解方程(二)

合集下载

专题06 一元二次方程及其解法(二)-配方法(解析版)

专题06 一元二次方程及其解法(二)-配方法(解析版)

九年级数学全册北师大版版链接教材精准变式练专题06 一元二次方程-配方法典例解读【典例1】解方程:x2+4x﹣1=0.【点拨】首先进行移项,得到x2+4x=1,方程左右两边同时加上4,则方程左边就是完全平方式,右边是常数的形式,再利用直接开平方法即可求解.【解析】解:∵x2+4x﹣1=0∴x2+4x=1∴x2+4x+4=1+4∴(x+2)2=5∴x=﹣2±∴x1=﹣2+,x2=﹣2﹣.【总结】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.【典例2】用配方法解方程:2x2﹣12x﹣2=0.【点拨】首先将二次项系数化为1,再将方程的常数项移动方程右边,两边都加上9,左边化为完全平方式,右边合并,开方转化为两个一元一次方程,求出一次方程的解即可得到原方程的解.【解析】解:2x2﹣12x﹣2=0,系数化为1得:x2﹣6x﹣1=0,移项得:x2﹣6x=1,配方得:x2﹣6x+9=10,即(x﹣3)2=10,开方得:x﹣3=±10,则x 1=3+10,x 2=3﹣10.【总结】此题考查了解一元二次方程﹣配方法,利用此方法解方程时,首先将二次项系数化为1,常数项移动方程右边,然后两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并,开方转化为两个一元一次方程来求解.【典例3】若代数式221078M a b a =+-+,2251N a b a =+++,则M N -的值( )A.一定是负数 B.一定是正数 C.一定不是负数 D.一定不是正数【答案】B ;【解析】(作差法)22221078(51)M N a b a a b a -=+-+-+++2222107851a b a a b a =+-+----29127a a =-+291243a a =-++2(32)30a =-+>.故选B.【总结】本例是“配方法”在比较大小中的应用,通过作差法最后拆项、配成完全平方,使此差大于零而比较出大小.【典例4】用配方法证明21074x x -+-的值小于0. 【点拨】本题不是用配方法解一元二次方程,但所用的配方法思想与自己学的配方法大同小异,即思路一致. 【解析】22271074(107)410410x x x x x x ⎛⎫-+-=-+-=--- ⎪⎝⎭27494910410400400x x ⎛⎫=--+-- ⎪⎝⎭274910420400x ⎡⎤⎛⎫=----⎢⎥ ⎪⎝⎭⎢⎥⎣⎦2274971111041020402040x x ⎛⎫⎛⎫=--+-=---⎪ ⎪⎝⎭⎝⎭. ∵ 2710020x ⎛⎫--≤ ⎪⎝⎭,∴ 271111002040x ⎛⎫---< ⎪⎝⎭, 即210740x x -+-<.故21074x x -+-的值恒小于0.【总结】证明一个代数式大于零或小于零,常用方法就是利用配方法得到一个含完全平方式和一个常数的式子来证明.【典例5】用配方法证明:二次三项式﹣8x 2+12x ﹣5的值一定小于0.【解析】解:﹣8x 2+12x ﹣5=﹣8(x 2﹣x )﹣5=﹣8[x 2﹣x+()2]﹣5+8×()2=﹣8(x ﹣)2﹣, ∵(x ﹣)2≥0, ∴﹣8(x ﹣)2≤0, ∴﹣8(x ﹣)2﹣<0, 即﹣8x 2+12﹣5的值一定小于0.【总结】利用配方法将代数式配成完全平方式后,再分析代数式值的符号. 注意在变形的过程中不要改变式子的值.【典例6】若把代数式x 2+2bx+4化为(x ﹣m )2+k 的形式,其中m ,k 为常数,则k ﹣m 的最大值是 . 【答案】417; 【解析】解:x 2+2bx+4=x 2+2bx+b 2﹣b 2+4 =(x+b )2﹣b 2+4; ∴m=﹣b ,k=﹣b 2+4, 则k ﹣m=﹣(b ﹣21)2+417. ∵﹣(b ﹣21)2≤0, ∴当b=21时,k ﹣m 的最大值是417. 故答案为:417.【总结】此题考查利用完全平方公式配方,注意代数式的恒等变形. 【典例7】已知223730216b a a b -+-+=,求4a b - 【点拨】解此题关键是把3716拆成91416+ ,可配成两个完全平方式.【解析】将原式进行配方,得2291304216b a a b ⎛⎫⎛⎫-++-+= ⎪ ⎪⎝⎭⎝⎭,即2231024a b ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,∴ 302a -=且104b -=, ∴ 32a =,14b =.∴ 31314422422a b -=-=-=-. 【总结】本题可将原式用配方法转化成平方和等于0的形式,进而求出a .b 的值.【教材知识必背】一、一元二次方程的解法---配方法 1.配方法解一元二次方程: (1)配方法解一元二次方程: 将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)配方法解一元二次方程的理论依据是公式:.(3)用配方法解一元二次方程的一般步骤: ①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方;教材知识链接④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解. 诠释:(1)配方法解一元二次方程的口诀:一除二移三配四开方;(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方. (3)配方法的理论依据是完全平方公式2222()a ab b a b ±+=±. 二、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值. 4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用. 诠释:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好.【变式1】用配方法解方程.(1)x 2-4x-2=0; (2)x 2+6x+8=0. 【答案】(1)方程变形为x 2-4x=2. 两边都加4,得x 2-4x+4=2+4.精准变式题利用完全平方公式,就得到形如(x+m)2=n 的方程,即有(x-2)2=6. 解这个方程,得x-2=或x-2=-. 于是,原方程的根为x=2+或x=2-.(2)将常数项移到方程右边x 2+6x=-8. 两边都加“一次项系数一半的平方”=32,得 x 2+6x+32=-8+32,∴ (x+3)2=1.用直接开平方法,得x+3=±1, ∴ x=-2或x=-4. 【变式2】用配方法解方程 (1)(2)20x px q ++=【答案】(1)2235x x +=2253x x -=-25322x x -=- 2225535()()2424x x -+=-+251()416x -=5144x -=±123,12x x ==.(2)20x px q ++=222()()22p px px q ++=-+224()24p p qx -+=①当240p q -≥时,此方程有实数解,221244p p q p p qx x -+----==②当240p q -<时,此方程无实数解.【变式3】求代数式 x 2+8x+17的最小值 【答案】x 2+8x+17= x 2+8x+42-42+17=(x+4)2+1 ∵(x+4)2≥0,∴当(x+4)2=0时,代数式 x 2+8x+17的最小值是1.【变式4】试用配方法证明:代数式223x x -+的值不小于238. 【答案】 22123232x x x x ⎛⎫-+=-+ ⎪⎝⎭22211123244x x ⎡⎤⎛⎫⎛⎫=-+-+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦21123416x ⎡⎤⎛⎫=--+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦2112348x ⎛⎫=--+ ⎪⎝⎭2123248x ⎛⎫=-+ ⎪⎝⎭.∵ 21204x ⎛⎫-≥ ⎪⎝⎭,∴ 2123232488x ⎛⎫-+≥ ⎪⎝⎭.即代数式223x x -+的值不小于238. 【变式5】(1)的最小值是 ;(2)的最大值是 .【答案】(1)222222333152632(3)323()()32()2222x x x x x x x ⎡⎤+-=+-=++--=+-⎢⎥⎣⎦;所以的最小值是152-(2)22222245(4)5(422)5(2)9x x x x x x x -++=--+=--+-+=--+所以的最大值是9.1. 用配方法解一元二次方程x 2+4x ﹣3=0时,原方程可变形为( ) A .(x+2)2=1 B .(x+2)2=7 C .(x+2)2=13 D .(x+2)2=19 【答案】B .【解析】x 2+4x=3,x 2+4x+4=7,(x+2)2=7. 2.下列各式是完全平方式的是( )A .277x x ++B .244m m -- C .211216n n ++ D .222y x -+ 【答案】C ;【解析】211216n n ++214n ⎛⎫=+ ⎪⎝⎭.3.用配方法解下列方程时,配方有错误的是( )A .22990x x --=化为2(1)100x -= B .22740t t --=化为2781416t ⎛⎫-= ⎪⎝⎭C .2890x x ++=化为2(4)25x += D .23420x x --=化为221039x ⎛⎫-= ⎪⎝⎭【答案】C ;【解析】选项C :2890x x ++=配方后应为2(4)7x +=.4.把一元二次方程x 2﹣6x+4=0化成(x+n )2=m 的形式时,m+n 的值为( ) A .8 B .6 C .3 D .2 【答案】D ;【解析】 x 2﹣6x=﹣4,∴ x 2﹣6x+9=﹣4+9,即得(x ﹣3)2=5,∴ n=﹣3,m=5, ∴ m+n=5﹣3=2.故选D .5.不论x 、y 为何实数,代数式22247x y x y ++-+的值 ( )A .总小于2B .总不小于7C .为任何实数D .不能为负数 【答案】D ;【解析】2222247(1)(2)22x y x y x y ++-+=++-+≥.综合提升变式练6.若x 2+6x+m 2是一个完全平方式,则m 的值是( )A .3B .-3C .3±D .以上都不对 【答案】C ;【解析】 若x 2+6x+m 2是一个完全平方式,则m 2=9,解得m=3±; 7.用配方法将二次三项式a 2-4a+5变形,结果是( )A .(a-2)2+1 B .(a+2)2-1 C .(a+2)2+1 D .(a-2)2-1 【答案】A ;【解析】a 2-4a+5= a 2-4a+22-22+5=(a-2)2+1 ; 8.把方程x 2+3=4x 配方,得( )A .(x-2)2=7 B .(x+2)2=21 C .(x-2)2=1 D .(x+2)2=2 【答案】C ;【解析】方程x 2+3=4x 化为x 2-4x=-3,x 2-4x+22=-3+22,(x-2)2=1. 9.用配方法解方程x 2+4x=10的根为( )A .2.-2..【答案】B ;【解析】方程x 2+4x=10两边都加上22得x 2+4x+22=10+22,x=-210.(1)x 2+4x+ =(x+ )2;(2)x 2-6x+ =(x- )2;(3)x 2+8x+ =(x+ )2. 【答案】(1)4;2; (2)9;3; (3)16;4. 【解析】配方:加上一次项系数一半的平方.11.用配方法将方程x 2-6x+7=0化为(x+m )2=n 的形式为 . 【答案】(x ﹣3)2=2.【解析】移项,得x 2﹣6x=﹣7,在方程两边加上一次项系数一半的平方得,x 2﹣6x+9=﹣7+9, (x ﹣3)2=2.12.若226x x m ++是一个完全平方式,则m 的值是________. 【答案】±3;【解析】2239m ==.∴ 3m =±.13.求代数式2x 2-7x+2的最小值为 .【答案】-338;【解析】∵2x 2-7x+2=2(x 2-72x )+2=2(x-74)2-338≥-338,∴最小值为-338,14.当x= 时,代数式﹣x 2﹣2x 有最大值,其最大值为 . 【答案】-1,1【解析】∵﹣x 2﹣2x=﹣(x 2+2x )=﹣(x 2+2x+1﹣1)=﹣(x+1)2+1,∴x=﹣1时,代数式﹣x 2﹣2x 有最大值,其最大值为1; 故答案为:﹣1,1.【解析】 -3x 2+5x+1=-3(x-56)2+3712≤3712,• ∴最大值为3712. 15. 用配方法解方程 (1) (2)221233x x += 【解析】 (1)x 2-4x-1=0 x 2-4x+22=1+22(x-2)2=5 x-2=5± x 1=2+5x 2=2-5(2)221233x x += 226x x +=2132x x += 222111()3()244x x ++=+ 2149()416x +=1744 x+=±13 2x=22x=-16. 用配方法解方程.(1)解方程:x2﹣2x=4.(2)解方程:x2﹣6x﹣4=0.【解析】解:(1)配方x2﹣2x+1=4+1∴(x﹣1)2=5∴x=1±∴x1=1+,x2=1﹣.解方程:x2﹣6x﹣4=0.(2)解:移项得x2﹣6x=4,配方得x2﹣6x+9=4+9,即(x﹣3)2=13,开方得x﹣3=±,∴x1=3+,x2=3﹣.17.当x,y取何值时,多项式x2+4x+4y2﹣4y+1取得最小值,并求出最小值.【解析】解:x2+4x+4y2﹣4y+1=x2+4x+4+4y2﹣4y+1﹣4=(x+2)2+(2y﹣1)2﹣4,又∵(x+2)2+(2y﹣1)2的最小值是0,∴x2+4x+4y2﹣4y+1的最小值为﹣4.∴当x=﹣2,y=时有最小值为﹣4.18. 已知a2+b2﹣4a+6b+13=0,求a+b的值.【解析】解:∵a2+b2﹣4a+6b+13=0,∴a2﹣4a+4+b2+6b+9=0,∴(a ﹣2)2+(b+3)2=0,∴a ﹣2=0,b+3=0,∴a=2,b=﹣3,∴a+b=2﹣3=﹣1.19.已知a ,b ,c 是△ABC 的三边,且2226810500a b c a b c ++---+=.(1)求a ,b ,c 的值;(2)判断三角形的形状.【解析】(1)由2226810500a b c a b c ++---+=,得222(3)(4)(5)0a b c -+-+-=又2(3)0a -≥,2(4)0b -≥,2(5)0c -≥,∴ 30a -=,40b -=,50c -=,∴ 3a =,4b =,5c =.(2)∵ 222345+= 即222a b c +=,∴ △ABC 是以c 为斜边的直角三角形.。

五年级数学解方程练习题 (2)

五年级数学解方程练习题 (2)

五年级数学解方程练习题练习一【知识要点】学会解含有三步运算的简易方程。

1、判断。

①含有未知数的等式叫做方程。

()②x+8是方程。

()③因为2=2×2.所以a=a×a。

()④方程一定是等式。

()2、口算下面各题。

3.4a-a= a-0.3a= 3.1x-1.7x= 0.3x+3.5x+x=15b-4.7b= 6.7t-t= 32x-4xx-0.5x-0.04x=3、解方程。

2x+0.4x=48(并检验) 8x-x=14.7 35x+13x=9.64、列出方程.并求出方程的解。

①x的7倍比52多25。

②x的9倍减去x的5倍.等于24.4。

【课外训练】1、解方程。

5(x+3)=35 x+3.7x+2=16.1 14x+3x-1.2x=1582、苹果:x千克梨子:比苹果多270千克求苹果、梨子各多少千克?3、两个数的和是144.较小数除较大数.商是3.求这两个数各是多少?练习二【知识要点】进一步学会解含有三步运算的简易方程。

1、解方程。

(第1、2题写出检验过程)0.52×5-4x=0.6 0.7(x+0.9)=421.3x+2.4×3=12.4 x+(3-0.5)=127.4-(x-2.1)=62、列出方程.并求出方程的解。

①0.3乘以14的积比x的3倍少0.6。

②x的5倍比3个7.2小3.4。

③一个数的3倍加上它本身【课外训练】1、在下面□里填上适当的数.使每个方程的解都是x=2。

□+5x=25 5x-□=7.32.3x×□=92 2.9x÷□=0.582、列方程应用题。

①果园里有苹果树270棵.比梨树的3倍少30棵.梨树有多少棵?②王阿姨买空11个暖瓶.付了200元.找回35元.每个暖瓶多少元?③一个长方形的周长是35米.长是12.5米.它的宽是多少米?2、解方程:5x+34=3x+543、7x-27=13-3x练习三【知识要点】更熟练地解含有三步运算的简易方程。

2022年人教版五年级上册数学第五单元教案2 解简易方程 第3课时

2022年人教版五年级上册数学第五单元教案2 解简易方程  第3课时

第三课时教学内容解方程(二)。

(教材第69页)教学目标1.使学生会用等式的性质解形如ax±b=c类型的方程,并会用方程的解进行验算。

2.使学生会把小括号内的式子看作一个“整体”,来解形如(x+b)a=c类型的方程,体会“整体”思想在教学中的运用。

重点难点重点:连续两次运用等式的性质,解形如ax±b=c、(x+b)a=c类型的方程。

难点:体会“整体”思想在教学中的运用。

教具学具多媒体课件。

教学过程一导入1.请学生默写或者默背等式的性质,然后指名回答。

(1)等式两边同时加上或减去同一个数,等式两边仍然相等。

(2)等式两边同时乘同一个数,或除以同一个不为0的数,左右两边仍然相等。

2.说说解下面方程的根据。

x+3.5=79.41.5x=7.5x÷5=4.23-x=2.5二教学实施教学教材第69页例4。

1.投影出示。

师:图中左边有几盒水彩笔,每盒多少支?右边散放着几支?整盒的水彩笔有多少支?一共有多少支?生:从图中可以看出,有3盒水彩笔,每盒x支,所以整盒的水彩笔应该有x+x+x=3x(支),散放着4支,一共有(3x+4)支水彩笔。

师:大括号表示什么意思?40支和大括号有什么关系?生:上图中的大括号表示把整盒的和散放着的加在一起是40支。

师:你能根据图列方程吗?生:根据图中给出的信息可以得出,3盒水彩笔的支数+4=40,所以可以列出方程3x+4=40。

2.探索3x+4=40的解法。

师:观察这个方程的形式和前面学习过的方程有什么不同?你会计算吗?(学生独立思考)追问:能否用等式的性质解这种形式的方程?怎样算?根据学习解方程的经验,尝试解这个方程。

学生独立完成,集体订正。

师:解方程3x+4=40时,一般把“3x”看作“整体”,根据等式的性质1先在方程的两边都减去4,把方程转化为3x=36,然后再根据等式的性质2求出方程的解。

学生汇报交流算法。

先把3x看作一个数,把这题看成是x+b=c形式的方程,运用等式性质1:等式两边同时减去同一个数,等式两边仍然相等来解方程。

2.2 一元二次方程的解法(2)

2.2 一元二次方程的解法(2)
2.2一元二次方程的解法(2)
首页
上一页
下一页
末页

你能解决这 个问题吗? 3倍有可能相等吗?如果相 一个数的平方与这个数的
x 2 3x.
小亮是这样解的 :
小明是这样解的 :
等,这个数是几?你是怎样求出来的? 小明,小亮都设这个数为x,根据题意得
解 : 方程x 2 3x两 边都同时约去 x, 得. x 3.
(一次项系数为0)(容易x+5
2
25 2 x - 5
x-
2 用配方法解二次项系数是 1 的一元二次方程在时,添 4x+___=(______) 上的常数项与一次项系数之间存在的关系: 2 2 2
常数项是一次项系数的一半的平方 x +6x+___=(______) x-
6x+___=(_______)
2
首页 上一页 下一页 末页
探索发现二:
解方程: x 6 x 1 0
2
只要形成
x m
2
n(n 0)
x 6 x 9 10 0, ( x 3) 10, x 3 10
2 2
x1 3 10, x2 3 10
我们把一元二次方程通 过配方法转换成:
2
形 为
x -2x=8
首页
上一页
下一页
末页
练一练:添上一个适当的数,使下
1 x+1 2 2 x +2x+___=(______) 4 x+2 2 9 x+3
列的多项式成为一个完全平方式:
1 4 x-1 2 x -x - 2
2x+___=(______)

人教五年级数学上册解方程(二)

人教五年级数学上册解方程(二)

?[选自《创优作业100分》P45] 1.解:设这个数是x。
2.解:设这个数是x。
5x-6.8=12.7
1.4x+3.2×3=23.6
x=3.9
x=10
答:这个数是3.9。
答:这个数是10。
六、如果x+x+x+y+y=54,x +x +y +y=46,那么x和y 各是多[少选自?《创优作业100分》P45]
x=4.2
解: x-45=128 x-45+45=128+45 x=173
解: 9x=18 9x÷9=18÷9
x=2
解: x÷4=75 x÷4×4=75×4
x=300
2.看图列方程并求解。 [教材P72 练习十五 第11题 ]
周长36m
xm
2(x+5)=36
5m 解:
2(x+5)÷2=36÷2
=8 =方程右边
8 2x-32+32=8+32所以,x=20是方程的解。
2x=40 2x÷2=40÷2
x=20
三、巩固练习
1.看图列方程,并求出方程的解。[教材P69 做一做 第1题 ]
x元/本
7.5元 5x+1.5=7.5 解: 5x+1.5-1.5=7.5-1.5
5x=6 5x÷5=6÷5
x=1.2
0.4=1.7
x=37
x-
*3x-4×0.6=5.4
0.4+0.4=1.7+0.4
解:3x-2.4=5.4 方程左边=3×2.6-4×0.6
3x-2.4+2.4=5.4+2.4
x==27..81-2.4
3x=7.8

一元二次方程的解法(2)

一元二次方程的解法(2)

一元二次方程的解法(2)一、新知:解:.522=+x x 原方程两边都加上1,得,15122+=++x x 即,6)1(2=+x 直接开平方,得.61±=+x 所以,61±-=x 即.61,6121--=+-=x x通过方程的简单变形,将左边配成一个含有未知数的完全平方式,右边是一个非负常数,从而可以直接开平方求解,这种解一元二次方程的方法叫做 .例1:用配方法解方程:;014)1(2=+-x x .065)2(2=--x x练习:;028)1(2=-+x x .01124)2(2=--x x二、应用:1. 用配方法解方程,0322=-+x x下列配方结果正确的是( ) A. 2)1(2=-x B.4)1(2=-x C.2)1(2=+x D.4)1(2=+x2.)A.3. 用配方法把一元二次方程,0162=+-x x 配成q p x =+2)(的形式,p为 ,q 为 .4. 一元二次方程式4882=-x x 可表示成b a x +=-48)(2的形式,其中a 、b 为整数,求a+b 之值为何( )A. 20B. 12C. −12D. −205. 用配方法解下列方程时,配方有错误的是( )A.09922=--x x化为 100)1(2=-x B.0982=++x x 化为25)4(2=+xC.04722=--t t 化为D.02432=--x x 化为6. 用配方法解方程0122=-+x x时,配方结果正确的是( ) A.2)2(2=+x B.2)1(2=+x C.3)2(2=+x D.3)1(2=+x7. 用配方法解方程,01632=+-x x则方程可变形为( )D.1)13(2=-x 8. 若方程01)1(252=+--x k x 的左边可以写成一个完全平方式;则k 的值为( ) A. −9或11 B. −7或8 C. −8或9 D. −6或7 9. 已知等腰三角形的一边长为8,另一边长为方程0962=+-x x 的根,则该等腰三角形的周长为( )A. 14B. 19C. 14或19D. 不能确定10. 在解方程2x2+4x+1=0时,对方程进行配方,文本框①中是嘉嘉作的,文本框②中是琪琪作的,对于两人的做法,说法正确的是( )A. 两人都正确B. 嘉嘉正确,琪琪不正确C. 嘉嘉不正确,琪琪正确D. 两人都不正确11. 把方程3102-=-x x左边化成含有x 的完全平方式,其中正确的是( ) A.28)5(1022=-+-x xB.22)5(1022=-+-x xC.2251022=++x xD.25102=+-x x12. 用配方法解关于x 的一元二次方程),0(02≠=++a c bx ax 此方程可变形为( )。

解方程例2

解方程例2
所以,x=3.3是方程来自解。3. 解下列方程并检验。
0.2x=6 解:0.2x÷0.2=6÷0.2
x=30 检验 方程左边=0.2×30
=6 =方程右边 所以,x=30是方程的解。
4. 看图列方程,并求出方程的解。
xm
2.7 m 6.9 m
原价:x 元 降价:45 元 现价:128元
x+2.7 = 6.9
ɑx= b
解:ax÷a = b÷ɑ
x = b÷ɑ
x÷a =b 解:x÷a×a = b×ɑ
x = b×ɑ
利用等式的性质2解类似于上面的方程时,方程左边乘几,两边就同时除以 几;方程左边除以几,两边就同时乘几。
巩固提高
2.列方程并解答。[教材P68 做一做 第2题 ]
x元
1.2元
4元
x+1.2=4 解:x+1.2-1.2=4-1.2
这个方程与乘法有关,我觉得可以根据等式 的性质2来解方程。
(教材第68页例2)
2 解方程 3x = 18。
x xx
3x = 18
等式两边除以同一个不等于 0的数,左右两边仍然相等。
3x÷( 3 )= 18÷( 3 )
方程左边有×3,两 边要“÷3” 是为了 消去左边的×3。
为什么要÷3?
2 解方程 3x = 18。
ɑx= b
解:ax÷a = b÷ɑ
x = b÷ɑ
x÷a =b 解:x÷a×a = b×ɑ
x = b×ɑ
解: 4.6+x = 7.5 4.6+x-4.6 = 7.5-4.6
x = 2.9
将x=2.9代入方程ax=5.8
2.9a = 5.8 2.9a÷2.9 = 5.8÷2.9

第7讲 解一元一次方程(二)

第7讲 解一元一次方程(二)
7、解一元一次方程
探究类型之一 含分母的一元一次方程
例1 解方程:0.4 x 0.9 0.3 0.02 x 1 0.2 x 1.4
0.5 0.3 3
4 x 9 15 x x7 1 解:原方程可化为 5 15 15
. 去分母,得 3(4x+9)-(15+x)+15=x+7. 去括号,得 12x+27-15-x+15=x+7. 移项,得 12x-x-x=7-27-15+15. 合并同类项,得 10 x=-20. 系数化为1,得 x=-2.
解方程:(2)
(2)原方程可化为
4 y 1.5 5 y 0.8 1.2 y 3 0.5 0.2 0.1
2(4y-1.5)-5 (5y-0.8)=10(1.2- y)+3 8y-3-25 y+4=12-10y+3
去括号得
移项得 8y-25y+10 y=12+3+3-4 合并同类项得 系数化为 1 得 -7y=14 y=-2
2、形如| x – a | = b(b≥0)的方程的解法: 解: x– a = b 或 x– a = – b ; x = a + b 或x = a – b .
解形如| x | = a(a≥0)的方程的解法: 解:a > 0时,x = ±a ; a = 0时,x = 0 ; a < 0时,方程无解.
探究类型之二 含多重括Hale Waihona Puke 的一元一次方程例2 解方程:
1 1 1 2 3 3 x x x x 2 3 4 3 2 4
1 1 2 3 3 x x x 2 x 3 4 3 2 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线连起来。
8x=0
x=4
x÷4=1
x=5
2x=10
x=0
返回作业2
4.(难点题)爷爷今年64岁,小乐乐今年 x岁,今年爷爷的年龄是小乐乐年龄的8倍, 小乐乐今年几岁?(用方程解)
解: 8x=64 8x÷8=64÷8 x=8
答:小乐乐今年8岁。
5.(难点题)小明买3本大算草,一本大 算草x元,他给了售货员20元,找回11元,每 本大算草多少元?(用方程解)
x=22 5.6+x=8.9 解:5.6+x-5.6=8.9-5.6
x=3.3
返回目录
学习新知
等式两边都乘同一个数(或除以同一个 不为0的数),等式还成立吗?
xg xg xg
5g 5g 5g
3x =x =3 ×5 5
等式两边都乘同一个数(或除以同一个 不为0的数),等式还成立吗?
xg xg
10g 10g
4米、x米高呢? ⑵某建筑物前的空地长36米, 那么此处斜坡最高多少米?
⑴2米高的斜坡,至少需要多少米的水平长度? 4米、x米高呢?
2米高: 4米高: x米高:
12×2=24(米) 12×4=48(米) 12x米
⑵某建筑物前的空地长36米, 那么此处斜坡最高多少米?
解:设此处斜坡最高x米。 12x=36
2x ÷22x = 2 0 ÷ 2
等式两边都乘同一个数(或除以同一个 不为0的数),等式还成立吗?
解方程。
x ÷3 =9 解: x ÷3×3=9×3
x =27
7 y =28 解: 7 y ÷7=28÷7
y =4
27÷3=9, x =27对了。
7×4=28, y=4对了。
下面解法正确吗?与同伴交流。
38 返回目录
教材第71页“练一练”第2题。 随 堂 练 习
2.森林医生。
7x =35=35÷7=5
7x =35 解: 7x÷7=35÷7
x =5
x -5=8 解:x -5-+5=8 -+5
x =313
4.长方形游泳池占地600米2,长30米,游泳池宽多 少米?
30x =600
x =20
课堂小结 通过这节课的学习,你们掌 握了哪些新知识? 我们不仅知道等式两边同时加上或减去 同一个数,等式仍然成立,还知道了等式两边都 乘同一个数(或除以同一个不为0的数),等式仍 然成立。 我能根据等式性质来解方程。解方程时 注意格式,比如先写解、冒号,再求未知数x。
x=364
59+x=120 解:59+x-59=120-59
x=61
x÷28=0 解:x÷28×28=0×28
x=0
教材第71页“练一练”第6题。
6.某地为便于残疾人轮椅通行,通过了一项关于建 筑物前斜坡高度的规定:每1米高的斜坡,至少需 要12米的水平长度。 ⑴2米高的斜坡,至少需要多少米的水平长度?
四年级数学·下 新课标[北师]
第5单元 认识方程
5 解方程(二)
复习准备
学习新知
哈达道小学:池月婷 随堂练习 作业设计
解方程。
7.8+x=10.6 解:7.8+x-7.8=10.6-7.8
x=2.8
x-4.3=2.1 解:x-4.3+4.3=2.1+4.3
x=6.4
复习准备
x-12.8=9.2 解:x-12.8+12.8=9.2+12.8
解: 20-11=9 3x=9
3x÷3=9÷3 x=3
答:每本大算草3元。
返回作业2
6.(探究题)根据图a和图b,可以判断图c 中的天平( )端下沉(画出相应图形)。
图a
图b
图c
返回作业2
返回目录
12x÷12=36÷12 x=3。
答:此处斜坡最高3米。
返作业设计
作业2
思维创新 提升培优 基础巩固
返回作业设计
1.(基础题)解方程。
4x=24 解: 4x÷4=24÷4
x=6 x÷12=94 解:x÷12×12=94×12
x=1128 x÷7=14 解: x÷7×7=24×7
x=98
12x=360 解:12x÷12=360÷12
x=30 m÷6=1.5 解:m÷6×6=1.5×6
m=9 24n=120 解: 24n÷24=120÷24
n=5
2.(重点题)看图列方程,并求出未知数
x的值。
(1)
3x=36
解: 3x÷3=36÷3
x=12
(2) 18x=54
解:18x÷18=54÷18 x=3
3.(易错题)把下面的方程与它的解用
返回目录
作业1
作业2
作业设计
让我仔细想一想!
返回目录
作业1
教材第71页“练一练”第3题。 3.解方程。
6x=156 解:6x÷6=156÷6
x=26
3x=630 解:3x÷3=630÷3
x=210
x-47=47 解:x-47+47=47+47
x=94
x÷52=7 解: x÷52×52=7×52
相关文档
最新文档