解方程(二)
2022年人教版五年级上册数学第五单元教案2 解简易方程 第3课时

第三课时教学内容解方程(二)。
(教材第69页)教学目标1.使学生会用等式的性质解形如ax±b=c类型的方程,并会用方程的解进行验算。
2.使学生会把小括号内的式子看作一个“整体”,来解形如(x+b)a=c类型的方程,体会“整体”思想在教学中的运用。
重点难点重点:连续两次运用等式的性质,解形如ax±b=c、(x+b)a=c类型的方程。
难点:体会“整体”思想在教学中的运用。
教具学具多媒体课件。
教学过程一导入1.请学生默写或者默背等式的性质,然后指名回答。
(1)等式两边同时加上或减去同一个数,等式两边仍然相等。
(2)等式两边同时乘同一个数,或除以同一个不为0的数,左右两边仍然相等。
2.说说解下面方程的根据。
x+3.5=79.41.5x=7.5x÷5=4.23-x=2.5二教学实施教学教材第69页例4。
1.投影出示。
师:图中左边有几盒水彩笔,每盒多少支?右边散放着几支?整盒的水彩笔有多少支?一共有多少支?生:从图中可以看出,有3盒水彩笔,每盒x支,所以整盒的水彩笔应该有x+x+x=3x(支),散放着4支,一共有(3x+4)支水彩笔。
师:大括号表示什么意思?40支和大括号有什么关系?生:上图中的大括号表示把整盒的和散放着的加在一起是40支。
师:你能根据图列方程吗?生:根据图中给出的信息可以得出,3盒水彩笔的支数+4=40,所以可以列出方程3x+4=40。
2.探索3x+4=40的解法。
师:观察这个方程的形式和前面学习过的方程有什么不同?你会计算吗?(学生独立思考)追问:能否用等式的性质解这种形式的方程?怎样算?根据学习解方程的经验,尝试解这个方程。
学生独立完成,集体订正。
师:解方程3x+4=40时,一般把“3x”看作“整体”,根据等式的性质1先在方程的两边都减去4,把方程转化为3x=36,然后再根据等式的性质2求出方程的解。
学生汇报交流算法。
先把3x看作一个数,把这题看成是x+b=c形式的方程,运用等式性质1:等式两边同时减去同一个数,等式两边仍然相等来解方程。
2.2 一元二次方程的解法(2)

首页
上一页
下一页
末页
你能解决这 个问题吗? 3倍有可能相等吗?如果相 一个数的平方与这个数的
x 2 3x.
小亮是这样解的 :
小明是这样解的 :
等,这个数是几?你是怎样求出来的? 小明,小亮都设这个数为x,根据题意得
解 : 方程x 2 3x两 边都同时约去 x, 得. x 3.
(一次项系数为0)(容易x+5
2
25 2 x - 5
x-
2 用配方法解二次项系数是 1 的一元二次方程在时,添 4x+___=(______) 上的常数项与一次项系数之间存在的关系: 2 2 2
常数项是一次项系数的一半的平方 x +6x+___=(______) x-
6x+___=(_______)
2
首页 上一页 下一页 末页
探索发现二:
解方程: x 6 x 1 0
2
只要形成
x m
2
n(n 0)
x 6 x 9 10 0, ( x 3) 10, x 3 10
2 2
x1 3 10, x2 3 10
我们把一元二次方程通 过配方法转换成:
2
形 为
x -2x=8
首页
上一页
下一页
末页
练一练:添上一个适当的数,使下
1 x+1 2 2 x +2x+___=(______) 4 x+2 2 9 x+3
列的多项式成为一个完全平方式:
1 4 x-1 2 x -x - 2
2x+___=(______)
人教五年级数学上册解方程(二)

?[选自《创优作业100分》P45] 1.解:设这个数是x。
2.解:设这个数是x。
5x-6.8=12.7
1.4x+3.2×3=23.6
x=3.9
x=10
答:这个数是3.9。
答:这个数是10。
六、如果x+x+x+y+y=54,x +x +y +y=46,那么x和y 各是多[少选自?《创优作业100分》P45]
x=4.2
解: x-45=128 x-45+45=128+45 x=173
解: 9x=18 9x÷9=18÷9
x=2
解: x÷4=75 x÷4×4=75×4
x=300
2.看图列方程并求解。 [教材P72 练习十五 第11题 ]
周长36m
xm
2(x+5)=36
5m 解:
2(x+5)÷2=36÷2
=8 =方程右边
8 2x-32+32=8+32所以,x=20是方程的解。
2x=40 2x÷2=40÷2
x=20
三、巩固练习
1.看图列方程,并求出方程的解。[教材P69 做一做 第1题 ]
x元/本
7.5元 5x+1.5=7.5 解: 5x+1.5-1.5=7.5-1.5
5x=6 5x÷5=6÷5
x=1.2
0.4=1.7
x=37
x-
*3x-4×0.6=5.4
0.4+0.4=1.7+0.4
解:3x-2.4=5.4 方程左边=3×2.6-4×0.6
3x-2.4+2.4=5.4+2.4
x==27..81-2.4
3x=7.8
一元二次方程的解法(2)

一元二次方程的解法(2)一、新知:解:.522=+x x 原方程两边都加上1,得,15122+=++x x 即,6)1(2=+x 直接开平方,得.61±=+x 所以,61±-=x 即.61,6121--=+-=x x通过方程的简单变形,将左边配成一个含有未知数的完全平方式,右边是一个非负常数,从而可以直接开平方求解,这种解一元二次方程的方法叫做 .例1:用配方法解方程:;014)1(2=+-x x .065)2(2=--x x练习:;028)1(2=-+x x .01124)2(2=--x x二、应用:1. 用配方法解方程,0322=-+x x下列配方结果正确的是( ) A. 2)1(2=-x B.4)1(2=-x C.2)1(2=+x D.4)1(2=+x2.)A.3. 用配方法把一元二次方程,0162=+-x x 配成q p x =+2)(的形式,p为 ,q 为 .4. 一元二次方程式4882=-x x 可表示成b a x +=-48)(2的形式,其中a 、b 为整数,求a+b 之值为何( )A. 20B. 12C. −12D. −205. 用配方法解下列方程时,配方有错误的是( )A.09922=--x x化为 100)1(2=-x B.0982=++x x 化为25)4(2=+xC.04722=--t t 化为D.02432=--x x 化为6. 用配方法解方程0122=-+x x时,配方结果正确的是( ) A.2)2(2=+x B.2)1(2=+x C.3)2(2=+x D.3)1(2=+x7. 用配方法解方程,01632=+-x x则方程可变形为( )D.1)13(2=-x 8. 若方程01)1(252=+--x k x 的左边可以写成一个完全平方式;则k 的值为( ) A. −9或11 B. −7或8 C. −8或9 D. −6或7 9. 已知等腰三角形的一边长为8,另一边长为方程0962=+-x x 的根,则该等腰三角形的周长为( )A. 14B. 19C. 14或19D. 不能确定10. 在解方程2x2+4x+1=0时,对方程进行配方,文本框①中是嘉嘉作的,文本框②中是琪琪作的,对于两人的做法,说法正确的是( )A. 两人都正确B. 嘉嘉正确,琪琪不正确C. 嘉嘉不正确,琪琪正确D. 两人都不正确11. 把方程3102-=-x x左边化成含有x 的完全平方式,其中正确的是( ) A.28)5(1022=-+-x xB.22)5(1022=-+-x xC.2251022=++x xD.25102=+-x x12. 用配方法解关于x 的一元二次方程),0(02≠=++a c bx ax 此方程可变形为( )。
解方程例2

0.2x=6 解:0.2x÷0.2=6÷0.2
x=30 检验 方程左边=0.2×30
=6 =方程右边 所以,x=30是方程的解。
4. 看图列方程,并求出方程的解。
xm
2.7 m 6.9 m
原价:x 元 降价:45 元 现价:128元
x+2.7 = 6.9
ɑx= b
解:ax÷a = b÷ɑ
x = b÷ɑ
x÷a =b 解:x÷a×a = b×ɑ
x = b×ɑ
利用等式的性质2解类似于上面的方程时,方程左边乘几,两边就同时除以 几;方程左边除以几,两边就同时乘几。
巩固提高
2.列方程并解答。[教材P68 做一做 第2题 ]
x元
1.2元
4元
x+1.2=4 解:x+1.2-1.2=4-1.2
这个方程与乘法有关,我觉得可以根据等式 的性质2来解方程。
(教材第68页例2)
2 解方程 3x = 18。
x xx
3x = 18
等式两边除以同一个不等于 0的数,左右两边仍然相等。
3x÷( 3 )= 18÷( 3 )
方程左边有×3,两 边要“÷3” 是为了 消去左边的×3。
为什么要÷3?
2 解方程 3x = 18。
ɑx= b
解:ax÷a = b÷ɑ
x = b÷ɑ
x÷a =b 解:x÷a×a = b×ɑ
x = b×ɑ
解: 4.6+x = 7.5 4.6+x-4.6 = 7.5-4.6
x = 2.9
将x=2.9代入方程ax=5.8
2.9a = 5.8 2.9a÷2.9 = 5.8÷2.9
第7讲 解一元一次方程(二)

探究类型之一 含分母的一元一次方程
例1 解方程:0.4 x 0.9 0.3 0.02 x 1 0.2 x 1.4
0.5 0.3 3
4 x 9 15 x x7 1 解:原方程可化为 5 15 15
. 去分母,得 3(4x+9)-(15+x)+15=x+7. 去括号,得 12x+27-15-x+15=x+7. 移项,得 12x-x-x=7-27-15+15. 合并同类项,得 10 x=-20. 系数化为1,得 x=-2.
解方程:(2)
(2)原方程可化为
4 y 1.5 5 y 0.8 1.2 y 3 0.5 0.2 0.1
2(4y-1.5)-5 (5y-0.8)=10(1.2- y)+3 8y-3-25 y+4=12-10y+3
去括号得
移项得 8y-25y+10 y=12+3+3-4 合并同类项得 系数化为 1 得 -7y=14 y=-2
2、形如| x – a | = b(b≥0)的方程的解法: 解: x– a = b 或 x– a = – b ; x = a + b 或x = a – b .
解形如| x | = a(a≥0)的方程的解法: 解:a > 0时,x = ±a ; a = 0时,x = 0 ; a < 0时,方程无解.
探究类型之二 含多重括Hale Waihona Puke 的一元一次方程例2 解方程:
1 1 1 2 3 3 x x x x 2 3 4 3 2 4
1 1 2 3 3 x x x 2 x 3 4 3 2 2
6一元二次方程的解法(二)配方法—知识讲解(提高)及其练习 含答案

一元二次方程的解法(二)配方法—知识讲解(提高)【学习目标】1.了解配方法的概念,会用配方法解一元二次方程; 2.掌握运用配方法解一元二次方程的基本步骤;3.通过用配方法将一元二次方程变形的过程,进一步体会转化的思想方法,并增强数学应用意识和能力。
【要点梳理】知识点一、一元二次方程的解法---配方法 1.配方法解一元二次方程: (1)配方法解一元二次方程: 将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)配方法解一元二次方程的理论依据是公式:.(3)用配方法解一元二次方程的一般步骤: ①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解. 要点诠释:(1)配方法解一元二次方程的口诀:一除二移三配四开方; (2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方.(3)配方法的理论依据是完全平方公式2222()a ab b a b ±+=±.知识点二、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值. 4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用. 要点诠释:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好.【典型例题】类型一、用配方法解一元二次方程1. (2016春•石景山区期末)用配方法解方程:2x 2﹣12x ﹣2=0.【思路点拨】首先将二次项系数化为1,再将方程的常数项移动方程右边,两边都加上9,左边化为完全平方式,右边合并,开方转化为两个一元一次方程,求出一次方程的解即可得到原方程的解. 【答案与解析】解:2x 2﹣12x ﹣2=0, 系数化为1得:x 2﹣6x ﹣1=0, 移项得:x 2﹣6x=1,配方得:x 2﹣6x +9=10,即(x ﹣3)2=10, 开方得:x ﹣3=±, 则x 1=3+,x 2=3﹣.【总结升华】此题考查了解一元二次方程﹣配方法,利用此方法解方程时,首先将二次项系数化为1,常数项移动方程右边,然后两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并,开方转化为两个一元一次方程来求解. 举一反三:【变式】 用配方法解方程 (1)(2)20x px q ++=【答案】(1)2235x x +=2253x x -=-25322x x -=- 2225535()()2424x x -+=-+251()416x -=5144x -=±123,12x x ==.(2)20x px q ++=222()()22p px px q ++=-+224()24p p qx -+=①当240p q -≥时,此方程有实数解,221244,p p q p p qx x -+----==; ②当240p q -<时,此方程无实数解.类型二、配方法在代数中的应用2. 用配方法证明21074x x -+-的值小于0.【思路点拨】本题不是用配方法解一元二次方程,但所用的配方法思想与自己学的配方法大同小异,即思路一致. 【答案与解析】22271074(107)410410x x x x x x ⎛⎫-+-=-+-=--- ⎪⎝⎭27494910410400400x x ⎛⎫=--+-- ⎪⎝⎭274910420400x ⎡⎤⎛⎫=----⎢⎥ ⎪⎝⎭⎢⎥⎣⎦2274971111041020402040x x ⎛⎫⎛⎫=--+-=---⎪ ⎪⎝⎭⎝⎭. ∵ 2710020x ⎛⎫--≤ ⎪⎝⎭,∴ 271111002040x ⎛⎫---< ⎪⎝⎭, 即210740x x -+-<.故21074x x -+-的值恒小于0.【总结升华】证明一个代数式大于零或小于零,常用方法就是利用配方法得到一个含完全平方式和一个常数的式子来证明. 举一反三:【变式】试用配方法证明:代数式223x x -+的值不小于238. 【答案】 22123232x x x x ⎛⎫-+=-+ ⎪⎝⎭22211123244x x ⎡⎤⎛⎫⎛⎫=-+-+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦21123416x ⎡⎤⎛⎫=--+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦2112348x ⎛⎫=--+ ⎪⎝⎭2123248x ⎛⎫=-+ ⎪⎝⎭.∵ 21204x ⎛⎫-≥ ⎪⎝⎭,∴ 2123232488x ⎛⎫-+≥ ⎪⎝⎭.即代数式223x x -+的值不小于238.3. (2015春•宜兴市校级月考)若把代数式x 2+2bx+4化为(x ﹣m )2+k 的形式,其中m ,k 为常数,则k ﹣m 的最大值是 . 【答案】;【解析】解:x 2+2bx+4=x 2+2bx+b 2﹣b 2+4 =(x+b )2﹣b 2+4; ∴m=﹣b ,k=﹣b 2+4,则k ﹣m=﹣(b ﹣)2+.∵﹣(b ﹣)2≤0, ∴当b=时,k ﹣m 的最大值是. 故答案为:.【总结升华】此题考查利用完全平方公式配方,注意代数式的恒等变形. 举一反三: 【变式】(1)的最小值是 ;(2)的最大值是 .【答案】(1)222222333152632(3)323()()32()2222x x x x x x x ⎡⎤+-=+-=++--=+-⎢⎥⎣⎦;所以的最小值是152-(2)22222245(4)5(422)5(2)9x x x x x x x -++=--+=--+-+=--+所以的最大值是9.4. 分解因式:42221x x ax a +++-. 【答案与解析】42221x x ax a +++-4222221x x x ax a =+-++-4222212x x x ax a =++--+()()2221x x a =+--()()22(1)(1)x x a x x a =++-+-+.【总结升华】这是配方法在因式分解中的应用,通过添项、配成完全平方式,进而运用平方差公式分解因式.一元二次方程的解法(二)配方法—巩固练习(提高)【巩固练习】一、选择题1. (2016•新疆)一元二次方程x 2﹣6x ﹣5=0配方组可变形为( )A .(x ﹣3)2=14B .(x ﹣3)2=4C .(x +3)2=14D .(x +3)2=4 2.用配方法解下列方程时,配方有错误的是( )A .22990x x --=化为2(1)100x -=B .22740t t --=化为2781416t ⎛⎫-= ⎪⎝⎭C .2890x x ++=化为2(4)25x += D .23420x x --=化为221039x ⎛⎫-= ⎪⎝⎭3.(2015•河北模拟)把一元二次方程x 2﹣6x+4=0化成(x+n )2=m 的形式时,m+n 的值为( )A .8B .6C .3D .2 4.不论x 、y 为何实数,代数式22247x y x y ++-+的值 ( )A .总小于2B .总不小于7C .为任何实数D .不能为负数 5.已知,则的值等于( )A.4B.-2C.4或-2D.-4或2 6.若t 是一元二次方程的根,则判别式和完全平方式的关系是( )A.△=MB. △>MC. △<MD. 大小关系不能确定二、填空题 7.(1)x 2-43x+ =( )2; (2)x 2+px+ =( )2. 8.(2015•忻州校级模拟)把代数式x 2﹣4x ﹣5化为(x ﹣m )2+k 的形式,其中m ,k 为常数, 则4m+k= .9.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.10.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为____ ___,•所以方程的根为_________.11.把一元二次方程3x 2-2x-3=0化成3(x+m)2=n 的形式是___ ________;若多项式x 2-ax+2a-3是一个完全平方式,则a=_________. 12.已知.则的值为 .三、解答题13. 用配方法解方程. (1)(2016•安徽)解方程:x 2﹣2x=4. (2)(2015•大连)解方程:x 2﹣6x ﹣4=0.14.分解因式44x +.15.(2015春•龙泉驿区校级月考)当x ,y 取何值时,多项式x 2+4x+4y 2﹣4y+1取得最小值,并求出最小值.【答案与解析】 一、选择题 1.【答案】A .【解析】x 2﹣6x ﹣5=0,x 2﹣6x=5,x 2﹣6x +9=5+9,(x ﹣3)2=14,故选:A . 2.【答案】C ; 【解析】选项C :2890x x ++=配方后应为2(4)7x +=. 3.【答案】D ;【解析】 x 2﹣6x=﹣4,∴ x 2﹣6x+9=﹣4+9,即得(x ﹣3)2=5,∴ n=﹣3,m=5,∴ m+n=5﹣3=2.故选D .4.【答案】D ; 【解析】2222247(1)(2)22x y x y x y ++-+=++-+≥.5.【答案】A ;【解析】原方程化简为:(x 2+y 2)2-2(x 2+y 2)-8=0,解得x 2+y 2=-2或4,-2不符题意舍去.故选A. 6.【答案】A .【解析】由t 是方程的根得at 2+bt+c=0,M=4a 2t 2+4abt+b 2=4a(at 2+bt)+b 2= b 2-4ac=△.故选A.二、填空题7.【答案】(1)49;23x -; (2)24p ;2p x +.【解析】配方:加上一次项系数一半的平方.8.【答案】﹣1;【解析】x 2﹣4x ﹣5=x 2﹣4x+4﹣4﹣5=(x ﹣2)2﹣9, ∴ m=2,k=﹣9,∴ 4m+k=4×2﹣9=﹣1. 故答案为﹣1.9.【答案】4;【解析】4x2-ax+1=(2x-b)2化为4x2-ax+1=4x2-4bx+b2,所以241a bb=-⎧⎨=⎩-解得41ab=⎧⎨=⎩或41ab=-⎧⎨=-⎩所以4ab=.10.【答案】(x-1)2=5;15±.【解析】方程两边都加上1的平方得(x-1)2=5,解得x=15±. 11.【答案】;2或6.【解析】3x2-2x-3=0化成;即2(-)232aa=-,a=2或6.12.【答案】5;【解析】原式三、解答题13.【答案与解析】解:(1)配方x2﹣2x+1=4+1∴(x﹣1)2=5∴x=1±∴x1=1+,x2=1﹣.(2015•大连)解方程:x2﹣6x﹣4=0.(2)解:移项得x2﹣6x=4,配方得x2﹣6x+9=4+9,即(x﹣3)2=13,开方得x﹣3=±,∴x1=3+,x2=3﹣.14. 【答案与解析】4222224()22222x x x x+=++-22222(2)(2)(22)(22)x x x x x x=+-=++-+.15. 【答案与解析】解:x2+4x+4y2﹣4y+1=x2+4x+4+4y2﹣4y+1﹣4=(x+2)2+(2y﹣1)2﹣4,又∵(x+2)2+(2y﹣1)2的最小值是0,∴x2+4x+4y2﹣4y+1的最小值为﹣4.∴当x=﹣2,y=时有最小值为﹣4.。
部编版五年级上册数学 第5单元 简易方程:3 解方程(2课时)

3解方程第1课时解方程(一)课时目标导航解方程(一)。
(教材第67~68页例1、例2、例3)1.根据等式的性质,使学生初步掌握解方程及检验方程的方法,理解解方程和方程的解的概念。
2.培养学生的分析能力及应用所学知识解决实际问题的能力。
3.帮助学生养成自觉检验的良好习惯。
重点:理解并掌握解方程的方法。
难点:理解形如a±x=b的方程原理,掌握正确的解方程格式及检验方法。
一、情景引入同学们,咱们玩一个猜一猜的游戏好吗?出示一个盒子,让学生猜一猜里面可能有几个球。
(学生思考后会说,可以是任意数。
)教师继续通过多媒体补充条件,并出示教材第67页例1情境图。
问:从图上你知道了哪些信息?引导学生看图回答:盒子里的球和外面的3个球,一共是9个。
并用等式表示:x+3=9(教师板书)二、学习新课1.方程的解和解方程及形如x±a=b的方程。
(1)出示教材第67页第一个天平图,让学生观察并说一说。
长方体盒子代表未知的x个球,每个小正方体代表一个球,则天平左边是(x+3)个球,右边是9个球,天平平衡,列式:x+3=9。
观察:把左边拿掉3个球,要使天平仍然保持平衡要怎么办?(右边也要拿掉3个球。
)追问:怎样用算式表示?学生交流,汇报:x+3-3=9-3x=6质疑:为什么两边都要减3呢?你是根据什么来求的?(根据等式的性质:等式的两边减去同一个数,左右两边仍然相等。
)(2)方程的解和解方程。
教师总结:刚才我们计算出的x=6,这就是使方程左右两边相等的未知数的值,叫做方程的解。
也就是说,x=6是方程x+3=9的解。
求方程解的过程叫做解方程。
提问:方程的解和解方程有什么区别?学生自主看课本学习,可能会初步知道,求出的x的值是方程的解;求解的过程就是解方程。
引导学生小结:“方程的解”中“解”的意思,是指能使方程左右两边相等的未知数的值,它是一个数值;而“解方程”中“解”的意思,是指求4的解的过程,是一个计算过程。