物理光学梁铨廷版习题答案
121006-物理光学-1

息工程中的工程光学问题的能力,使具有进一步学 习和处理现代光学理论和技术的能力。
第一章 光的电磁场理论
麦 克 斯 韦 (Maxwell) 在 法 拉 第 (Faraday) 、 安 培
(Anper)等人研究电磁场工作的基础上:于1864年 总结出了一组描述电磁场变化规律的方程组,从而 建立了经典电磁理论。
顶 底 壁
壁 B1 n B2 n 0 B1n B2 n D1n D2 n
B1 n1A B2 n2A B d 0
r
切向分量
l
t
A
t1
t2
B
电矢量E和H的切向分量是连续的。 矩形面积ABCD,令其四边分别平 行和垂直分界面。
因为在静电场中任何一点(除点电荷所在处以外),只
有一个确定的场强方向,所以任何两条电场线不可能相 交。
1.1电场与磁场
散度
散度是矢量分析中的一个矢量算子,将矢量空间上的一
个矢量场(矢量场)对应到一个标量场上。散度描述的
是矢量场里一个点是汇聚点还是发源点,形象地说,就 是这包含这一点的一个微小体元中的矢量是“向外”居 多还是“向内”居多。举例来说,考虑空间中的静电场, 其空间里的电场强度是一个矢量场。正电荷附近,电场 线“向外”发射,所以正电荷处的散度为正值,电荷越 大,散度越大。负电荷附近,电场线“向内”,所以负 电荷处的散度为负值,电荷越大,散度越小。
1.2电磁感应与麦克斯韦方程组
位移电流
一个正在充电的电容器,左边的圆形金属板,被一个假想的闭圆柱表面S包 围。这圆柱表面的右边表面R处于电容器的两块圆形金属板之间,左边表面 L 处于最左边。没有任何传导电流通过表面R ,而有电流I通过表面L 。
物理光学简明教程[梁铨廷]PPT
![物理光学简明教程[梁铨廷]PPT](https://img.taocdn.com/s3/m/a4ee7a89ec3a87c24028c4ea.png)
三、波动光学发展历史
光学的萌芽时期可以追溯到2000多年前,墨子在所著的《墨 经》中记载了光的直线传播、小孔成像等光学规律;古希腊 欧几里德(Euclid)在其著作中也有光的直线传播和反射定 律的记载。
不过,对光的物理本性进行认真研究却是从17世纪开始的。 当时,有两种关于光的本性的说法:以牛顿为代表的微粒说 和以惠更斯为代表的波动说。 前者认为光是具有有限速度的粒子流,后者认为光是在“以 太”(一种假想的弹性媒质)中传播的波。 由于当时牛顿在物理学界享有至高无尚的权威,人们普遍地 接受光的微粒说。
电子工业出版社, 2009 7.A.加塔克,光学,梁铨廷等译,机械工业出版社,1984
A.加塔克
Optics
(第四版)清华大学出版社
2010
8.J.P.马蒂厄,光学(上、下) ,1987
五、参考网站
国内 光谷社区
光电工程师社区 飞达光学网
社, 2008
2.母国光, 战元龄,《光学》, 北京:人民教育出版社,1979 3.曲林杰等《物理光学》,北京:国防工业出版社,1980 4.叶玉堂 《光学教程》,北京:清华大学出版社 5.章志鸣等,《光学》, 北京: 高等教育出版社,2009
6.M.玻恩,E.沃耳夫《光学原理》(第七版), 杨葭荪译 北京:
松铖光学
激光世界 中 国 光 学 薄 膜 在 线 中国光学光要内容
光的电磁理论
光的干涉及应用 光的衍射与现代光学 光的偏振和晶体光学器件
五、参考文献
物理光学简明教程 梁铨廷 刘翠红 电子工业出版社 2010
物理光学(第3版)
梁铨廷
电子工业出版社
2008
物理光学学习指导与题解
刘翠红
中科院817光学考研真题参考答案整理(2007~2012)

817光学参考答案(2007~2012)说明:该参考答案为考研期间通过参考各类习题解答,光学类教材以及根据自己所学所理解的知识所编写,部分题目为作者和同学商讨之结果,或有别于其他参考书,见仁见智。
该答案原稿为考研期间整理,其中2010~2011年答案为谢红同学整理,电子档由陈曼同学完成,文中插图由本人整理。
邮箱:ygm01@主要参考书:[1]物理光学与应用光学(第二版). 石顺祥, 王学恩, 刘劲松. 西安电子科技大学出版社.[2]物理光学与应用光学学习指导书(第二版).石顺祥,马琳,王学恩.西安电子科技大学出版社.[3]应用光学(第四版). 李林. 北京理工大学出版社.[4]物理光学(第三版). 梁铨廷. 电子工业出版社.[5]光学学习指导. 王磊, 刘彦允, 聂娅. 清华大学出版社.[6]工程光学(第三版). 郁道银, 谭恒英. 机械工业出版社.[7]应用光学试题与解析. 赵钢. 中国科学技术大学出版社.[8]光学指导—考研参考书. 丁文革. 清华大学出版社.[9]光学. 母国光, 战元龄. 高等教育出版社.上帝的骰子2013年5月16日2007年光学答案1.解:由于x 每增加4m µ,相位增加π2,故沿x 方向每增加单位长度,相位增加量为mm mk x /10571.1423×==µπ沿y 轴相位不变化,故,0=k y 故2222(k k k y x z cy −−=)π=1.3851910−×mm 故z=0平面上,t=0时刻相位为:ϕϕ0+=x kx又由x=-5m µ,0=ϕ得πϕ5.20= 故:)5.210385.110571.1()(330),,(πϕ+×+×+++==z x i z y x i e k k k e z y x E z y x 可见波法线在xoz 面内,波法线方向与z 轴夹角为,3648arctan==kk zx α2.解:(1)301=θ47.19sin sin sin 102210==n n n θθ设入射光振幅为E,则E ii ip 2==据菲涅尔公式:)()( 47.1930sin )47.30sin(sin )sin(2121−−=+−−==θθθθE E r isrs s =240.0−159.0)tan()tan 2121=+−==θθθθ(EE r iprp p故反射率%14.40414.0)(2122==+=r r p s R 反射光振动面与入射面夹角为48.56arctan==rr ps α(2)31.56arctan==nnB θ69.33902=−=θθB设M 转动后入射平面与图面夹角为0,则:θcos E Ei is= θsin E E i ip =3846.0)sin()sin(22−=+−−==θθθθB B isrs s EEr 0=r p故θcos 3846.0E r E Ei s is rs−== 0==r E E p ip rp 故θ2202cos 148.0I E I rs ==反 1=P反3.解: 如上图所示光路1光程:(01AD n r = 光路2光程:dAB n r 212((=⇒[]dn n DE AD n CF n BC AB n r r x )())(020112−++−++=−=∆ =d n n n )(2cos 2221−++λθ,10λµ==m h ,21sin sin 112==nn θθ 23cos 2=θdx )15.1(22332−++×××=∆λλ=λλλ35.023>++d 又λ4=≤∆lcx λλm x ==∆⇒4 m=4m x d µλλλ105.0)234(==−−=⇒4.解:由λπβb cV sin =得: 当R d =βπλπβ=b时,V=0mmm 05909.0109086.55=×=−mm 0721.022.1==θλα5.解:暗纹条件:λθn a =sin ......2,1,0=n 求导 λθθ=∆sin a a a λθλθ≈=∆⇒cos 中央明纹角宽度为aλθ22=∆a f f x λθ22=∆⋅=∆⇒ mxfa µλ28.632=∆=⇒6.解:(1)90sin sin 21n n c=θnn c 12sin=⇒θ0111sin sin cos c n u n n n θθ===u n n u n sin sin 22210=−=⇒(2)1.52.162.1arcsin 22−=u7.解: 如上图示入射光:快)(cos 0t A E y ω= t A E z ωcos 0= 20=eA A 通过晶片后:),2cos(0πω+=t A E y t A E e z ωcos ,=m d d n n e 501062.122−×=⇒−==λππδ设θ为振动方向与y 轴夹角,57.2621arctan ==θ8.解:U n ⋅=3302γσλπδ V n U 750523302==⇒γσλλ光线通过A 晶体后偏转 90成为e 光22202220cos 112sin 21tan +−=(e e n n n θθθα.0tan ==∆⇒ααx 间隔d n 0)2−=θλπcos sin )(222200+=θθθe ee n n n n n π844=9.解:设入射左旋圆偏光为:=+=t A E t A E y x ωπωcos )2cos(2141波片: 22111πλπϕ=−=d n n o e )(4111o e n n d −=⇒λ对2λ: d n n o e 222,2−=λπϕ 442112212,πλλπϕ≈−−=⇒o e o e n n n n 故:+=+=)4cos(2cos(21πωπωt A E t A E y x ,,,,) 0424<−=−=πππδ⇒出射光为左旋椭圆偏光。
物理光学梁铨廷问题详解

第一章光的电磁理论1.1在真空中传播的平面电磁波,其电场表示为Ex=0,Ey=0,Ez=(102)Cos[π×1014(t−xc )+π2],(各量均用国际单位),求电磁波的频率、波长、周期和初相位。
解:由Ex=0,Ey=0,Ez=(102)Cos[π×1014(t−x c )+π2],则频率υ= ω2π=π×10142π=0.5×1014Hz,周期T=1/υ=2×10-14s,初相位φ0=+π/2(z=0,t=0),振幅A=100V/m,波长λ=cT=3×108×2×10-14=6×10-6m。
1.2.一个平面电磁波可以表示为Ex=0,Ey=2Cos[2π×1014(zc −t)+π2],Ez=0,求:(1)该电磁波的振幅,频率,波长和原点的初相位是多少?(2)波的传播和电矢量的振动取哪个方向?(3)与电场相联系的磁场B的表达式如何写?解:(1)振幅A=2V/m,频率υ=ω2π=2π×10142π=1014Hz,波长λ=cυ=3×1081014=3×10−6m,原点的初相位φ0=+π/2;(2)传播沿z轴,振动方向沿y轴;(3)由B=1c(e k⃗⃗⃗⃗ ×E⃗),可得By=Bz=0,Bx=2c Cos[2π×1014(zc−t)+π2]1.3.一个线偏振光在玻璃中传播时可以表示为Ey=0,Ez=0,Ex=102Cos[π×1015(z0.65c−t)],试求:(1)光的频率;(2)波长;(3)玻璃的折射率。
解:(1)υ=ω2π=π×10152π=5×1014Hz;(2)λ=2πk =2ππ×1015/0.65c=2×0.65×3×1081015m=3.9×10−7m=390nm;(3)相速度v=0.65c,所以折射率n=cv =c0.65c≈1.541.4写出:(1)在yoz平面沿与y轴成θ角的k⃗方向传播的平面波的复振幅;(2)发散球面波和汇聚球面波的复振幅。
物理光学简明教程梁铨廷第二版笔记

物理光学简明教程梁铨廷第二版笔记
摘要:
1.物理光学简介
2.梁铨廷及其《物理光学简明教程》
3.第二版笔记的主要内容
4.物理光学在生活中的应用
正文:
一、物理光学简介
物理光学是光学的一个分支,它主要研究光的物理性质和光现象的产生原因。
物理光学涉及的领域广泛,包括几何光学、物理光学、量子光学等,是现代光学科学的重要组成部分。
二、梁铨廷及其《物理光学简明教程》
梁铨廷是我国著名的光学专家,他在光学领域有着深厚的造诣。
他所著的《物理光学简明教程》是一本非常适合初学者学习的物理光学教材,书中详细地介绍了物理光学的基本概念、基本原理和基本方法,深受广大读者的欢迎。
三、第二版笔记的主要内容
第二版笔记是在《物理光学简明教程》的基础上编写的,它主要包括以下几个方面的内容:
1.光的性质:包括光的波动性、光的粒子性、光的相干性等。
2.光的传播:包括光的反射、光的折射、光的干涉等。
3.光的成像:包括几何光学成像、物理光学成像等。
4.光的变换:包括傅里叶变换、拉普拉斯变换等。
5.光的应用:包括光学通信、光学测量、光学材料等。
四、物理光学在生活中的应用
物理光学在生活中的应用非常广泛,几乎无处不在。
例如,我们可以通过光的反射来观察自己的倒影,通过光的折射来看清水中的鱼,通过光的干涉来制造光学薄膜等。
此外,物理光学还广泛应用于光学通信、光学测量、光学材料等领域,对人们的生活产生了深远的影响。
总的来说,梁铨廷的《物理光学简明教程》是一本非常重要的光学教材,它为我们深入学习物理光学提供了重要的参考。
梁铨廷教授著《物理光学》及其配套教材评介

梁铨廷教授著《物理光学》及其配套教材评介物理光学是光学相关专业中一门重要的专业基础课程,其理论性和系统性强,素以教学难度大著称。
笔者对此深有体会。
而梁铨廷教授所著的《物理光学》教材,為提高教学质量、降低教学难度提供了很大的帮助。
梁老师的《物理光学》是一本真正的经典教材,从1987年的第二版到2012年的第四版,25年只有两次修订,可见久经考验,积淀深厚。
梁老师当年独自著述,承自波恩《光学原理》的理论脉络,以光的电磁理论和傅里叶分析方法为基础,系统地阐述了经典物理光学的基本概念、原理和应用。
梁老师长期从事一线教学,教学经验丰富,也是从事科学研究的学者。
该教材可谓博采众长,也凝聚了梁铨廷老师数十年的教学经验。
梁老师高屋建瓴,《物理光学》这一教材知识结构清晰,逻辑性强,循序渐进而又深入浅出。
该教材既便于教师有效组织教学,也便于学生自我学习提高,一直以来广受高校师生的好评,也曾获得全国高校第二届优秀教材一等奖,可谓实至名归。
梁老师是一位治学严谨的学者,从当初的独立著作,到后来几次修订也都是亲力亲为,使得全书体例如一,前后叙述、公式形式一致,脉络清晰。
更难能可贵的是,他一直力求教材中的传统内容能够与现代科学的发展相衔接。
众所周知,自20世纪中叶开始,光学无论是在理论方法还是技术应用上都已取得许多重大发展,如何在有限的篇幅中编入最适合的内容,本身就是一个难题。
正如梁老师自序所言:“光学的飞跃式发展,使它能以崭新的面貌在现代科学技术各个领域中特别引人注目……对于一本基础光学教材,引进的现代内容不是越多越好,越新越好,关键是要把现代内容和传统内容结合、融汇得好,把它们的内在联系沟通起来。
”经过仔细考虑,精挑细选,梁老师选择了在修订中编入超光学分辨率、白光信息处理、液晶电光效应等内容。
无数的教学实践也证明,这些现代内容的加入与原传统内容的衔接与融合是自然的,体系是完整的。
另外,梁老师增加了约70道例题分布于各章节,以满足教学和自学需要。
(完整版)物理光学梁铨廷答案

第一章光的电磁理论1.1在真空中传播的平面电磁波,其电场表示为Ex=0,Ey=0,Ez=(102)Cos[π×1014(t−xc )+π2],(各量均用国际单位),求电磁波的频率、波长、周期和初相位。
解:由Ex=0,Ey=0,Ez=(102)Cos[π×1014(t−x c )+π2],则频率υ= ω2π=π×10142π=0.5×1014Hz,周期T=1/υ=2×10-14s,初相位φ0=+π/2(z=0,t=0),振幅A=100V/m,波长λ=cT=3×108×2×10-14=6×10-6m。
1.2.一个平面电磁波可以表示为Ex=0,Ey=2Cos[2π×1014(zc −t)+π2],Ez=0,求:(1)该电磁波的振幅,频率,波长和原点的初相位是多少?(2)波的传播和电矢量的振动取哪个方向?(3)与电场相联系的磁场B的表达式如何写?解:(1)振幅A=2V/m,频率υ=ω2π=2π×10142π=1014Hz,波长λ=cυ=3×1081014=3×10−6m,原点的初相位φ0=+π/2;(2)传播沿z轴,振动方向沿y轴;(3)由B=1c(e k⃗⃗⃗⃗ ×E⃗),可得By=Bz=0,Bx=2c Cos[2π×1014(zc−t)+π2]1.3.一个线偏振光在玻璃中传播时可以表示为Ey=0,Ez=0,Ex=102Cos[π×1015(z0.65c−t)],试求:(1)光的频率;(2)波长;(3)玻璃的折射率。
解:(1)υ=ω2π=π×10152π=5×1014Hz;(2)λ=2πk =2ππ×1015/0.65c=2×0.65×3×1081015m=3.9×10−7m=390nm;(3)相速度v=0.65c,所以折射率n=cv =c0.65c≈1.541.4写出:(1)在yoz平面内沿与y轴成θ角的k⃗方向传播的平面波的复振幅;(2)发散球面波和汇聚球面波的复振幅。
物理光学第三章 梁铨廷

I
4I0
cos2 ( )
2
4I0
2 cos2 (
2
)
4I0
c os2
r2
r1
对于整个屏幕,当一些点满足 m 时,I 4I0 为光强最大值。
当一些点满足 m 1 时,I 0 为光强最小值。
2
其余点的光强在0和4I0之间。
3.4.1 光源大小的影响
第三章 光的干涉和干涉仪
当光源为理想的点光源时,产生的干涉条纹中暗条纹的强度 为零,所以K=1,条纹对比度最好。 但实际光源不可能是一个单一发光点,它是很多发光点的集 合体,每一个点光源都会形成一对相干光源,产生一组干涉条 纹。
由于各点光源位置不同,形成的干涉条纹位置也不同,干涉 场中总的干涉条纹是所有干涉条纹的非相干叠加。
IM、Im分别是条纹光强的极大值和极小值。
从定义式来看,条纹的对比度与亮暗条纹的相对光强有关。 当Im=0时,K=1,对比度最好,称为完全相干; 当IM= Im时,K=0,条纹完全消失,为非相干。 条纹的对比度取决于以下三个因素: 光源大小、光源的非单色性、两相干光波的振幅比。
3.4.3 两相干光波振幅比的影响
记此时的扩展光源宽度为临界宽度bc(=2a)。
3.4.1 光源大小的影响
第三章 光的干涉和干涉仪
1 光源的临界宽度
d / 2 bc / 2
l2
l1
l
l1
l2
bc 2
d 2
1
bc d
2l
S `S 2
S `S1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章光的电磁理论1.1在真空中传播的平面电磁波,其电场表示为Ex=0,Ey=0,Ez=(102)Cos[π×1014(t−xc )+π2],(各量均用国际单位),求电磁波的频率、波长、周期和初相位。
解:由Ex=0,Ey=0,Ez=(102)Cos[π×1014(t−xc )+π2],则频率υ= ω2π=π×10142π=0.5×1014Hz,周期T=1/υ=2×10-14s,初相位φ0=+π/2(z=0,t=0),振幅A=100V/m,波长λ=cT=3×108×2×10-14=6×10-6m。
1.2.一个平面电磁波可以表示为Ex=0,Ey=2Cos[2π×1014(zc−t)+π2],Ez=0,求:(1)该电磁波的振幅,频率,波长和原点的初相位是多少?(2)波的传播和电矢量的振动取哪个方向?(3)与电场相联系的磁场B的表达式如何写?解:(1)振幅A=2V/m,频率υ=ω2π=2π×10142π=1014Hz,波长λ=cυ= 3×1081014=3×10−6m,原点的初相位φ0=+π/2;(2)传播沿z轴,振动方向沿y 轴;(3)由B =1c (e k ⃗⃗⃗⃗ ×E ⃗⃗ ),可得By=Bz=0,Bx=2c Cos [2π×1014(zc−t)+π2]1.3.一个线偏振光在玻璃中传播时可以表示为Ey=0,Ez=0,Ex=102Cos [π×1015(z0.65c −t)],试求:(1)光的频率;(2)波长;(3)玻璃的折射率。
解:(1)υ=ω2π=π×10152π=5×1014Hz ; (2)λ=2πk=2ππ×1015/0.65c=2×0.65×3×1081015m =3.9×10−7m =390nm ; (3)相速度v=0.65c ,所以折射率n=cv =c0.65c ≈1.541.4写出:(1)在yoz 平面内沿与y 轴成θ角的k ⃗ 方向传播的平面波的复振幅;(2)发散球面波和汇聚球面波的复振幅。
解:(1)由E ̃=A ⃗ exp(ik ⃗ ∙r ⃗ ),可得E ̃=A ⃗ exp[ik (ycosθ+zsinθ)];(2)同理:发散球面波Ẽ(r ,t)=A r exp(ikr )=A1rexp(ikr ), 汇聚球面波Ẽ(r ,t)=A r exp(−ikr )=A1rexp(−ikr )。
1.5一平面简谐电磁波在真空中沿正x方向传播。
其频率为4×1014Hz,电场振幅为14.14V/m,如果该电磁波的振动面与xy 平面呈45º,试写出E,B 表达式。
解:E⃗=E y e y⃗⃗⃗⃗ +E z e z⃗⃗⃗⃗ ,其中E y=10exp[i(2πλx−2πυt)]=10exp[i(2πυcx−2πυt)]=10exp[i(2π×4×10143×108x−2π×4×1014t)]=10exp[i(83×106π)(x−3×108t)],同理:E z=10exp[i(83×106π)(x−3×108t)]。
B⃗⃗ =1c(k0⃗⃗⃗⃗ ×E⃗⃗ )=−B y e y⃗⃗⃗⃗ +B z e z⃗⃗⃗⃗ ,其中B z=103×108exp[i(83×106π)(x−3×108t)]=B y。
1.6一个沿k方向传播的平面波表示为E=100exp{i[(2x+3y+4z)−16×105t]},试求k方向的单位矢k0。
解:|k⃗|=√22+32+42=√29,又k⃗=2e x⃗⃗⃗⃗ +3e y⃗⃗⃗⃗ +4e z⃗⃗⃗⃗ ,∴k0⃗⃗⃗⃗ =√29(2e x⃗⃗⃗⃗ +3e y⃗⃗⃗⃗ + 4e z⃗⃗⃗⃗ )。
1.9证明当入射角θ1=45º时,光波在任何两种介质分界面上的反射都有r p=r s2。
证明:r s=sin(θ1−θ2)sin(θ1+θ2)=sin45ºcosθ2−cos45ºsinθ2 sin45ºcosθ2+cos45ºsinθ2=cosθ2−sinθ2 cosθ2+sinθ2=1−tanθ21+tanθ2r p=tan(θ1−θ2) tan(θ1+θ2)=(tan45º−tanθ2)/(1+tan45ºtanθ2) (tan45º+tanθ2)/(1−tan45ºtanθ2)=(1−tanθ21+tanθ2)2=r s21.10证明光束在布儒斯特角下入射到平行平面玻璃片的上表面时,下表面的入射角也是布儒斯特角。
证明:由布儒斯特角定义,θ+i=90º,设空气和玻璃的折射率分别为n1和n2,先由空气入射到玻璃中则有n1sinθ=n2sin i,再由玻璃出射到空气中,有n2sinθ′=n1sin i′,又θ′=i,∴n1sin i′= n1sinθ⇒i′=θ,即得证。
1.11平行光以布儒斯特角从空气中射到玻璃(n=1.5)上,求:(1)能流反射率R p和R S;(2)能流透射率T p和T s。
解:由题意,得n=n2n1= 1.5,又θ为布儒斯特角,则θ+ i=90°.....①n1sinθ=n2si̇n i⇒sinθ=nsini..... ②由①、②得,θ=56.31°,i=33.69°。
(1)R p=tan2(θ−i)tan2(θ+i)=0,R s=sin2(θ−i)sin2(θ+i)=0.148= 14.8%,(2)由R p+T p=1,可得T p=1,同理,T s=85.2%。
1.12证明光波在布儒斯特角下入射到两种介质的分界面上时,t p=1n⁄,其中n=n2∕n1。
证明:t p= 2sinθ2cosθ1sin(θ1+θ2)cos(θ1−θ2),因为θ1为布儒斯特角,所以θ2+θ1=90°,t p=2sinθ2cosθ1 sin90°cos(θ1−θ2)=2sinθ2cosθ1 cos(90°−θ2−θ2)=2sinθ2cosθ1sin(2θ2)=2sinθ2cosθ1 2sinθ2cosθ2=sinθ2sinθ1,又根据折射定律n1sinθ1=n2sinθ2,得sinθ2sinθ1=n1n2=1n,则t p=1n,其中n=n2∕n1,得证。
1.17利用复数表示式求两个波E1=a cos(kx+ωt)和E2=−a cos(kx−ωt)的合成。
解:E=E1+E2=a[cos(kx+ωt)−cos(kx−ωt)]=aexp[i(kx+ωt)]−aexp[i(kx−ωt)]=aexp(ikx)(e iωt−e−iωt)=2a sin(ωt)exp(i cos kx−sin kx)=−2aexp[i(kx+π2)]sin(ωt)。
1.18两个振动方向相同的单色波在空间某一点产生的振动分别为E1= a1cos(φ1−ωt)和E2= a2cos(φ2−ωt)。
若ω= 2π×1015Hz,a1=6V/m,a2=8V/m,φ1=0,φ2=π∕2,求该点的合振动表达式。
解:E=E1+E2= a1cos(φ1−ωt)+a2cos(φ2−ωt)=6cos(−2π×1015t)+8cos(π2−2π×1015t)=6cos(2π×1015t)+ 8sin(2π×1015t)=10cos(arccos610−2π×1015t)=10cos(53°7′48′′−2π×1015t)。
1.20求如图所示的周期性三角波的傅立叶分析表达式。
解:由图可知,E(z)= {z(0<z≤λ2⁄)−z+λ(λ∕2<z≤λ),A0=2λ∫E(z)ⅆzλ=2λ(∫zⅆzλ∕2+∫(−z+λ)ⅆzλλ∕2)=λ2,A m=2λ∫E(z)cosλ(mkz)ⅆz=2λ(∫E(z)cos mkzⅆz λ2⁄+∫E(z)cos mkzⅆzλλ2⁄)=2λ·(−22m2k2)=−8λ·λ2m2(2π)2=−2λm2(2π)2,(m为奇数),B m=2λ∫E(z)sinmkzⅆz=0λ,所以E(z)=λ4−2λπ2∑(cos mkz m2⁄)∞m=1=λ4−2λπ2(cos kz12+cos3kz32+cos5kz52+···)。
1.21试求如图所示的周期性矩形波的傅立叶级数的表达式。
解:由图可知,E(z)= 1(−λ∕a<z<λ∕a),A0=2λ∫E(z)ⅆzλ=2λ(∫ⅆzλ∕a+∫ⅆzλλ−λ∕a)=4aA m=2λ∫E(z)cosλ(mkz)ⅆz=2λ(∫cos mkzⅆz+λa⁄∫cos mkzⅆzλλ−λa⁄)=2πmsin2mπa,B m=2λ∫E(z)sinmkzⅆz=0λ,所以E(z)=2a+∑2πm∞m=1sin2mπacos mkz。
1.22利用复数形式的傅里叶级数对如图所示的周期性矩形波做傅里叶分析。
解:由图可知,E(z)={1(0<z<λ2⁄)−1(λ2⁄<z<λ),A0=2λ∫E(z)ⅆzλ=∫ⅆzλ∕2+∫(−1)ⅆzλλ∕2=0, A m =2λ∫E (z )cos λ0(mkz )ⅆz =0, B m =2λ∫E (z )sinmkz ⅆz λ0, =2λ(∫sin mkz ⅆz λ0−∫sin mkz ⅆz λλ∕2)=1πm (2−2cos mπ), 所以E (z )=1π∑1m(2−∞m=12cos mπ)sin mkz=4π(sin kz +13sin 3kz +15sin 5kz +···)1.23氪同位素k r 86放电管发出的红光波长为λ=605.7nm ,波列长度约为700mm ,试求该光波的波长宽度和频率宽度。
解:由题意,得,波列长度2L =700mm , 由公式Δλ=λ22L=605.72700×106=5.2×10−4nm ,又由公式2L =c/Δν,所以频率宽度Δν= c2L =3×108700×10−3Hz =4.3×108Hz 。
1.24某种激光的频宽Δv =5.4×104Hz ,问这种激光的波列长度是多少?解:由相干长度D max =λ2Δλ=cΔν,所以波列长度2L =λ2Δλ=cΔν=3×1085.4×104=5.55×103m。