国外页岩气藏数值模拟技术调研
国外页岩气研究热点——基于可视化文献分析软件RefViz的研究

a y Mar ) 主 题/ 索 窗 口 ( o iss ac ) 参 x / ti 、 x 检 T pc/ erh 、 考 文 献 浏 览 窗 口 ( eee c e e ) 顾 问 窗 口 R frn e Viw r 和 ( vs r 。它 根据统 计模 型 , 标 准 的数学 聚类 算 Ad i ) o 用 法 对 文献进 行分析 , 以可视化 的形 式显 现 出来 , 并 供
在 主题 / 检索 窗 口可 以 看 到 , 同义 词 未 加 区分 , 主要主 题词过 多 , 并包 含 无 实 质 意 义 的 词 或 范 围过 宽 的词 , 因此需 要重 新设 置主题 词 进行 分析 图 1 。
一
的热 点 比较多 , 主要 热点有 页岩气 成藏 、 其 页岩气 资
源量 评价 和页 岩 的沉积 研究 等方 面。
出页 岩气总 含油气 系统 观 点 , 对 巴尼 特 页 岩气 资 并
源量 进行 了评 价 。本文 根据 检索 到的地 球科 库近 8 O篇 与页 岩气 最 相关 的 文献 , 基于可 视化 文献 分析 软件 R f i 分 析及 文献 ev z 阅读 , 分析 了页岩 气研 究 的热点及 研究趋 势 , 对热 并
ME L NE格 式保存 文 件 为 “ h l g s , D I s ae a ” 并将 其 导
入 Rf z eVi 进行 分析 。
12对 分析 结果进 行干预 .
组文 献有 比较 高 的相 似 性 , 1组 ( 第 1篇 ) 献 与 其 文
它文 献与 其他 文献 相似 性最差 ( 3 表 1 。根据 以 图 , ) 上结 果 , 合 相 关 文 献 阅读 [ 。, 为 页岩 气 研 究 结 1 。认
3 0
页岩气储层压裂数值模拟技术研究进展

页岩气储层压裂数值模拟技术研究进展金衍;程万;陈勉【摘要】页岩气储层水力压裂数值模拟既要考虑页岩储层岩石的特性,又要兼顾水平井分段压裂施工工艺,是一个非常棘手的力学难题.本文简述了页岩气储层岩石具有的地质力学特征和页岩气储层开发常用的水平井分段压裂技术;详述了扩展有限元、边界元、离散元在水力压裂裂缝模拟上的应用现状,指出了它们在处理裂缝问题的局限性和优越性,总结出边界元三维位移不连续法是模拟多裂缝扩展的有效方法.【期刊名称】《力学与实践》【年(卷),期】2016(038)001【总页数】9页(P1-9)【关键词】水力压裂;数值模拟;页岩气;分段压裂【作者】金衍;程万;陈勉【作者单位】中国石油大学(北京),北京102249;中国石油大学(北京),北京102249;中国石油大学(北京),北京102249【正文语种】中文【中图分类】TE371页岩气是一种产自极低孔渗、富含有机质页岩储集系统中的非常规天然气[1].开发此类非常规油气资源需要大规模的储层改造.以滑溜水压裂液为主的水平井分段压裂技术已在国内外页岩气藏开发中得到广泛应用,并取得了较为乐观的经济效益.区别于相对较为均质的砂岩地层,页岩地层的岩石力学特征的复杂性使得水力裂缝扩展路径变得更为复杂.水平井多级水力裂缝间的应力干扰又使得传统的水力裂缝数学模型无法准确地模拟出水力裂缝的几何形态.鉴于此,本文综述了近几年来页岩气藏水力压裂裂缝扩展数值模拟技术的研究进展.微地震技术及井下成像技术和井下页岩岩芯已经证实页岩气地层中常发育复杂的裂缝[25].层理发育是页岩气储层的一个明显的特征,其胶结强度往往低于层内岩石的胶结强度,它与天然裂缝面一起构成了岩石中的弱胶结面[67](“弱面”).大量的室内水力压裂实验已经证明,弱面是影响水力裂缝扩展路径的关键因素[45,7].页岩弹性各向异性特征[810],使得页岩水力裂缝宽度也因此而变得比各向同性条件下复杂.受沉积方向和压实作用的影响,页岩被认为是横观各向同性的.不同岩层的岩性往往是不同的,其弹性力学参数因此迥异,多套地层在整体上常表现出弹性非均质性.地层间弹性参数的差异性通常会影响到水力裂缝宽度,断裂韧性的差异性则会出现限制缝高[11]、遮挡裂缝的可能性.页岩气储层改造是以提高改造的储层体积为主要目的的改造方式,旨在页岩气储集层中产生人工裂缝网络.为了增加水力裂缝在页岩气储层中的有效接触面积,在水平井中常需采用多级压裂技术,也称为分段压裂,如图1所示.每一个压裂段又含有多个射孔簇,在理想条件下,每个射孔簇能形成一条裂缝[1215].多级压裂[16]主要应用在具有长水平段的水平井中,按压裂的先后顺序分为次序压裂(图1)、交错压裂(图2)和同步压裂(图3).水平井次序压裂是指从水平井的趾端到跟段依次进行分段分簇压裂,如图 1所示.水平井交错分段压裂是指压裂顺序不严格按照从井底到井口的顺序进行压裂.这种压裂方式有增加储层沟通体积的可能性,但由于当前的井下工具不能够实施交错压裂,使得这种压裂方式尚未有现场应用.同步压裂是指对相邻两口及两口以上的水平井采用2套甚至多套车组同时压裂施工,以期利用压裂影响地应力场,形成更为复杂的裂缝网络.当页岩气井井筒密集时,通过对多口井进行同步压裂,能够获得比次序压裂更好的效果. 目前,以最大化采收率或者最快的采油速度为目的的页岩气井完井设计常需考虑以下几个因素:水力裂缝的优势扩展方向和井筒方位[17];每个射孔簇的破裂压力,力争每簇能产出一个主裂缝,从而最大化裂缝复杂程度;同井或邻井裂缝间的应力干扰强度[1819];同步压裂技术能否适合该地层,能否增加产气量[2021].页岩气储层水力压裂数值模拟是围绕图1~图3所示的工艺技术开展的数值研究,目的是为了在储层压裂施工前能够设计和优化裂缝网络,从而为高效开发提供理论依据.水力压裂力学本质上可以概括为4个基本力学过程的耦合:储层岩石在流体压力的作用下发生断裂,形成裂缝通道;压裂液在裂缝通道中流动,并传递流体压力到地层深处;流体垂直于壁面的渗流;支撑剂在裂缝内部的运移.针对这4个力学过程,下文将着重论述模拟水力裂缝常用的3类数值方法:扩展有限元、离散元、边界元.3.1 扩展有限元(extended finite element method,XFEM)扩展有限元是以传统有限元的理论为框架,其核心思想是用扩充带有不连续性质的形函数来代表计算区域内的间断,不连续场的描述完全独立于网格边界,处理断裂问题有较好的优越性.利用扩展有限元,可以方便地模拟裂纹的任意路径[2223],可以克服边界元模拟裂缝增长之后重新划分网格的局限性[2428].盛茂等[29]基于扩展有限元模拟水力压裂,采用最大能量释放率准则确定裂缝是否继续扩展以及扩展方向.曾青冬等[30]考虑裂缝内流体流动和周围岩石应力变形,建立了页岩水力裂缝扩展的数学模型,分别采用有限元和扩展有限元求解裂缝流场和岩石应力场,并通过Picard迭代方法耦合求解.Mohammadnejad等[31]将扩展有限元应用于多孔介质中的水力压裂模拟.Arash[3234]采用扩展有限元方法模拟了水力裂缝在裂缝性油藏中的扩展行为,如图4所示.他忽略了压裂液沿着裂缝壁面的滤失,着重考虑了闭合天然裂缝的内聚力、岩石基质的断裂韧性、天然裂缝的几何形状对水力裂缝扩展路径的影响.系统地研究了水力裂缝与天然裂缝交叉前、交叉中、交叉后的天然裂缝的变形规律,以及裂缝形态与缝内压力的关系曲线,并将其与经典的KGD模型[35]进行对比.他指出,在某些条件下,闭合的天然裂缝在水力裂缝到达之前可能张开或滑移;某些条件下,闭合的天然裂缝不受水力裂缝的影响.Keshavarzi等[36]也采用扩展有限元方法模拟了水力裂缝在非常规油气藏中的扩展,得出了与 Arash[3234]相似的结果.他指出:水力裂缝沟通天然裂缝之前和之后都会发生偏移;原地应力场和天然裂缝的方向是影响交叉行为的主控因素.水力裂缝净液压力增加,可以减小水力裂缝的偏转.原水平应力差越小,水力裂缝越容易在沟通天然裂缝之前就发生偏转.在高逼近角时,水力裂缝可能同时张开天然裂缝和穿透天然裂缝,这主要依赖于水平应力差的大小.Fu等[37]在Arash[3234]和 Keshavarzi等[36]的研究基础上,将单条水力裂缝与单条天然裂缝的干扰行为扩展到单条水力裂缝与离散的天然裂缝网络的干扰行为.Fu等[37]考虑了天然裂缝与水力裂缝的应力干扰和离散裂缝网络中的流体动力学,在天然裂缝网络地层中模拟水力裂缝的扩展. 3.2 离散元(discrete element method,DEM)有关水力压裂模拟的研究可以大体分两大类:宏观和细观.宏观类的裂缝模型已经广泛地应用于石油工程水力压裂,裂缝因为缝内流体压力的驱动而发生增长,其相应的数学模型虽然复杂但计算速度快.与之相反,细观类的裂缝模型则是依据描述岩体颗粒与流体的相互作用,以数目巨大的离散单元来描述整个岩体,流体在颗粒或岩块间的流动来表达水力压裂的过程.基于离散元的水力压裂模拟可以在一定程度上反映出岩石在被压裂的过程中发生的情况:是剪切断裂还是张性断裂,适用于细观尺度上的机理研究.但是,对于油田尺度的水力压裂设计,基于离散元的水力压裂模型需要大量的单元,对计算机要求高,耗时很长,所得结果也并非直观上的水力裂缝.3.2.1 颗粒流程序(particle flow code,PFC)PFC[38]以点接触胶结的颗粒(二维为圆盘,三维为球)为基本单元,能模拟岩石中非连续面的一种数值模拟方法.PFC模拟水力压裂是在其颗粒间考虑流体压力而产生的键断裂,从而形成微裂缝,进而形成宏观尺度的水力裂缝[39].PFC建模时可以先建立离散裂缝网络,再设置流体注入点,这使得水力裂缝不仅包括岩石颗粒间新生的裂缝,也包括了已存裂缝的剪切滑动扩展[40].然而,PFC的基本假设就存在 3大缺陷:(1)颗粒间的力学参数如何与岩石的宏观参数对应;(2)PFC数值岩心代表了多大尺寸的实际岩石;(3)球形和圆盘形颗粒难以真实反映具有棱角的岩石矿物颗粒.因此,PFC模拟油田尺度的水力裂缝前景渺茫.3.2.2 晶格法为了解决PFC3D速度慢的问题,3D LATTICE软件提供了流--固--热耦合的模块.Cundall[41]用LATTICE模拟了水力裂缝与预置裂缝的干扰行为,预置裂缝捕获水力裂缝的原因是,水力裂缝遇到预置裂缝后,一侧受到拉伸应力,另外一侧受到挤压应力,而流体则始终是沿着阻力最小的方向流动,这与水力压裂室内试验[45,7]吻合良好.Pettitt等[42]用LATTICE软件模拟水平井多级压裂,并在最大水平应力60°角的方向上设置了一簇离散裂缝网络.水力裂缝起始扩展方向依然是垂直于最小主地应力,遇到节理网络后发生偏转.受到水力裂缝应力的影响,有些水力裂缝是双翼缝,有些则是单翼裂缝.3.2.3 非连续变形分析(discontinuous deformation analysis,DDA)非连续变形分析是离散元方法的隐式表达,与有限元处理应力位移问题较为相似.Ben等[4346]将裂缝性岩体简化为管网模型,采用DDA研究岩体的变形,并与裂缝中的流体流动相耦合,从而实现了裂缝性的岩体中的流体流动模拟.Ben为了模拟裂缝性地层中的水力压裂,他以DDA建立水力压裂模型时做了三点假设:(1)裂缝性或节理性岩体中的每个岩块是连续不可渗透的线弹性体,新生裂缝不能穿透这些连续的块体.(2)块体之间的初始状态是弹簧胶结的,可以发生张性和剪性破坏.(3)岩块的边界中的初始间隙为流体的流动路径,流态为单向不可压缩的拉梅流动.Morgan等[47]在Ben模型的基础上考虑了流体的可压缩性,也实现了水力压裂的模拟,并得到了实验验证.岩石的断裂有穿晶断裂和沿晶断裂[48]两种情况.DDA模拟裂缝性地层虽具有优越性,但其假设水力裂缝为不可穿越的块体,使得DDA模拟水力裂缝与实际的岩石裂缝有一定的差距.3.3 边界元(boundary element method,BEM)边界元法是在定义域的边界上划分单元,用满足控制方程的函数去逼近边界条件.其中,位移不连续法[4950]是边界元体系中的一种高效处理裂缝问题的数值方法,其原理是将裂缝划分成若干个位移不连续的单元,建立一个能够满足边界应力或位移的代数方程组,该方程组的解为单元的切向和法向位移,法向位移的物理意义即为裂缝宽度.早期的多裂缝的模拟是在经典的 KGD[35]、PKN[51]、拟三维裂缝模型[5254]基础上,考虑了流体在多裂缝以及井筒中的流动,但是没有考虑多裂缝间的应力干扰和裂缝内的压力耗散.Olson[55]基于二维位移不连续解,模拟多裂缝同时扩展,如图5所示.他假定裂缝扩展速度与裂尖应力强度因子成比例增长,裂缝内部液压为常压,考虑了等长天然裂缝的随机分布.但忽略了压裂液在裂缝内部的流动,使得这一模型不适合真实情况下的水力压裂.Olson等[56]指出:相对静液压力系数Rn和逼近角是影响裂缝形态的主要因素.与直井相比水平井中更倾向于形成网状裂缝,水平井中水力裂缝与天然裂缝之间的夹角越大,越易于形成网状裂缝形态.水力裂缝诱导应力可能使得闭合的天然裂缝在水力裂缝到达之前可能张开或滑移.张保卫[57]也采用边界元位移不连续法,模拟水力裂缝在页岩地层中扩展,得到了与Olson等[5556]相似的模拟结果.他指出,水力裂缝诱导应力场在裂缝尖端附近可以改变主应力的方向,使得水力裂缝并不总是沿着垂直于远场最小水平主应力的方向扩展,而当裂缝沿着天然裂缝扩展一段距离之后,天然裂缝的干扰应力场减小,水力裂缝又逐渐受到远场水平主应力的约束,沿着垂直于最小水平主应力方向扩展.在此基础上,Sesetty等[58]也采用边界元位移不连续法,但他假定压裂液为牛顿流体,研究了水力裂缝路径、裂缝开度、缝内压力随压裂液注入时间的变化关系.Wu等[5960]将拟三维裂缝宽度方程和二维位移不连续法相结合,建立了一个能够在天然裂缝性地层中模拟多裂缝的拟三维多裂缝力学模型.Wu等[5960]假定压裂液为幂律流体,采用有限差分法求解压裂液的流动,与拟三维多裂缝力学模型相结合,采用 Newton迭代法和Picard迭代法,实现了流体流动和裂缝变形的耦合,以及多裂缝间的应力干扰,采用最大拉应力准则判别裂缝扩展的方向,实现了拟三维多裂缝同步扩展的数值模拟.实际上,自然界任何裂缝都可以认为是三维的,二维裂缝也只是三维裂缝的特例.近年来,三维断裂力学[6162]和边界元三维位移不连续法[6365]的发展才使得真三维水力裂缝的模拟得以快速实现.Yamamoto等[6667]采用有限元研究裂缝内部流体的流动,三维位移不连续法研究岩体的变形,经过耦合求解之后,模拟了全三维水力裂缝扩展.但其局限性在于不能考虑地层之间水平应力的差异. Rungamornrat等[68]在研究三维水力裂缝非平面扩展时,实现了三维裂缝在空间的扭曲,如图6所示. Adachi等[69]采用三维位移不连续法与幂律流体流动耦合,在含有多层岩石介质中实现了全三维水力裂缝扩展模拟.与Yamamoto等[6667]相比,Adachi等[69]建立的模型可以考虑不同地层间的应力差异性,但是他们所建立的模型的共同特点是只有一个主裂缝,并且忽略了水力裂缝被地层界面所遮挡的可能性.单条三维水力裂缝的非平面扩展的成功模拟促进了学者对多条三维水力裂缝扩展的数值模拟,目的是为了更加接近水平井分段压裂的实际裂缝情况. Xu[70]将三维位移不连续法用于模拟水平井多裂缝的扩展[7072],如图7所示.同一压裂段中不同射孔簇压裂液流量的分配实际上是多裂缝应力干扰的结果,但是压裂液在井筒内的压力可近似认为是相等的,并且各个射孔处流量的总和等于泵入到地层中的总流量,这2个条件使得流量分配是一个既复杂而又可以求解的力学问题.3.4 边界元的优势(1)边界元与扩展有限元的简要比较边界元和扩展有限元均是从弹性力学出发,假定岩石的断裂属于弹脆性断裂,裂尖在断裂判别准则下自由扩展,适合于模拟宏观类水力裂缝的扩展.扩展有限元需对定义域(与水力裂缝相关的地层)的整体进行划分网格,网格数目巨大,计算耗时长;边界元是只需对定义域的边界(裂缝、层理等)进行划分网格,网格数目少,计算快,并且精度高.在模拟水平井多裂缝同步或者相继扩展时,边界元只需在裂缝扩展的每一个时间步,将新生的裂缝单元加入到原有的单元中并参与计算,即可实现多裂缝间的应力干扰.在采用边界元法模拟天然裂缝网络时,只需将天然裂缝面划分为单元,天然裂缝的力学属性由法向刚度、剪切刚度、摩擦系数等表征[50].(2)边界元与离散元的简要比较众所周知,以PFC3D为代表的离散元软件需要众多的颗粒才能模拟岩土的断裂行为,在研究小尺寸试样的细观力学行为上具有一定的优势.由于计算机速度的限制,PFC3D当前并不能模拟油田尺度的水力裂缝扩展.PFC3D中颗粒的细观参数与岩石的宏观参数的标定依然是一个未解之谜.边界元则只需对介质的边界进行划分单元,单元数目少,也可以直接将常规岩样测试获得的弹性参数纳入到计算之中,适用性高.(1)弹性各向异性对水力裂缝宽度和扩展方向的影响.不论是横观各向同性,还是正交各向异性,其弹性本构方程较均质各向同性更为复杂.目前,边界元三维位移不连续法已经可以解决各向异性介质中三维裂缝弹性变形问题[7375],但应用于解决水力压裂力学问题尚需时日.(2)非均质体界面对水力裂缝的影响.层理是不同岩性地层的界面,页岩层理尤为发育.不同地层的弹性参数的差异导致裂缝问题更为复杂[7677],例如层理面在水力裂缝逼近时容易产生小范围滑移或者张开;软地层(弹性模量低的地层)变形容易,水力裂缝宽度大;硬地层(弹性模量大的地层)变形小,断裂韧性通常比较大,水力裂缝难以穿越,起到了遮挡作用.无论是二维边界元还是三维边界元,非均质介质的界面上的连续性条件是解决非均质弹性力学问题[50,7881]的关键条件.水力裂缝与层理的干扰行为与边界元三维位移不连续法的结合还有待进一步研究,主要难点体现在层理面的张开或滑移破坏了连续性条件[50].(3)在天然裂缝网络中模拟分段水力压裂裂缝的扩展.边界元三维位移不连续法虽然在模拟分段压裂裂缝扩展方面优势明显[7072],离散的天然裂缝网络与单条水力裂缝的干扰也已不再是难点,但多裂缝中的流体动力学与边界元三维位移不连续法的耦合依然是一个尚待解决的科学难题.页岩气储层中岩石力学特性,对水力压裂多裂缝数值模拟提出了更高的要求,页岩在水压作用下的断裂特征是改进水力裂缝模拟的标杆.与扩展有限元、离散元相比,边界元在解决页岩气储层水力裂缝问题上已经表现出更大的优越性和可行性.在模拟页岩气储层单条裂缝在裂缝性储层中扩展时,扩展有限元、边界元、离散元均可较好地解决流固耦合问题.在模拟页岩气储层多级压裂裂缝扩展时,必须考虑裂缝间的应力干扰问题.边界元三维位移不连续法则表现出更大的优越性,是一个行之有效的数值方法.另外,在页岩气储层水力压裂多裂缝数值模型中,页岩各向异性、非均质性以及离散裂缝网络是值得探索的研究方向.【相关文献】1王永辉,卢拥军,李永平.非常规储层压裂改造技术进展及应用.石油学报,2012,33(S1):149-1582 Fisher MK,Wright CA,Davidson BM,et al.Integrating fracture mapping technologiesto optimize stimulations in Barnett shale.SPE Annual Technical Conference and Exhibition,San Antonio,Texas,USA,20023 Zhou J,Chen M,Jin Y,et al.Analysis of fracture propagation behavior and fracture geometry using a tri-axial fracturing system in naturally fractured reservoirs.International Journal of Rock Mechanics and Mining Sciences,2008,45(7):1143-11524 Cheng W,Jin Y,Chen M.Experimental study of stepdisplacement hydraulic fracturingon naturally fractured shale outcrops.Journal of Geophysics and Engineering,2015,12:714-7235 Cheng W,Jin Y,Chen M.Reactivation mechanism of natural fractures by hydraulic fracturing in naturally fractured shale reservoirs.Journal of Natural GasScience&Engineering,2015,23:431-4396 Jacobi DJ,Gladkikh M,LeCompte B,et al.Integrated petrophysical evaluation of shale gas reservoirs.CIPC/SPE Gas Technology Symposium 2008 Joint Conference,Calgary,Alberta,Canada,20087 Cheng W,Jin Y,Chen M,et al.A criterion for a hydraulic fracture crossing a natural fracture in a 3D space and its field application.Petroleum Exploration&Development,2014,41(3):371-3768衡帅,杨春和,张保平等.页岩各向异性特征的试验研究.岩土力学,2015,36(3):609-6169王倩,王鹏,项德贵等.页岩力学参数各向异性研究.天然气工业,2012,32(12):1-410 Waters GA,Lewis RE,Bentley D.The effect of mechanical properties anisotropy in the generation of hydraulic fractures in organic shales.SPE Annual Technical Conference and Exhibition,Denver,Colorado,USA,201111陈治喜,陈勉,黄荣樽等.层状介质中水力裂缝的垂向扩展.石油大学学报(自然科学版),1997,21(4):24-3012 Wu R,Kresse O,Weng X,et al.Modeling of interaction of hydraulic fractures in complex fracture networks.SPE Hydraulic Fracturing Technology Conference,The Woodlands,Texas,USA,201213 Nicolas PR,Mukul MS.Strategies to minimize frac spacing and stimulate natural fractures in horizontal completions. SPE Annual Technical Conference and Exhibition,Denver,Colorado,USA,201114 Bruce RM,Lucas WB.A discrete fracture network model for hydraulically induced fractures:theory,parametric and case studies.SPE Hydraulic Fracturing Technology Conference,The Woodlands,Texas,USA,201115 Nicolas PR,Mukul MS.Optimizing fracture spacing and sequencing in horizontal-well fracturing.SPE International Symposium and Exhibition on Formation Damage Control,Lafayette,Louisiana,USA,201016唐颖,唐玄,王广源等.页岩气开发水力压裂技术综述.地质通报,2011,30(23):393-39917陈勉,庞飞,金衍.大尺寸真三轴水力压裂模拟与分析.岩石力学与工程学报,2000,19(S):868-87218程万,金衍,陈勉等.页岩储层水平井分段压裂裂缝间距设计方法及影响因素分析.科学技术与工程,2014,14(15):1671-181519 Cheng Y.Boundary element analysis of the stress distribution around multiple fractures:implications for the spacing of perforation clusters of hydraulically fractured horizontal wells.SPE Eastern Regional Meeting,Charleston,West Virginia,USA,200920 Mutalik PN,Gibson B.Case history of sequential and simultaneous fracturing of the Barnett shale in Parker county.SPE Annual technical conference and exhibition,Denver,USA,200821 Waters G,Dean B,Downie R,et al.Simultaneous hydraulic fracturing of adjacent horizontal wells in the Woodford shale.SPE Hydraulic Fracturing Technology Conference,The Woodlands,Texas,USA,200922 Asferg JL,Poulsen PN,Nielsen LO.A consistent partly cracked XFEM element for cohesive crack growth.International Journal for Numerical Methods in Engineering,2007,72(4):464-48523 Dolbow J,Nicolas M,Ted B.An extended finite element method for modeling crack growth with frictional contact. Computer Methods in Applied Mechanics and Engineering,2001,190(51):6825-684624 Karihaloo BL,Xiao QZ.Modelling of stationary and growing cracks in FE framework without remeshing:a stateof-the-art puters&Structures,2003,81(3): 119-12925 Mariani S,Umberto P.Extended finite element method for quasi-brittlefracture.International Journal for Numerical Methods in Engineering,2003,58(1):103-12626 Legrain G,Moes N,Verron E.Stress analysis around crack tips in finite strain problems using the extended finite element method.International Journal for NumericalMethods in Engineering,2005,63(2):290-31427 Ren Q,Dong Y,Yu T.Numerical modeling of concrete hydraulic fracturing with extended finite element method. Science in China Series E:Technological Sciences,2009,52(3):559-56528 Lecampion B.An extended finite element method for hydraulic fracturemunications in Numerical Methods in Engineering,2009,25(2):121-13329盛茂,李根生.水力压裂过程中的扩展有限元数值模拟方法.工程力学,2014,31(10):123-12830曾青冬,姚军.基于扩展有限元的页岩水力压裂数值模拟.应用数学和力学,2014,35(11):1239-124831 Mohammadnejad T,Khoei AR.An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model.Finite Elements in Analysis and Design,2013,73:77-9532 Arash DT.Analysis of hydraulic fracture propagation in fractured reservoir:an improved model for the interaction between induced and natural fractures.[PhD Thesis].Texas:University of Texas at Austin,200933 Arash DT.Numerical modeling of multistranded-hydraulic fracturepropagation:accounting for the interaction between induced and natural fractures.SPE Journal,2011,16(3):575-58134 Arash DT.Modeling simulaneous growth of multi-branch hydraulic fractures.45th US Rock Mechanics/Geomechanics Symposium,San Francisco,California,USA,201135 Nordren RP.Propagation of a vertical hydraulic fracture. SPE Journal,1972,12(4):306-31436 Keshavarzi R,Mohammadi S.A new approach for numerical modeling of hydraulic fracture propagation in naturally fractured reservoirs.SPE/EAGE European Unconventional Resources Conference&Exhibition-From Potential to Production,Austria,201237 Fu P,Johnson SM,Carrigan CR.An explicitly coupled hydro-geomechanical model for simulating hydraulic fracturing in arbitrary discrete fracture networks. International Journal for Numerical and Analytical Methods in Geomechanics,2013,37(14):2278-2300.38 Itasca Consulting Group.PFC2D User’s Manuals(Particle Flow Code in 2 Dimensions).Minneapolis:Itasca Consulting Group,199939 Marina S,Derek I,Mohamed PY,et al.Simulation of the hydraulic fracturing process of fractured rocks by the discrete element method.Environmental Earth Sciences,2015,73(12):8451-846940 Damjanac B,Gil I,Pierce M,et al.A new approach to hydraulic fracturing modelingin naturally fractured reservoirs.44th US Rock Mechanics Symposium and 5th USCanada Rock Mechanics Symposium,Salt Lake City,Utah,USA,201041 Cundall ttice method for modeling brittle,jointed rock.2nd Int’l FLAC/DEM Symposium on Continuum and Distinct Element Numerical Modeling in Geomechanics,Melbourne,Australia,201142 Pettitt WS,Hazzard JF,Damjanac B,et al.Microseismic imaging and hydrofracture numerical simulations.21st Canadian Rock Mechanics Symposium,Alberta,Canada,201243 Ben Y,Wang Y,Shi G.Challenges of simulating hydraulic fracturing with DDA.3rd ISRM Symposium on Rock Characterisation,Modelling and Engineering Design Methods. Shanghai,China,201344 Ben Y,Xue J,Miao QH,et al.Coupling fluid flow with discontinuous deformation analysis.Advances in Discontinuous Numerical Methods and Applications in Geomechanics and Geoengineering,London,201245 Ben Y,Xue J,Miao Q,et al.Simulating hydraulic fracturing with discontinuous deformation analysis.46th US Rock Mechanics/Geomechanics Symposium,Chicago,Illinois,USA,201246 Ben Y,Wang Y,Shi G.Development of a model for simulating hydraulic fracturing with DDA.Frontiers of Discontinuous Numerical Methods and Practical Simulations in Engineering and Disaster Prevention,London,201347 Morgan WE,Aral MM.An implicitly coupled hydrogeomechanical model for hydraulic fracture simulation with the discontinuous deformation analysis. International Journal of Rock Mechanics and Mining Sciences,2015,73: 82-9448谢和平,高峰,周宏伟等.岩石断裂和破碎的分形研究.防灾减灾工程学报,2003,23(4):1-9 49 Crouch SL.Solution of plane elasticity problems by the displacement discontinuity method.International Journal for Numerical Methods in Engineering,1976,10:301-343 50 Crouch SL,Starfield AM.Boundary Element Methods in SolidMechanics.London:Goerge Allen and Unwin Publishers,198351 Perkins TK,Kern LR.Widths of hydraulic fractures.Journal of Petroleum Technology,1961,13(9):937-94952 Antonin S,Michael PC.Three-dimensional simulation of hydraulic fracturing. Journal of Petroleum Technology,1984,36(07),170-17753 Barree RD.A practical numerical simulator for threedimensional fracture propagation in heterogeneous media. SPE Reservoir Simulation Symposium,San Francisco,California,USA,198354 John DM,John CP.Pseudo-three-dimensional fracture growth modeling.The 26th US Symposium on Rock Mechanics(USRMS),Rapid City,South Dakota,USA,1985 55。
页岩气储层裂缝系统影响产量的数值模拟研究

页岩气储层裂缝系统影响产量的数值模拟研究1.引言1.1 研究背景1.2 研究意义2. 理论基础和方法2.1 页岩气储层构成分析2.2 裂缝系统的数值模拟原理2.3 GEM模型及参数设置3. 储层裂缝系统特征分析3.1 裂缝发育规律分析3.2 裂缝空间分布分析3.3 裂缝连通度分析4. 储层裂缝系统对产量的影响4.1 不同裂缝参数对产量的影响研究4.2 不同裂缝应力下产量的变化规律研究5. 结论与展望5.1 结论5.2 研究不足以及未来工作的展望第一章:引言近年来,在全球经济不断发展的背景下,能源资源的需求量不断攀升。
而作为一种新兴的能源资源,页岩气的开发和利用备受瞩目。
页岩气由组成页岩的有机质经过热成熟而形成,是在剩余烃气的母质中,分散在非常细小的孔隙中,由于供给量极大,在储层内分布都很广泛,储量极其丰富。
不过由此带来的问题就是在页岩地质条件下,页岩气开采有非常大的技术难度。
其中,储层裂缝的发育对于页岩气的开采产量有着重要的影响。
在储层中,裂缝是由于岩石受到外部应力而发生的断裂而产生的,因为天然气往往是由裂缝运移的,因此开采产量与裂缝系统的特征息息相关。
本文采取数值模拟方法,分析页岩气储层裂缝系统的特征,以及对开采产量的影响规律,为页岩气开发提供一定的理论研究依据。
第二章:理论基础和方法2.1 页岩气储层构成分析页岩矿物组成十分复杂,包括石英、长石、云母、方解石、黏土等组成,其中,黏土矿物的含量较大。
总体来说,页岩气储层的主要储集空间是在纳米级或亚微米级的孔隙中,而非传统的孔隙储集,由于孔隙非常细小,进流阻力大,导致页岩气的开采成为非常严峻的难题。
2.2 裂缝系统的数值模拟原理通过数值模拟分析页岩气储层裂缝系统的影响,首先需要对裂缝系统进行数值模拟。
目前,有多种数值模拟方法可以用于裂缝系统的分析,其中常见的有有限差分法、有限元法、面元法等,然而,由于数字离散和数值极化等问题,导致数值模拟中模型与真实情况之间总是存在一些差异。
页岩气藏水力压裂渗吸机理数值模拟研究

页岩气藏水力压裂渗吸机理数值模拟研究雷征东;覃斌;刘双双;蔚涛【摘要】To better understand the imbibition behavior in shale reservoirs during production and hydraulic fracturing operations,we investigated the imbibition mechanism and evaluated the formation damage resulting from imbibition.This paper first presents a hydro-mechanical model for a shale gas reservoir with consideration for multiple flow regimes,gas diffusion and desorption,stress sensitive effect,and capillary pressure.Then the formation damage caused by the imbibition mechanism is evaluated by quantifying facture face skin evolution during fracture cleanup and subsequent production.The simulation results indicate that (1) the imbibition has a huge influence on reservoir performance in well tests and production periods,and a high capillary pressure is the main cause behind the imbibition phenomenon and water blockage around hydraulic fractures;(2) it is possible to obtain the original gas pressure by detecting the fracture pressure of new wells with hydraulic fracturing stimulation;(3) formation damage caused by wetting phase trapping is one of the main causes impairing well productivity hydraulic fracturing of tight gas reservoirs,which should not be neglected.This research provides a theoretical foundation for a better understanding of reservoir performance of shale gas,especially for optimizing production by reducing formation damage caused by imbibition at an early period.%针对页岩储层在水力压裂作业和生产中渗吸机理及作用规律不清的问题,开展了渗吸机理及其引起的地层伤害评估的研究.建立了考虑不同影响因素的页岩水力压裂渗吸数学模型,包括基质和裂缝流动,气体扩散和解吸,应力敏感效应和毛细管压力,然后,讨论了在压裂气藏和后续生产期间如何通过量化裂缝面表皮演变来评估由于渗吸机制导致的储层伤害现象.结果表明,(1)在试井以及生产阶段渗吸对储层特性有较大影响,极大的毛细管压力是导致渗吸现象和水力裂缝附近水封的主要原因;(2)对于实施了水力压裂增产措施的新井通过探测裂缝压力可以获得原始气体压力;(3)润湿相阻塞导致的储层伤害是影响致密气藏水力压裂井生产能力的主要来源之一.研究结果对于页岩气藏的渗流特性能够提供深刻的理解,尤其是为早期生产阶段降低由渗吸作用可能造成的储层伤害来优化生产提供理论依据.【期刊名称】《西南石油大学学报(自然科学版)》【年(卷),期】2017(039)002【总页数】7页(P118-124)【关键词】数值模拟;渗吸机理;页岩气;水力压裂;毛细管压力【作者】雷征东;覃斌;刘双双;蔚涛【作者单位】中国石油勘探开发研究院,北京海淀100083;保利协鑫石油天然气集团控股有限公司,北京东城100010;中国石油勘探开发研究院,北京海淀100083;中国石油勘探开发研究院,北京海淀100083【正文语种】中文【中图分类】TE312雷征东,覃斌,刘双双,等.页岩气藏水力压裂渗吸机理数值模拟研究[J].西南石油大学学报(自然科学版),2017,39(2):118-124.LEI Zhengdong,QIN Bin,LIU Shuangshuang,et al.Imbibition Mechanism of Hydraulic Fracturing in Shale Gas Reservoir[J].Journal of Southwest Petroleum University(Science&Technology Edition),2017,39(2):118–124.渗吸是两相或者多相体系中与驱替有关的重要流体流动现象。
北美页岩气勘探开发技术考察报告

水平井是目前主要的页岩气藏生产形式。水平井的产量是垂直 井的3-4倍多,成本仅是直井的1.5-2 倍。目前85%的开发井为水平井 +多段压裂。
平均产量, MCFD
3000
2000 1000 0 0 200 400 600 直井平均产量 水平井平均产量 800 比率 1000
3.0 2.0 1.0
曾庆坤 何发岐 李建青 谢先平
4
2、考察行程
4月6日, 抵达美国。 4月7-9日,与 Chevron进行技术交流、参观钻井现场及设备、参观 天然气生产流程。 4月10-11日,北美构造及地层考察,以大峡谷地层剖面为主。 4月12-13日,与哈丁歇尔顿公司交流,参观页岩气压裂现场;参观 页岩气钻井现场,并进行技术总结。 4月14-16日,与BP交流,在HOUSTON会见BP北美天然气业务总部领导, 讨论伍德福特(Woodford )页岩气作业概况及技术交流(地震,钻井 等); 参观岩芯实验室; 在OKLAHOMA前往气田实地考察整个生产流程 (包括:井场准备,钻井,压裂,清洗井眼,生产和运输等)。 4月17日,代表团乘飞机离开洛杉矶回国。
管头承压能力要求较
高,固井质量要好, 水泥返高到地面;水
平段是5/套管固井完
井。
28
4、页岩气水平井钻井
4.4 钻井液体系
防止粘土膨胀; 提高井眼稳定性;
预防钻井液漏失;
提高钻速。 直井段(三开前)对钻井液体系无特殊要求,主要采 用水基泥浆。水平段钻井液主要采用油基泥浆。
29
5、页岩气水平井压裂技术
23
2、选区评价技术
4) Ro是热成因页岩气成藏的主控因素。Ro介于
1.1%~3%的范围是热成因型页岩气藏的有利分布区。 在北美俄克拉荷马东南的阿科马盆地Ro达到4.89% Woodford页岩中也发现了页岩气藏。改变了以往对页岩Ro 上限小于3%的观点, 但Ro过高会导致页岩气藏中的二氧化 碳含量增高。
页岩气藏渗流及数值模拟研究

页岩气藏渗流及数值模拟研究一、本文概述Overview of this article页岩气藏作为一种重要的非常规天然气资源,近年来在全球范围内受到了广泛的关注和研究。
由于其储层特性复杂,开发难度大,渗流规律及数值模拟研究成为了页岩气藏开发的关键问题。
本文旨在深入探讨页岩气藏的渗流特性,建立相应的数值模拟模型,为页岩气藏的合理开发提供理论支持和技术指导。
Shale gas reservoirs, as an important unconventional natural gas resource, have received widespread attention and research worldwide in recent years. Due to the complex reservoir characteristics and high development difficulty, the study of seepage laws and numerical simulation has become a key issue in the development of shale gas reservoirs. This article aims to deeply explore the permeability characteristics of shale gas reservoirs, establish corresponding numerical simulation models, and provide theoretical support and technical guidance for the rational development of shale gasreservoirs.本文首先将对页岩气藏的地质特征和渗流特性进行概述,包括页岩储层的岩石学特征、孔渗结构、渗流机制等。
页岩气藏数值模拟研究现状

t i o n o f n u m e i r c a l s i m u l a t i o n . I t s u g g e s t s t h a t f o u r i s s u e s r e m a i n t o b e i m p r o v e d a n d f u t r h e r p r o b e d : (  ̄ ) I m p r o v i n g r e s e r v o i r m o d e l i n g t o t a k e t h e e f f e c t o f o r g a n i c m a t t e i n t o c o n s i d e r a t i o n ;  ̄ ) E x p o u n d i n g m o r e o n l f o w m e c h a n i s m a n d m a i n c o n t r o l —
模拟技术 的研 究进展 , 为该技术 的深入研 究提 供参考。最后 , 对 页岩 气藏数值 模拟研 究进 展进行 总结 , 认 为存在 4个 有待于 改进 和
研 究的问题 : ① 完善储层模 型以考虑 有机 质的影响 ; ② 需要 阐 明单 相气体 解 吸附、 扩散 和渗 流过程 的运移 规律和 主控 因素, 并建 立
3 . P e t r o C h i n a R e s e a r c h I n s t i t te u fP o e t r o l e u m E x p l o r a t o i n&D e v e l o p en m t , B e i j i n g 1 0 0 0 8 3 , C h i n a )
Ab s t r a c t : T h i s a r t i c l e e x p o u n d s o n t h e r e c e n t a d v a n c e me n t o f t h e t e c h n o l o g y a l l a r o u n d t h e w o r l d t h r o u g h t h e f o l l o w i n g t h r e e a s p e c t s : s h a l e g a s o c c u r r e n c e a n d l f o w me c h a n i s m, g a s r e s e r v o i r mo d e l i n g , a s we l l a s t h e o r e t i c a l s t u d y a n d a p p l i c a —
国外页岩气主要钻井、开采技术调研

国外页岩气主要钻井、开采技术调研X栾永乐(大庆油田采油工程研究院钻井设计研究室,黑龙江大庆 163111) 摘 要:近年我国天然气需求增长迅速,据有关预测,2020年天然气供需差距达1000亿m 3以上。
这种形势下,北美页岩气的成功开发利用,加之我国丰富的页岩气资源,使研究页岩气的开发利用成为实现我国能源安全供给的重要选择,也是我国向清洁能源模式转变、实现低碳经济的有效途径。
美国页岩气的快速发展对中国有很好的借鉴作用,本文对国外页岩气钻井、压裂等增产技术进行调研分析,为我国页岩气藏勘探开发管理和增产改造方案提供可借鉴的经验技术。
关键词:页岩气藏;钻井;压裂增产 中图分类号:T E 37(712) 文献标识码:A 文章编号:1006—7981(2012)06—0117—03 页岩气是从页岩层中开采出来的天然气,主体位于暗色泥页岩或高碳泥页岩中,以吸附或游离状态存在于泥岩、高碳泥岩、页岩及粉砂质岩类夹层中的天然气,它可以生成于有机成因的各种阶段。
中石油勘探开发研究院廊坊分院2008年预测数据显示中国主要盆地和地区页岩气资源量约为30万亿m 3,经济价值巨大。
目前可采的工业性页岩气藏埋深最浅为182m 。
页岩含气的有效孔隙度一般1%~5%,渗透率随裂缝发育程度不同而有较大变化。
页岩以小粒径物质为主,一般以粘土(粒径<5Lm )和泥质(粒径为5~63L m)为其最主要组分,砂(>63L m)所占的组分相对较少。
由于小粒径的特点,页岩气储层的渗透率极低,一般在0.0001~0.000001md 之间。
因此页岩气采收率比常规天然气低,仅为5%~60%。
中国页岩气藏的储层与美国相比有所差异,如四川盆地的页岩气层埋深要比美国的大,美国的页岩气层深度在800~2600m,而四川盆地的页岩气层埋深在2000~3500m [1]。
1 钻井工艺技术自从美国1821年完钻世界上第一口页岩气井80多年以来[2],页岩气钻井先后经历了直井、单支水平井、多分支水平井、丛式井、PAD 水平井钻井的发展历程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[0 1】C.L iol,E .L ln . .Cp l a .P oo ,J C.Ede ta.Mo eig wel rl,e 1 dl l n p r r n c i saeg s eev i [ / P /AGE ee or ef ma e n h l a rsror C]S EE o - s / R sr i v
摘要 : 页岩气藏勘探开发过 程 中数值模拟技 术的应用是 一个崭 新的研究课题 , 目前 国 内夕 均无成熟 的经验 做法。 、 本 文调研 了国外页岩 气藏数值模 拟技 术研 究方面 的最新进展 , 以期 对我 国该 方面 的研 究工作 提供 参考和借 鉴 。 调 研结果表 明 , 天然裂缝和 水力压裂 裂缝组成 的复杂裂缝 网络 系统和 页岩 气渗流特 征的准确表 征是做好该 类 对 气藏模拟 的关键所在 , 而天 然裂缝渗透 率、 基质一 裂缝耦合 因子、 水力压裂 裂缝参数对 页岩气藏 产能模拟敏感 性 最强, 可作 为历史拟 合 的可调参数 。通过 页岩 气藏数值模 拟 , 可对 页岩 气井生产 动态预 、 测 剩余储 量分布 、 页岩 气藏加密钻井 、 水力压裂及 二次压裂施工等提供 有益 的参考 。 关键词 : 数值模 拟 ; 页岩气藏 ; 地质建模 ; 天然裂缝渗透 率 ; 水力压裂 ; 基质一 裂缝耦 合 因子
第 1卷 第3 O 期
张远弟 等 : 国外页岩气藏数值模拟技术调研
-3 4・
参数对页岩气井产能影响较大 , 可作为历史拟合 的
主要 考 虑参 数 , 成 功 的人 工水 力 压 裂处 理 是成 功 而
开 发 页岩气 藏 的关 键所 在 。
2 1 Oka maCi , lh ma U; S 01 . lho t Ok a o , 5 y A: PE, 0 l SP 41 5 2 1 , E1 0 8
在美 国开采百余年 , 但大规模商业化开采也只始于
气 藏数值模拟工作 的关键 , 可综合测井解 释资料 、 近二 三 十年 。 目前 , 国内外 尚无 页岩气 藏 数 值模 拟 微裂缝监测资料及压裂施工记录等来建立。调研结 方面的标准做法和相关规范 , 即使美国在这方面的 果表 明, 历史拟合过程 中, 天然裂缝渗透率 、 基质一 研究也是处在研究探索阶段 , 尚未大规模用于开发 裂缝耦合 因子 、 水力压裂裂缝参数对页岩气藏产能 实践口 1 。 模 拟敏感 性 最强 , 是历史 拟 合 的重 要 可调参 数 。
就 是基 于 井 眼成 像 技术 解 释 的裂 缝数 据 、 井 解 释 测
岩气藏吸附气含量最低为 1%, 3 最高超过7 %, 0 这就 使得页岩气藏的开采过程存在吸附一解析平衡转换 的问题 ; ③页岩气井完井后一般无天然产能 , 需进行
收稿 日期 :0 20 .6 改回 日期 :0 20 .2 2 1 .20 ; 2 1 .3 1 作者简介 : 张远弟 , , 田开发工程专业在读硕士研究生 , 男 油气 研究方 向为油藏工程及数值模拟。
美 国页岩气勘探开发 已有百余年历史 , 页岩 大规模水力压裂方可经济开发。水力压裂裂缝和页 在 气数值模拟方面取得了一定成绩 , 其经验可借鉴 以 岩气藏原生天然裂缝一起 , 组成 了复杂 的裂缝 网络 指导我国在该方 向的研究工作 。为此 , 笔者调研 了 系统 , 该裂缝系统问题关系到气井产能及最终采收 美 国页岩气藏数值模拟方面的相关文献资料 , 认为 率 。因此 , 如何精确描述极为重要 ; ④页岩气藏虽已 对 页岩气藏复杂裂缝 网络系统 的准确建模是该类
2 地质建模 I 数值模拟难点
21 复 杂裂 缝 系统 模 拟 .
由于页岩气藏具有低孔 、 特低渗、 吸附气含量比 例高 、 压裂 裂缝 复杂 等不 同于 常规气 藏 的特点 , 使页
页 岩气 井 一 般需 大 规 模 压 裂 处 理 方 可 经 济 生 产, 因此 , 地层 中原生 天然 裂缝 和压 裂裂缝 一起 组成
主, 而在 页岩 气藏 中 , 附气 含量 较 高 。美 国 5 页 吸 大
了复杂的裂缝 网络系统 , 裂缝是页岩气 的主要渗流 通道 , 对裂缝特征模拟的准确与否直接关系到最终
数 值模 拟 结 果 的 可信 度 以及 对 实 际生 产 的支 持 水
平 。
针对页岩气藏数值 模拟 , 国 Shu br r 美 cl eg 公 m e 司 的 C agnM.u XZ ag (09 提 出 了一 种 hna D 和 .hn 等 20 ) 系统的研究方法 , 中, 其 地质建模部分集成了速度建 模、 时深转换、D裂缝建模 、 3 蚂蚁追踪 、 大规模裂缝 系统模型建立等关键技: 。天然裂 月
PT O E E R L UM E P G O HYSC IS
第 1卷 第 3 O 期
国外页岩气藏数值模拟技术调研
张远弟 ” ,喻高明 ” ,宋刚祥 ” ,郭 锐 ,高 宇 ” ,万青 山”
I 长江大学石油 工程学院 ;2 辽河油 田分 公司曙光工程技术 处 ) )
岩气藏数值模拟更为复杂 : ①页岩气藏孔隙吼道半
径极 小 , 接近平 均分 子 自由程 , 甲烷 分子 直径 与 (.1n 相 当 。 以美 国 Bre 页 岩 气 田为 例 , 0 4m) 4 ant t 埋 深 为 18- 29m, 均 吼 道半 径小 于 5 m。 因此 , 92 52 平 n 达西定律是否依然适用 , 是一个必须要考虑的问题 ; ② 常规气藏天 然气赋存形态 以简单 的游离状态 为