《三角形的内角和》教学案例及反思
《三角形的内角和》教学反思(精选3篇)

《三角形的内角和》教学反思(精选3篇)《三角形的内角和》教学反思篇一在“三角形内角和”这一内容的教学时,采用的教学方式是教给学生测量或者是撕拼的方法,然后得出结论,进行应用。
虽然可以节省时间,短期内收到较好的效果,特别是要求学生把结论给记住,学生应用结论解决相关问题一般是不会有困难的。
但把数学知识的发生过程轻描淡写,缺乏探究过程,这样学数学,学生感觉学得累,很乏味,在他们的感受中,数学渐渐地变成枯燥无味的了。
本节课应着眼于学生的能力和学习数学的兴趣,上课一开始,可通过创设动画的问题情境,以较好地激发了学生的'学习兴趣,然后给学生提供一些材料,让学生以先独立思考再合作的方式,为学生留有足够的空间去探究出结论。
学生通过测量、撕拼、折叠等方法,探究出三角形内角和的结论。
方法不是唯一的,对于学生通过独立思考出来的解决问题的多种策略,教师适时给予鼓励表扬,特别是对学生解决问题的思维方法给予充分的肯定。
在这一过程中,学生又出现不同的理解和观点,产生真实的辩论,从而更深刻地理解了“三角形内角和是180度的结论。
如此学生收获的不仅仅是数学知识,更多的是对学习数学的兴趣和信心,获得的是解决问题的策略和方法。
而后,通过拓展应用环节,再让学生通过应用练习和发展性练习,既巩固了本节课的知识,又培养了学生思维的灵活性和深刻性,使学生进一步深入理解了“任何三角形内角和都是180度。
”这一结论,并大胆猜测推算出长方形和正方形的内角和。
《三角形的内角和》教学反思篇二“合作探究,实验论证”生动地诠释了新教育的基本理念,本课新知识传授很好的把握三个环节。
一是学生独立思考,教师引导学生讨论验证方法,掌握要领。
上课开始,我通过提问三角板中每个角的度数以及每块三角板的内角的和是多少?初步让学生感知直角三角形的内角和是180,然后质疑:,这仅仅是一副三角板的内角和,而且也是直角三角形,那是不是所有的三角形中的三个内角的都是180°呢?这个问题一提出去就激发学生的探究学习的热情。
小学数学《三角形内角和》教学设计(6篇)

小学数学《三角形内角和》教学设计(6篇)《三角形的内角和》教学反思篇一新课程将探究式学习作为学生学习的主要方式之一,着重点放在让学生在主动参与的过程进行学习,在探究问题的活动中获取知识并主动建构新的认知结构,了解获取知识的途径和技巧。
这节课我设计了以“观察—猜想—验证—应用”为主线,让学生在自主学习中“不知不觉”学习到新的知识。
在学生猜测三角形内角和是多少度的基础上,引导学生通过探究活动来验证自己的观点是否正确,激发求知的渴望和学习的热情,最后达成共识。
这节课我创设了学生喜欢的情境:“三个三角形的争吵”入手,让学生自己动手探索三角形的内角和。
让学生“量一量”“剪—拼”贴近了学生的生活,降低了学习难度,注重学生们的动手实践,亲生去体验去感悟。
在操作反馈的过程中我提出了两个问题:第一,你选用什么三角形,采用什么方法来验证;第二,经过操作得到什么结论。
学生分小组对大小不一的三角形进行验证,经历量、剪、拼一系列操作活动,从而得出“三角形内角和是180°”这一结论。
本节课不足之处:1学生在还没学习三角形的特性和三角形三边的关系及三角形的内角和的基础上进行学习三角形内角和。
就无法复习三角形的有关知识。
2、在解决三角形内角和是什么这个问题,说的不够透彻,课后我改成这样,先让两个学生说,说完让一个学生指出来,指完并让他用黑色水笔画出来。
为验证三角形内是180度做铺垫。
3、学生在介绍剪拼的方法时,可以让介绍的学生先上台演示是如何把内角拼在一起,这样学生在动手操作的时候就可以节省时间。
而且由于内角和这个概念没有讲清楚,学生在这一环节花了一定的时间。
4、在学生汇报方法时,还应该用尺子比一下拼后的三个角是在一条直线上,更直观的说明三个角形成一个平角,三角形的内角和是180°。
5、练习设计是有分层次,但是学生说的较少,我比较急地去分析,留给学生的时间不足这是我今后要特别注意的一个方面。
本节课我引导学生用测量或剪拼的方法探究三角形的内角和。
《三角形内角和》数学教案【优秀6篇】

《三角形内角和》数学教案【优秀6篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!《三角形内角和》数学教案【优秀6篇】作为一位不辞辛劳的人·民教师,常常要根据教学需要编写教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。
《三角形的内角和》教学反思15篇

《三角形的内角和》教学反思15篇身为一名刚到岗的老师,我们的工作之一就是教学,借助教学反思我们可以学习到许多讲课技巧,那么你有了解过教学反思吗?以下是我整理的《三角形的内角和》教学反思,仅供参考,欢迎大家阅读。
《三角形的内角和》教学反思1新课标把三角形的内角和作为四班级下册中三角形的一个紧要构成部分,它是同学学习三角形内角关系和其它多边形内角和的基础。
即使在以前没有这部分内容,大部分老师在课后也会告知同学三角形的内角和是180度,同学简单记住。
因此让同学经过讨论的过程成了本节课的重点。
既让同学经过“再制造”本身去发觉、讨论并制造出来。
老师的任务不是把现成的东西灌输给同学,而是引导和帮忙同学去进行这种“再制造”的工作,最大限度调动其积极性并发挥同学能动作用,从而完成对新学问的构建和制造。
本节课我基本达到了要求,实在表现在以下2个方面。
1、为同学营造了探究的情境。
学习学问的最佳途径是由同学本身去发觉,由于通过同学本身发觉的学问,同学理解的最深刻,最简单把握。
因此,在数学教学中,老师应供给给同学一种自我探究、自我思索、自我制造、自我表现和自我实现的实践机会,使同学最大限度的投入到察看、思索、操作、探究的活动中。
上述教学中,我在引出课题后,引导同学本身提出问题并理解内角与内角和的概念。
在同学猜想的基础上,再引导同学通过探究活动来验证本身的观点是否正确。
当同学有困难时,老师也参加同学的讨论,适当进行点拨。
并充分进行交流反馈。
给同学制造了一个宽松和谐的探究氛围。
2、充分调动各种感官动手操作,享受数学学习的欢乐。
在验证三角形的内角和是180度的过程当中,大部份同学都是用度量的方法,此时,我引导同学:180度是什么角?我们能否把三个内角转化一下呢?经过这么一提示,显现了许多种方法,有的是把三个角剪下来拼成一个平角。
有的用两个大小相等的直角三角形拼成一个正方形,还有的是用折纸的方法,极大地调动了大脑,就连平常对数学不感爱好的同学也置身其中。
三角形内角和教学反思 《三角形的内角和》的教学反思(优秀10篇)

三角形内角和教学反思《三角形的内角和》的教学反思(优秀10篇)《三角形的内角和》教学反思篇一《三角形的内角和》教材是先让学生通过计算三角尺得个内角的度数和,激发学生好奇心,进而引发学生猜想:其他三角形的内角和也是180度吗?再通过组织操作活动验证猜想,得出结论。
根据这样的教材安排,本课的重点也就应放在“三角形内角和是180度”的探索上,让学生在探索中深入理解得出过程。
针对教材的如此安排,我也设计了如下的开放的课堂预设:验证过程1、要知道我们猜测的是否正确,你有什么办法验证呢?先独立思考,有想法了在小组里交流。
学生交流想法:生一:我们组根据刚才三角板的内角和是三个角的度数加起来得出的,所以,我们就用量角器量出了三个角的度数,再加起来。
学生说出了测量的度数相加,虽然不是很精确180度,量的过程中有点误差,得到了在180度左右。
生二:我们组是把锐角三角形的三个角跟书上一样去折,折在一起发现正好是个平角,所以我们发现锐角三角形内角和也是180度。
(及时表扬了能主动预习的好习惯。
)生三:我们组把钝角三角形跟刚才一组一样,折在一起,发现也能拼成一个平角,所以钝角三角形的内角和也是180度。
生四:我们组研究的是直角三角形,跟上面两组的同学一样折在一起,三个角拼起来也是一个平角,所以直角三角形的内角和也是180度。
生五:我们也是折的,但我们没有把三个角折在一起,而是把两个小的角折到直角那里发现两个锐角合起来正好与直角三角形的直角重合,图形也就成了一个长方形,两个锐角的和是90度再加个直角也就是180度。
也有同学提出了采用了减下角再拼的方法。
以上这个小片段,虽然在孩子们表述中没这么流利,完整,但却是他们最真实的发现,这堂课上下来,感觉收获很大。
自己感觉这节课的设计上把握了学生学习起点与心理,遵循了教材让学生先猜想再验证的思路,从学生已有的知识背景出发,为他们提供了重复粉从事数学活动的时间和交流机会。
学生思考着,讨论着,交流着,感悟着,在这一过程中,学生不仅掌握了知识,寻求到了解决问题的方法,更重要的是在交流中,学生的语言表达能力也得到了很大的增强。
《三角形内角和》数学教案(优秀6篇)

《三角形内角和》数学教案(优秀6篇)4、演示任意一个三角形的内角和都是180度。
出示一些三角形,让学生指出内角和。
师:你有什么发现?(无论是什么样的三角形他的内角和都是180度,与三角形的形状大小没有关系。
)(板书三角形的内角和是180度。
)师:那我们再看看刚刚汇报的结果。
为什么之前测量的时候并没有得到这样得到结果呢?(测量的不够精确,存在误差)师:如果测量仪器再精密一些,测量的更准确一些都可以得到三角形内角和是180度。
现在确定这个结论了吗?(25分钟)师:除了这节课大家想到的方法,还有很多方法也能证明三角形的内角和是180°到初中我们还有更严密的方法证明三角形的内角和是180°。
早在300多年前就有一位法国有名的科学家帕斯卡,他在12岁时就验证了任何三角形的内角和都是180°师:你们能用今天的发现做一些练习吗?五、测评反馈1、判断。
(1)直角三角形的两个锐角的和是90°。
(2)一个等腰三角形的底角可能是钝角。
(3)三角形的内角和都是180°,与三角形的大小无关。
4、剪一剪。
把一个三角形纸板沿直线剪一刀,剩下的纸板的内角和是多少度?六、课后作业69页第1题、第3题。
七、板书设计《三角形内角和》教学设计篇四【教材分析】《三角形内角和》是北师大版《数学》四年级下册的内容。
是在学生学习了三角形的概念及特征之后进行的,它是掌握多边形内角和及其他实际问题的基础,因此,掌握“三角形的内角和是180度”这一规律具有重要意义。
教材首先出示了两个三角形比内角和这一情境,让学生通过测量、折叠、拼凑等方法,发现三角形的内角和是180度。
教材还安排了“试一试”,“练一练”的内容。
已知三角形两个内角的度数,求出第三个角的度数。
【学生分析】经过近四年的课改实验,孩子们已经有了一定的自主探究,合作交流的能力。
他们喜欢在实践中感悟,在实践中发表自己的见解,对数学产生了浓厚的兴趣。
四年级数学教案《三角形的内角和》(精选10篇)

四年级数学教案《三角形的内角和》〔精选10篇〕四年级数学教案《三角形的内角和》〔精选10篇〕四年级数学教案《三角形的内角和》篇1教学目的⑴探究并发现三角形的内角和是180°,能利用这个知识解决实际问题。
⑵学生在经历观察、猜测、验证的过程中,提升自身动手动脑及推理、归纳总结的才能。
⑶在参与学习的过程中,感受数学独特的魅力,获得成功体验,并产生学习数学的积极情感。
教学重点:检验三角形的内角和是180°。
教学难点:引导学生通过实验探究得出三角形的内角和是180度。
教学环节:问题情境与老师活动:学生活动媒体应用设计意图目的达成导入新课一、复习旧知,导入新课。
1、复习三角形分类的知识。
师出示三角形,生快速说出它的名称。
2、什么是三角形的内角?我们通常所说的角就是三角形的内角。
为了便于称呼,我们习惯用∠A、∠B、∠c来表示。
什么是三角形的内角和?三角形“三个内角的度数之和”就是三角形的内角和。
用一个含有∠A、∠B、∠c的式子来表示应该如何写?∠A+∠B+∠c。
3、今天这节课啊我们就一起来研究三角形的内角和。
〔揭题:三角形的内角和〕由三角形的内角引出三角形的内角和,“∠A+∠B+∠c”的表示形式形象的表达出三内角求和的关系二、动手操作,探究新知1、出示三角板,猜一猜。
师:这个三角形的内角和是多少度?熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数把三角形三个内角的度数合起来就叫三角形的内角和。
是不是所有的三角形的内角和都是180°呢?你能肯定吗?我们得想个方法验证三角形的内角和是多少?可以用什么方法验证呢?3.学生测量4.汇报的测量结果除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°5、稳固知识。
一个三角形中能不能有两个直角?能不能有2个钝角?三、应用所学,解决问题。
三角形内角和教案(优秀6篇)

三角形内角和教案(优秀6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、应急预案、演讲致辞、合同协议、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, emergency plans, speeches, contract agreements, rules and regulations, documents, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!三角形内角和教案(优秀6篇)教学设计的目的是为了提高教学效率和教学质量,使学生在单位时间内能够学到更多的知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《三角形的内角和》教学案例及反思
◆您现在正在阅读的《三角形的内角和》教学案例及反思文章内容由收集!本站将为您提供更多的精品教学资源!《三角形的内角和》教学案例及反思荷兰数学教育家弗赖登塔尔曾反复强调:学习数学的唯一方法就是实行再创造,也就是由学生本人把要学习的东西自己去发现或创造出来,教师的任务是引导和帮助学生进行这种再创造工作,而不是把现成的知识灌输给学生。
【问题的提出】
对三角形的内角和传统的教法是:在理解什么是三角形的内角后,教师提出课题:三角形的内角和是多少?同学们想不想知道?之后,教师让学生拿出印有虚线折横的三角形,按课本上的折法开始操作,并组织学生交流,讨论。
再在教师的一步步启发下,得出三角形的三个内角正好可组成一个平角,从而得出三角形的内角和是180度。
上述教学中,学生既有操作,又有交流,应该说较好地学习了新知识,但细想每一步活动都是在教师的指挥下按部就班进行的,这样的教学形式上是热闹的,但学生的思维却是被动的。
究其原因在与教师还是着眼于知识本身,急于让学生去操作,去发现三角形的内角和定理,而忽视了比获取这一知识更重要的东西对学生主动探究新知的动机的激发与能力的培养。
如何让学生主动地探究并发现新知呢?针对这一
问题,我做了如下教学尝试。
【教学尝试】
投影出示,已知1=80、2=70、3=( )初步让学生建立1、2、3正好组成一个平角的印象。
在转入新课。
(一)激发欲望
教师让学生每人画一个三角形,量出其中两个角的度数报给老师,老师不用量角器说出第三个角的度数。
(学生开始还不信,后来用量角器一量,确实如此。
)老师到底是如何知道的呢每个学生心中都产生了疑惑。
这时老师指出并不是老师有什么特殊本领,而是掌握了三角形的三个内角之间的某种规律。
学生为了了解这种规律,产生了探究新知的欲望。
(二)探究新知
老师让学生交流讨论:三角形的三个内角之间到底有什么规律呢?同学们有的深思,有的在本子画着,量着,算着之后,纷纷发表意见:
生1:我算了一下,老师得出的第三个内角的度数同我们报出的两个角的度数相加起来正好都是180度
生2:我又画了一个三角形,用量角器量了一遍,它的三个角的度数和也非常接近180度。
生3:老师,我认为每个三角形的三个内角和都是180度。
◆您现在正在阅读的《三角形的内角和》教学案例及反思文章内容由收集!本站将为您提供更多的精品教学资源!《三角
形的内角和》教学案例及反思
学生纷纷发表自己的见解,为自己找到了老师的秘密而激动不已。
教师及时鼓励学生,并指出:确实,三角形的内角和可能就是180度,你能不用量角器,再验证一下你的发现吗?学生拿出课前准备好的三角形纸片,又开始了冥思苦想
师:谁能说说你的想法?
生1:既然三角形的内角和是180度,那么着三个三角形能拼成一个平角
生2:我刚才把三角形撕下来,拼在一起,正好是一个平角教师让学生到投影机上展示自己的想法,顺势引导学生总结出:任意三角形的内角和都是180度
【反思】
上述教学片段中,学生学习兴趣浓厚,学得积极主动。
反思整个教学过程,我认为教学成功的关键在于学生的探究活动始终是在一种强烈的求知欲的支配下,有目地的进行。
主要体现在:
一、注重布疑设障,创设学习情景
良好的情景设置可以使学生产生一种心理上的积极情感,形成对问题探究的强烈愿望。
本课中,教师和学生进行猜角游戏,引导了学生兴趣,教师是怎样知道我的三角形角的度数的呢?奥妙何在?疑是学习的动力,思维的源泉。
心理学家
告诉我们:人们的思维在解决具体问题时才会积极起来。
教学中教师要是善于为学生设置疑问,创造悬念,以唤醒他们对问题的浓厚兴趣,产生自主探究的动力。
二、相信学生,让学生充分表现自我
三角形的内角和定理本十分简单易懂,如果将其内容直接告诉学生,再让学生折纸验证,他们也完全能掌握这一知识,但这样的教学无疑是一种本末倒置的教学,心理学家布鲁纳认为:知识的获得是一个主动的过程,学习者不应是信息的被动接受者,而应是知识获得过程的主动参与者。
在教学中,我们应充分相信学生的潜能,放手让学生去自己去探究新知,苏霍姆林斯基说过:在人的内心深处都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者、探究者。
而在儿童的精神世界中,这种需要特别强烈。
实际教学过程显示,学生完全有能力自己通过测量、计算、猜想、验证,最终探究出三角形的内角和定理。
【小结】
课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。
为什么?还是没有彻底“记死”的缘故。
要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。
可以写在后黑板的“积累专栏”上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学生个人搜集,
每天往笔记本上抄写,教师定期检查等等。
这样,一年就可记300多条成语、300多则名言警句,日积月累,终究会成为一笔不小的财富。
这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会随心所欲地“提取”出来,使文章增色添辉。
所有知识的产生在历史上都经历过曲折艰苦的探究过程,而课本上不可能一一都反映出来,这就需要教师在教学设计时,必须创造性的将教材中的知识结论变成探究的问题,尽量还知识发展过程的本来面目,让学生置身于问题情景之中,积极主动地参与于探究发现活动。
其实,任何一门学科都离不开死记硬背,关键是记忆有技巧,“死记”之后会“活用”。
不记住那些基础知识,怎么会向高层次进军?尤其是语文学科涉猎的范围很广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时间让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。
这样,就会在有限的时间、空间里给学生的脑海里注入无限的内容。
日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。