材料和结构对风能转换效率有着重要影响。

在优化设计中,可以选择轻量化材料和优化的叶片结构,以减小叶片的质量和空气阻力,提高风能的转换效率。

3. 变桨系统的控制策略变桨系统的控制策略直接影响到发电效率。

一种常见的控制策略是根据风速和风向的变化来调整叶片的角度,使其始终能够处于最佳的风能转换状态。

在优化设计中,可以改进控制器的算法和响应速度,提高系统的控制精度和响应性能。

4. 变桨系统的安全性设计在风力发电站中,变桨系统需要能够在恶劣的天气条件下工作,并保持良好的可靠性和安全性。

在优化设计中,需要考虑系统的抗风性能和抗冰性能,确保系统能够正常工作并不会受到外部环境的影响。

5. 变桨系统的维护和保养优化设计还需要考虑到变桨系统的维护和保养成本。

设计合理的结构和材料,以降低维护和保养的频率和成本,并提高系统的可靠性和寿命。

四、优化设计的效益通过对风力发电机组的变桨系统进行优化设计,可以实现以下几方面的效益:1. 提高发电效率优化设计可以使变桨系统更加灵敏和准确地感知风速和风向的变化,并通过调整叶片的角度来获得最佳的风能转换效率,从而提高发电效率。

变桨系统原理及维护

变桨系统原理及维护

变桨系统原理及维护一、变桨系统原理变桨系统是风能发电机组的关键部件之一,主要负责控制风轮桨叶的角度,以实现最佳风能转换效率。

其主要原理如下:1.控制原理:变桨系统通过感知风速、桨叶角度和发电机输出功率等参数,并根据实时监测的风速变化情况来控制桨叶的角度调整,以使风轮桨叶能够始终迎向风速的最佳方向。

2.传动原理:变桨系统通过主轴和传动电机等组件完成角度调整。

其中,主轴连接了风轮和齿轮箱,通过传动电机以及相应的齿轮传动机构控制风轮桨叶的角度调整。

3.控制模式:一般来说,变桨系统可以采用定角控制模式和变角控制模式。

定角控制模式适用于大部分工况,根据实时风速的大小选择恰当的桨叶角度。

而变角控制模式则可以在遇到特定工况时,根据不同的发电机输出功率等参数来调整桨叶角度。

4.安全保护机制:变桨系统还需要具备一定的安全保护机制,以应对突发情况。

比如,当变桨控制系统出现故障时,可以自动切断桨叶的调整功能,确保风轮系统的稳定运行。

二、变桨系统维护为确保变桨系统的正常运行和延长其使用寿命,需要进行定期的维护和保养。

下面是一些常见的维护措施:1.日常巡检:定期对变桨系统进行巡视,检查主轴、传动电机以及传动装置的工作情况。

特别要关注是否存在松动、磨损或损坏等问题,并及时进行维修或更换。

2.清洁保养:通过对变桨系统的清洁保养,去除积灰、杂物等异物,防止其对系统的正常运行产生影响。

3.润滑维护:应定期对润滑系统进行检查,确保润滑油的质量符合要求,并及时更换润滑油,以保持传动装置的正常运转。

4.故障排除:一旦发现变桨系统出现异常情况,应及时排除故障。

对于无法解决的故障,应请专业维修人员进行处理。

5.数据分析:通过对变桨系统监测数据的分析,可以及时发现潜在的问题和异常,对系统进行精确的调整和维护。

综上所述,变桨系统的原理是通过感知风速和发电机输出功率等参数,控制风轮桨叶角度的调整,以实现最佳风能转换效率。

为保证变桨系统的正常运行和延长使用寿命,需要定期进行维护和保养,包括日常巡检、清洁保养、润滑维护、故障排除和数据分析等措施。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
叶片锁组件是为了对叶片检修或轮毂检修而设计的 防止叶片转动的机械装置。
编辑ppt
8
编辑ppt
9
通过机舱上面的风速仪测量风速,把信息传 送到风机主控,经过分析信息把变桨的信息传送 到轮毂变桨系统的中心箱,中心箱再把信息转发 给3个轴箱,轴箱在通过变桨驱动来调节叶片的变 桨角度。
变桨角度的信息是通过绝对编码器组件来测 量的。叶片轴承的内齿圈和绝对编码器的测量小 齿轮啮合,测量小齿轮把叶片转动的信息传给绝 对编码器,经过绝对编码器的记数作用把叶片转 动在风机处于紧急情况下实现 煞车作用。在电动能源-蓄电池的作用下桨叶可 以从工作角度转动至刹车角度。
电动调桨系统的动作速度快而且准确。在正常工 作情况下如果风机遭遇强阵风,调桨系统可以迅 速地调整桨叶工作角度,使风机工作在额定值范 围内。
编辑ppt
5
变桨系统 变桨控制系统 变桨中心自动润滑系统 轮毂罩组件
来驱动电机; 通过减速齿轮箱传递扭矩至变桨齿轮带动
每个叶片旋转至精准的角度; 将该叶片角度值反馈至机组主控系统;
编辑ppt
19
变桨控制原理
编辑ppt
20
二、系统组成和主要器件介绍
叶片轴承:是连接轮毂和叶片的组件。叶片轴承的 内圈连接叶片,外圈固定在轮毂上。叶片轴承的内 齿与变桨齿轮箱啮合。
编辑ppt
13
编辑ppt
14
轮毂罩主体 轮毂罩顶盖 轮毂罩前支撑 轮毂罩前后撑 支撑环
编辑ppt
15
轮毂罩前支撑通过固定的变桨轴承的部分螺 栓进行固定,轮毂罩后支撑安装在轮毂前部, 轮毂罩后支撑将会有润滑组件安装。支撑环 固定在轮毂罩前支撑上。轮毂罩顶盖是方便 了安装好的轮毂的吊装。整个轮毂罩组件在 一定程度上起到了防尘、防雨、防紫外线的 作用,从而保护了轮毂内的电器元件和润滑 组件。
变桨齿轮箱:固定在轮毂的工艺安装面上,通过变 桨齿轮箱齿轮的转动实现叶片轴承内圈的转动完成 叶片的变桨。
叶片锁组件:是为了对叶片检修或轮毂检修而设计 的防止叶片转动的机械装置。
编辑ppt
21
变桨电机 电池柜
变桨驱动齿轮
变桨轴承
轮毂示意图
编辑ppt
22
轴箱
编辑ppt
23
编码器 风机主控系统分析每个叶片的两个编码器的信 号的平均值。 变桨驱动控制系统通常只使用电机N端编码器的 信号。只有在检测编码器失灵的情况下,风机 的控制器将使得变桨控制器从叶片轴承的编码 器取信号。
当绝对编码器组件不起作用时通过限位开关 来保证变桨角度不会过大。
在安装好控制系统后要设计合理的接线方法, 把各控制系统组件的线固定好,以防止轮毂在转 动时发生接线的故障。
编辑ppt
10
编辑ppt
11
润滑泵 主分配器 二级分配器 油管 进油口 集油瓶。
编辑ppt
12
自动润滑原理:
变桨自动润滑系统是由一个集中润滑泵,一 个(或两个)主分配器,三个二级分配器和 三个润滑小齿轮组成。当泵工作时,润滑油 被输送到主分配器,在那润滑油以合适的比 例分配到二级分配器,然后二级分配器把润 滑油以合适的比例供应到润滑点,系统由一 个带回油装置的安全阀保护。轮毂的润滑主 要是叶片轴承内的滚动体和叶片轴承与变桨 齿轮箱的啮合齿部分。叶片轴承的废油通过 集油瓶来收集。
编辑ppt
16
电控变桨
控制原理 系统组成和主要器件介绍 故障列表
编辑ppt
17
一、控制原理
通过机舱上面的风速仪测量风速,把信息传送到塔底柜, 经过分析信息把变桨的信息传送到轮毂变桨系统的中心箱, 中心箱再把信息转发给3个轴箱,轴箱在通过变桨驱动来 调节叶片的变桨角度。
变桨角度的信息是通过绝对编码器组件来测量的。叶片轴 承的内齿圈和绝对编码器的测量小齿轮啮合,测量小齿轮 把叶片转动的信息传给绝对编码器,经过绝对编码器的记 数作用把叶片转动的角度进行测量
当绝对编码器组件不起作用时通过限位开关来保证变 桨角度不会过大。
在安装好控制系统后要设计合理的接线方法,把各控 制系统组件的线固定好,以防止轮毂在转动时发生接 线的故障。
编辑ppt
18
变桨系统工作流程: 机组主控通过滑环传输的控制指令; 将变桨命令分配至三个轴柜; 轴柜通过各自独立整流装置同步变换直流
编辑ppt
24
电池箱—3组电池 12V*6/组
编辑ppt
25
蓄电池柜功能
风机在紧急停机程序中要求蓄电池给变桨电 机提供动力。
蓄电池在充电后必须能够保证最不利情况下 的一次停机过程。
蓄电池直接与电机相连,没有同步动作, 要求 有第二个限位开关(96°),在主限位开关 (91°)失灵时仍可以切断驱动系统。
编辑ppt
2
顺桨0度
开桨90度
编辑ppt
3
桨叶调桨旋转角度在0°到90°之间。在桨 叶位于做功位置时桨叶最大的面积几乎是朝着风 向的,着风面积最大。当利用桨叶刹车时,桨叶 的前端是是朝着风向的,着风面积最小。
三个桨叶当中的每一个都是通过直流电机和 一个齿轮箱来驱动的。控制器驱动电机,从而使 齿轮箱转动,带动调桨轴承,使桨叶的角度改变。
编辑ppt
6
叶片轴承 变桨齿轮箱 叶片锁组件
编辑ppt
7
叶片轴承是连接轮毂和叶片的组件。叶片轴承的内 圈连接叶片,外圈固定在轮毂上。叶片轴承的内齿 与变桨齿轮箱啮合。
变桨齿轮箱固定在轮毂的工艺安装面上,通过变桨 齿轮箱齿轮的转动实现叶片轴承内圈的转动完成叶 片的变桨。
(注意叶片轴承和变桨齿轮箱之间要调整合理的齿 隙)
当电池由于故障导致较长时间未被使用时, 风机主控制器将引发一个充电操作和电池状 况检查以检查电池的功能是否正常。
编辑ppt
26
编辑ppt
1
风力发电机组的调桨控制是根据风速来确 定桨叶的角度的(全叶面调桨) ,通过改 变桨叶的角度来改变功率因数。通过改变 桨叶的角度,桨叶转子的转速和功率将受 到影响。如果通过桨叶,对风机的受力过 大,经过调整后,可以减少过大的受力。 风机的转速和桨叶的扭曲程度可以通过电 信号反馈给控制系统,这样使得每个桨叶 的角度独自的调整。
相关文档
最新文档