【6套合集】山东寿光现代中学2020中考提前自主招生数学模拟试卷附解析
山东潍坊市寿光实验中学2020年中考数学模拟试题含答案

2020数学中考模拟试题时间:120分钟满分:120分一.选择题(共12小题,每题3分,共36分)1.函数y=√x+1x−3的自变量x的取值范围是()A.x≥1B.x≥﹣1或x≠3C.x≥﹣1D.x≥﹣1且x≠32.专家认为,有细颗粒物造成的灰霾天气对人体健康的危害甚至要比沙尘暴更大.某种细颗粒物的直径为0.00000347米,这个直径用科学记数法表示应为()A.3.47×10﹣4米B.34.7×10﹣5米C.3.47×10﹣6米D.3.47×10﹣5米3.如图所示的四棱柱的主视图为()A.B.C.D.4.如图,直线AB与EF相交于点M,∠EMB=88°,∠1=60°.要使AB∥CD,则将直线AB绕点M逆时针旋转的度数为()A.28°B.30°C.60°D.88°5.如图,若数轴上的两点A、B表示的数分别为a、b,则|a﹣b|+|b|等于()A.a B.a﹣2b C.﹣a D.b﹣a6.某商店将定价为3元的商品,按下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折.小聪有27元钱想购买该种商品,那么最多可以购买多少件呢?若设小聪可以购买该种商品x件,则根据题意,可列不等式为()A.3×5+3×0.8x≤27B.3×5+3×0.8x≥27C.3×5+3×0.8(x﹣5)≤27D.3×5+3×0.8(x﹣5)≥277.下列四个图形:从中任取一个是中心对称图形的概率是()A.34B.1C.12D.148.已知关于x的分式方程xx−1−2=kx−1的解为正数,则k的取值范围为()A.﹣2<k<0B.k>﹣2且k≠﹣1C.k>﹣2D.k<2且k≠1 9.如图,Rt△ABC中,∠ACB=90°,∠B=30°,S△ABC=2√3,将△ABC绕点C逆时针旋转至△A′B′C,使得点A'恰好落在AB上,A'B′与BC交于点D,则S△A′CD为()A .√3+1B .3√34C .√32D .2√3−110.如图,AB 是⊙O 的直径,弦CD 与AB 相交,连接CO ,过点D 作⊙O 的切线,与AB 的延长线交于点E ,若DE ∥AC ,∠BAC =40°,则∠OCD 的度数为( )A .65°B .30°C .25°D .20°11.如图,在△ABC 中,AD 平分∠BAC ,按如下步骤作图:①分别以点A 、D 为圆心,以大于12AD 的长为半径在AD 两侧作弧,交于两点M 、N ;②连接MN 分别交AB 、AC 于点E 、F ;③连接DE 、DF .若BD =6,AF =4,CD =3,则下列说法中正确的是( )A .DF 平分∠ADCB .AF =3CFC .BE =8D .DA =DB12.如图1,E 为矩形ABCD 边AD 上一点,点P 从点B 沿折线BE ﹣ED ﹣DC 运动到点C 时停止,点Q 从点B 沿BC 运动到点C 时停止,它们运动的速度都是1cm /s .若点P 、Q 同时开始运动,设运动时间为t (s ),△BPQ 的面积为y (cm )2.已知y 与t 的函数关系图象如图2,则下列结论错误的是( )A.AE=6cmB.sin∠EBC=0.8C.当 0<t≤10 时,y=0.4t2D.当t=12s时,△PBQ是等腰三角形二、填空题(共6小题,每题3分,共18分)13.因式分解:x(x﹣3)﹣x+3=.14.关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,则a的取值范围是.15.如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为.16.规定[x]表示不超过x的最大整数,如[2.6]=2,[﹣3.14]=﹣4,若[x]=3,则x的取值范围是.17.如图,已知点C处有一个高空探测气球,从点C处测得水平地面上A,B两点的俯角分别为30°和45°.若AB=2km,则A,C两点之间的距离为km.18.如图,点A1的坐标为(1,0),A2在y轴的正半轴上,且∠A1A2O=30°,过点A2作A2A3⊥A1A2,垂足为A2,交x轴于点A3,过点A3作A3A4⊥A2A3,垂足为A3,交y轴于点A4;过点A4作A4A5⊥A3A4,垂足为A4,交x轴于点A5;过点A5作A5A6⊥A4A5,垂足为A5,交y轴于点A6;…按此规律进行下去,则点A2020的横坐标为.三、解答题(共66分)19(8分).某中学为推动“时刻听党话永远跟党走”校园主题教育活动,计划开展四项活动:A:党史演讲比赛,B:党史手抄报比赛,C:党史知识竞赛,D:红色歌咏比赛.校团委对学生最喜欢的一项活动进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2两幅不完整的统计图.请结合图中信息解答下列问题:(1)本次共调查了名学生;(2)将图1的统计图补充完整;(3)已知在被调查的最喜欢“党史知识竞赛”项目的4个学生中只有1名女生,现从这4名学生中任意抽取2名学生参加该项目比赛,请用画树状图或列表的方法,求出恰好抽到一名男生一名女生的概率.20(8分).准备一张矩形纸片,按如图操作:将△ABE沿BE翻折,使点A落在对角线BD上的M点,将△CDF沿DF翻折,使点C 落在对角线BD上的N点.(1)求证:四边形BFDE是平行四边形;(2)若四边形BFDE是菱形,BE=2,求菱形BFDE的面积.21(8分).如图,在平面直角坐标系xOy中,一次函数y1=ax+b(a,b为常数,且a≠0)与反比例函数y2=(m为常数,且n≠0)的图象交于点A(﹣3,1)、B(1,n).(1)求反比例函数和一次函数的解析式;(2)连结0A、OB,求△AOB的面积;(3)直接写出当y1<y2<0时,自变量x的取值范围.22(9分).如图,AB为⊙O的直径,弦CD⊥AB,垂足为E,CD=4,连接OC,OE =2EB,F为圆上一点,过点F作圆的切线交AB的延长线于点G,连接BF,BF=BG.(1)求⊙O的半径;(2)求证:AF=FG;(3)求阴影部分的面积.23(10分).某蔬菜经销商去蔬菜生产基地批发某种蔬菜,已知这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元;若超过60千克时,批发的这种蔬菜全部打八折.(1)经调查,该蔬菜经销商销售该种蔬菜的日销售量y(千克)与零售价x(元/千克)是一次函数关系,其图象如图,求出y与x之间的函数关系式;(2)若该蔬菜经销商每日销售此种蔬菜不低于75千克,且当日零售价不变,那么零售价定为多少时,该经销商销售此种蔬菜的当日利润最大?最大利润为多少元?24(11分).在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;(2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积;(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.25(12分).如图,抛物线过x轴上两点A(9,0),C(﹣3,0),且与y轴交于点B (0,﹣12).(1)求抛物线的解析式;(2)若M为线段AB上一个动点,过点M作MN平行于y轴交抛物线于点N.①是否存在这样的点M,使得四边形OMNB恰为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.②当点M运动到何处时,四边形CBNA的面积最大?求出此时点M的坐标及四边形CBNA面积的最大值.数学试题答案和评分标准一、选择题(共12小题,每题3分,共36分)二、填空题(共6小题,每题3分,共18分)13.(x﹣1)(x﹣3) 14. a>−98且a≠0.15. y=6 x16. 3≤x<4.17. 2+2√3 18. (()20193-,0)三、解答题(共66分)19. (本题满分8分)(1)40;……………………2分(2)B项活动的人数为40﹣(6+4+14)=16,补全统计图如下:……………………4分(3)列表如下:(画树状图也可)男男男女男(男,男)(男,男)(男,女)男(男,男)(男,男)(男,女)男(男,男)(男,男)(男,女)女(女,男)(女,男)(女,男)由表可知总共有12种结果,每种结果出现的可能性相同,其中恰好抽到一名男生和一名女生的结果有6种,所以抽到一名男生和一名女生的概率是,即.……………………8分20(本题满分8分).(1)证明:∵四边形ABCD是矩形,∴∠A=∠C=90°,AB=CD,AB∥CD,∴∠ABD=∠CDB,由翻折变换的性质可知,∠ABE=∠EBD,∠CDF=∠FDB,∴∠EBD=∠FDB,∴EB∥DF,∵ED∥BF,∴四边形BFDE为平行四边形;……………………4分(2)解:∵四边形BFDE为菱形,∴∠EBD=∠FBD,∵∠EBD=∠ABE,∴∠EBD=∠FBD=∠ABE,∵四边形ABCD是矩形,∠ABC=90°,∴∠EBD=∠FBD=∠ABE=30°,∴AB=,∴菱形BFDE的面积S=DE×AB=2.……………………8分21.(本题满分8分)解:(1)∵A(﹣3,1),∴将A坐标代入反比例函数解析式y2=中,得m=﹣3,∴反比例函数解析式为y2=﹣;……………………1分将B(1,n)代入y=﹣,得n=﹣3,∴B坐标(1,﹣3),将A与B坐标代入一次函数解析式中,得,解得a=﹣1,b=﹣2,∴一次函数解析式为y1=﹣x﹣2;……………………3分(2)设直线AB与y轴交于点C,令x=0,得y=﹣2,∴点C坐标(0,﹣2),∴S△AOB=S△AOC+S△COB=×2×3+×1=4;……………………6分(3)由图象可得,当y1<y2<0时,自变量x的取值范围x>1.……………………8分22.(本题满分9分)(1)解:设⊙O的半径为r,则OE=r,∵CD⊥AB,∴CE=DE=CD=2,在Rt△OCE中,OC2=OE2+CE2,即r2=(r)2+(2)2,解得,r=6,答:⊙O的半径为6;……………………3分(2)证明:连接OF,∵FG是⊙O的切线,∴∠OFG=90°,即∠OFB+∠BFG=90°,∵AB为⊙O的直径,∴∠AFB=90°,即∠FAB+∠OBF=90°,∵OB=OF,∴∠OFB=∠OBF,∴∠FAB=∠BFG,∵BF=BG,∴∠G=∠BFG,∴∠G=∠FAB,∴AF=FG;……………………6分(3)解:∵OA=OF,∴∠OAF=∠OFA,∴∠OFA=∠BFG,在△AOF和△GBF中,,∴△AOF≌△GBF(ASA)∴OF=BF,∴△OBF为等边三角形,∴∠BOF=60°,BF=OB=6,由勾股定理得,AF===6,∴阴影部分的面积=π×62﹣×6×6=18π﹣18.……………………9分23.(本题满分10分)解:(1)设该一次函数解析式为y=kx+b(k≠0),把点(5,90),(6,60)代入,得,解得.故该一次函数解析式为:y=﹣30x+240;……………………4分(2)设当日可获利润w(元),日零售价为x元,由(1)知,w=(﹣30x+240)(x﹣5×0.8)=-30x2+360x-960……………………7分=﹣30(x﹣6)2+120,﹣30x+240≥75,即x≤5.5,当x=5.5时,当日可获得利润最大,最大利润为112.5元.……………………10分24.(本题满分11分)解:(1)由旋转的性质可得:∠A1C1B=∠ACB=45°,BC=BC1,所以∠CC1B=∠C1CB=45°,所以∠CC1A1=∠CC1B+∠A1C1B=45°+45°=90°.……………………3分(2)因为△ABC≌△A1BC1,所以BA=BA1,BC=BC1,∠ABC=∠A1BC1,,∠ABC+∠ABC1=∠A1BC1+∠ABC1,所以∠ABA1=∠CBC1,所以△ABA1∽△CBC1.所以,=()2=()2=,因为S△ABA1=4,所以S△CBC1=;……………………7分(3)如图过点B作BD⊥AC,D为垂足,因为△ABC为锐角三角形,所以点D在线段AC上,在Rt△BCD中,BD=BC×sin45°=;①当P在AC上运动与AB垂直的时候,△ABC绕点B旋转,使点P的对应点P1在线段AB上时,EP1最小,最小值为:EP1=BP1﹣BE=BD﹣BE=﹣2;②当P在AC上运动至点C,△ABC绕点B旋转,使点P的对应点P1在线段AB的延长线上时,EP1最大,最大值为:EP1=BC+BE=2+5=7.……………………11分25.(1)因抛物线过x轴上两点A(9,0),C(﹣3,0)故设抛物线解析式为:y=a(x+3)(x﹣9)(a≠0).又∵B(0,﹣12)∴﹣12=﹣27a∴a=y=(x+3)(x﹣9)=x2﹣x﹣12;……………………3分(2)如图2,设直线AB的解析式为y=kx+b(k≠0).∵B(0,﹣12),A(9,0),∴,解得,,则直线AB的函数关系式为y=x﹣12.设点M的横坐标为x,则M(x,x﹣12),N(x,x2﹣x﹣12).①若四边形OMNB为平行四边形,则MN=OB=12∴(x﹣12)﹣(x2﹣x﹣12)=12即x2﹣9x+27=0∵△<0,∴此方程无实数根,∴不存在这样的点M,使得四边形OMNB恰为平行四边形.……………………7分②∵S四边形CBNA=S△ACB+S△ABN=72+S△ABN∵S△AOB=54,S△OBN=6x,S△OAN=•9•|y N|=﹣2x2+12x+54∴S△ABN=S△OBN+S△OAN﹣S△AOB=6x+(﹣2x2+12x+54)﹣54=﹣2x2+18x=﹣2(x﹣)2+∴当x=时,S△ABN最大值=此时M(,﹣6),S四边形CBNA最大=.……………………12分。
山东省潍坊市寿光重点中学2024届中考数学适应性模拟试题含解析

山东省潍坊市寿光重点中学2024届中考数学适应性模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)1.如图,比例规是一种画图工具,它由长度相等的两脚AC和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a的两个端点上,当CD=1.8cm时,则AB的长为()A.7.2 cm B.5.4 cm C.3.6 cm D.0.6 cm2.如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,MN2=y,则y关于x的函数图象大致为A.B.C.D.3.对于一组统计数据1,1,6,5,1.下列说法错误的是()A.众数是1 B.平均数是4 C.方差是1.6 D.中位数是64.﹣2×(﹣5)的值是()A.﹣7 B.7 C.﹣10 D.105.主席在2018年新年贺词中指出,2017年,基本医疗保险已经覆盖1350000000人.将1350000000用科学记数法表示为( ) A .135×107B .1.35×109C .13.5×108D .1.35×10146.如图,在△ABC 中,点D 是AB 边上的一点,若∠ACD=∠B,AD=1,AC=2,△ADC 的面积为1,则△BCD 的面积为( )A .1B .2C .3D .47.在a 2□4a □4的空格□中,任意填上“+”或“﹣”,在所有得到的代数式中,能构成完全平方式的概率是( ) A .1 B . C . D . 8.计算(-ab 2)3÷(-ab)2的结果是( ) A .ab 4 B .-ab 4 C .ab 3 D .-ab 3 9.如图,AB 是O 的直径,CD 是O 的弦,连接AD ,AC ,BD ,则DAB ∠与C ∠的数量关系为( )A .DABC ∠=∠ B .2DAB C ∠=∠ C .90DAB C ∠+∠=︒D .180DAB C ∠+∠=︒10.下表是某校合唱团成员的年龄分布,对于不同的x ,下列关于年龄的统计量不会发生改变的是( ) 年龄/岁 13 14 15 16 频数515x10- x A .平均数、中位数 B .众数、方差C .平均数、方差D .众数、中位数二、填空题(本大题共6个小题,每小题3分,共18分) 11.若反比例函数y=1m x-的图象在每一个象限中,y 随着x 的增大而减小,则m 的取值范围是_____. 12.布袋中装有2个红球和5个白球,它们除颜色外其它都相同.如果从这个布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是 ________.13.如果关于x 的方程x 2+2ax ﹣b 2+2=0有两个相等的实数根,且常数a 与b 互为倒数,那么a+b=_____. 14.如图,AB 是半径为2的⊙O 的弦,将AB 沿着弦AB 折叠,正好经过圆心O ,点C 是折叠后的AB 上一动点,连接并延长BC交⊙O于点D,点E是CD的中点,连接AC,AD,EO.则下列结论:①∠ACB=120°,②△ACD是等边三角形,③EO的最小值为1,其中正确的是_____.(请将正确答案的序号填在横线上)15.如图,在Rt△ABC中,∠ACB=90°,BC=6,CD是斜边AB上的中线,将△BCD沿直线CD翻折至△ECD的位置,连接AE.若DE∥AC,计算AE的长度等于_____.16.如图,在直角三角形ABC中,∠ACB=90°,CA=4,点P是半圆弧AC的中点,连接BP,线段即把图形APCB (指半圆和三角形ABC组成的图形)分成两部分,则这两部分面积之差的绝对值是_____.三、解答题(共8题,共72分)17.(8分)小王是“新星厂”的一名工人,请你阅读下列信息:信息一:工人工作时间:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天;信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:生产甲产品数(件)生产乙产品数(件)所用时间(分钟)10 10 35030 20 850信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元.信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元,请根据以上信息,解答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?18.(8分)先化简,再求值1xx-÷(x﹣21xx-),其中x=76.19.(8分)小强想知道湖中两个小亭A、B之间的距离,他在与小亭A、B位于同一水平面且东西走向的湖边小道I上某一观测点M处,测得亭A在点M的北偏东30°,亭B在点M的北偏东60°,当小明由点M沿小道I向东走60米时,到达点N处,此时测得亭A恰好位于点N的正北方向,继续向东走30米时到达点Q处,此时亭B恰好位于点Q的正北方向,根据以上测量数据,请你帮助小强计算湖中两个小亭A、B之间的距离.20.(8分)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于5,那么小王去,否则就是小李去.(1)用树状图或列表法求出小王去的概率;(2)小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.21.(8分)如图,在一条河的北岸有两个目标M、N,现在位于它的对岸设定两个观测点A、B.已知AB∥MN,在A点测得∠MAB=60°,在B点测得∠MBA=45°,AB=600米.(1)求点M到AB的距离;(结果保留根号)(2)在B点又测得∠NBA=53°,求MN的长.(结果精确到1米)3,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)22.(10分)如图二次函数的图象与x 轴交于点()30A -,和()10B ,两点,与y 轴交于点()0,3C ,点C 、D 是二次函数图象上的一对对称点,一次函数的图象经过B 、D求二次函数的解析式;写出使一次函数值大于二次函数值的x的取值范围;若直线BD 与y 轴的交点为E 点,连结AD 、AE ,求ADE ∆的面积;23.(12分)某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如表: x/元 … 15 20 25 … y/件…252015…已知日销售量y 是销售价x 的一次函数.求日销售量y (件)与每件产品的销售价x (元)之间的函数表达式;当每件产品的销售价定为35元时,此时每日的销售利润是多少元?24.如图,在ABC 中,90ACB ∠=︒,BC 的垂直平分线DE 交BC 于D ,交AB 于E ,F 在射线DE 上,并且EF AC =.(1)求证:AF CE =;(2)当B ∠的大小满足什么条件时,四边形ACEF 是菱形?请回答并证明你的结论.参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解题分析】【分析】由已知可证△ABO∽CDO,故CD OCAB OA=,即1.813AB=.【题目详解】由已知可得,△ABO∽CDO,所以,CD OC AB OA=,所以,1.813 AB=,所以,AB=5.4故选B【题目点拨】本题考核知识点:相似三角形. 解题关键点:熟记相似三角形的判定和性质.2、B【解题分析】分析:分析y随x的变化而变化的趋势,应用排它法求解,而不一定要通过求解析式来解决:∵等边三角形ABC的边长为3,N为AC的三等分点,∴AN=1。
【2020年】山东省中考数学模拟试题(含解析)

【2020年】山东省中考数学模拟试卷含答案一、选择题:本大题共10 小题,每小题 3 分,共30 分。
在每小题给出的四个选项中,只有一项符合题目要求。
1.31-的值是()A.1 B.﹣1 C.3 D.﹣3【解答】解:31-=-1.故选B.2.为贯彻落实觉中央、国务院关于推进城乡义务教育一体化发展的部署,教育部会同有关部门近五年来共新建、改扩建校舍186000000 平方米,其中数据186000000 用科学记数法表示是()A.1.86×107 B.186×106 C.1.86×108 D.0.186×109【解答】解:将186000000 用科学记数法表示为:1.86×108.故选:C.3.下列运算正确的是()A.a8÷a4=a2 B.(a2)2=a4 C.a2•a3=a6 D.a2+a2=2a4【解答】解:A、a8÷a6=a4,故此选项错误;B、(a2)2=a4,故原题计算正确;C、a2•a3=a5,故此选项错误;D、a2+a2=2a2,故此选项错误;故选:B.4.如图,点B,C,D 在⊙O 上,若∠BCD=130°,则∠BOD 的度数是()A.50°B.60°C.80°D.100°【解答】解:圆上取一点A,连接AB,AD,∵点A、B,C,D 在⊙O 上,∠BCD=130°,∴∠BAD=50°,∴∠BOD=100°,故选:D.5.多项式4a﹣a3 分解因式的结果是()A.a(4﹣a2)B.a(2﹣a)(2+a)C.a(a﹣2)(a+2)D.a(2﹣a)2【解答】解:4a﹣a3=a(4﹣a2)=a(2-a)(2+a).故选:B.6..如图,在平面直角坐标系中,点A,C 在x 轴上,点C 的坐标为(﹣1,0),AC=2.将Rt△ABC 先绕点 C 顺时针旋转90°,再向右平移 3 个单位长度,则变换后点 A 的对应点坐标是()A.(2,2)B.(1,2)C.(﹣1,2)D.(2,﹣1)【解答】解:∵点C 的坐标为(﹣1,0),AC=2,∴点 A 的坐标为(﹣3,0),如图所示,将Rt△ABC 先绕点 C 顺时针旋转90°,则点A′的坐标为(﹣1,2),再向右平移 3 个单位长度,则变换后点A′的对应点坐标为(2,2),故选:A.7.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.6【解答】解:A、数据中 5 出现 2 次,所以众数为5,此选项正确;B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C、平均数为(7+5+3+5+10)÷5=6,此选项正确;D、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;故选:D.8.如图,在五边形ABCDE 中,∠A+∠B+∠E=300°,DP、CP 分别平分∠EDC、∠BCD,则∠P=()A.50°B.55°C.60°D.65°【解答】解:∵在五边形ABCDE 中,∠A+∠B+∠E=300°,∴∠ECD+∠BCD=240°,又∵DP、CP 分别平分∠EDC、∠BCD,∴∠PDC+∠PCD=120°,∴△CDP 中,∠P=180°﹣(∠PDC+∠PCD)=180°﹣120°=60°.故选:C.9.一个几何体的三视图如图所示,则该几何体的表面积是()A.24+2πB.16+4πC.16+8πD.16+12π【解答】解:该几何体的表面积为2×12•π•22+4×4+12×2π•2×4=12π+16,故选:D.10.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是()【解答】解:由题意知,原图形中各行、各列中点数之和为10,符合此要求的只有故选:C.二、填空题:本大题共 5 小题,每小题 3 分,共15 分。
山东省寿光市实验中学2020届数学中考模拟试卷

山东省寿光市实验中学2020届数学中考模拟试卷一、选择题1.下列运算正确的是( ) A .2m 2+m 2=3m 4B .(mn 2)2=mn 4C .2m•4m 2=8m 2D .m 5÷m 3=m 22.如果,.那么代数式的值是( ) A.-1B.1C.-3D.332,0,﹣1,其中最小的是( )A B .2C .0D .﹣14.现有甲、乙两个合唱队,队员的平均身高都是175cm ,方差分别是2S 甲、2S 乙,如果22>S S 乙甲,那么两个队中队员的身高较整齐的是( ) A .甲队B .乙队C .两队一样整齐D .不能确定5.下列结果不正确的是( ) A .()23533-=B .22233333++=C .426333-÷=D .2019201833-能被2整除6.如图是L 型钢材的截面,5个同学分别列出了计算它的截面积的算式,甲:()ac b c c +-;乙:()a c c bc -+;丙:2ac bc c +-;丁:()()ab a c b c ---;戊:()()a c c b c c -+-.你认为他们之中正确的是( )A .只有甲和乙B .只有丙和丁C .甲、乙、丙和丁D .甲、乙、丙、丁和戊7.如图,在矩形ABCD 中,点E 、F 、G 、H 分别是边AD 、AB 、BC 、CD 的中点,连接EF 、FG 、GH 和HE .若2=AD AB ,用下列结论正确的是( )A .EF AB = B .2EF AB =C .EF =D .2EF AB =8.从甲,乙,丙三人中任选一名代表,甲被选中的可能性是 A.12B.1C.23D.139.下列计算结果等于4的是( ) A .|(﹣9)+(+5)|B .|(+9)﹣(﹣5)|C .|﹣9|+|+5|D .|+9|+|﹣5|10.一次函数y kx k =-与反比例函数(0)ky k x=≠在同一个坐标系中的图象可能是( )A. B. C. D.11.下列计算中,正确的是()A2±B.2+=C.a2•a4=a8D.(a3)2=a612.已知关于x的方程x2+mx+1=0根的判别式的值为5,则m=()A.±3B.3 C.1 D.±1二、填空题13.∠α的补角是125º,则∠α=________;14.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学计数法表示为________________.15.在Rt△ABC中,∠C=90°,AB=5,BC=3,则sinA= .16.如图,正方形AOBO2的顶点A的坐标为A(0,2),O1为正方形AOBO2的中心;以正方形AOBO2的对角线AB为边,在AB的右侧作正方形ABO3A1,O2为正方形ABO3A1的中心;再以正方形ABO3A1的对角线A1B为边,在A1B的右侧作正方形A1BB1O4,O3为正方形A1BB1O4的中心;再以正方形A1BB1O4的对角线A1B1为边在A1B1的右侧作正方形A1B1O5A2,O4为正方形A1B1O5A2的中心:…;按照此规律继续下去,则点O2018的坐标为_____.17.将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是__________.18.已知一次函数y=ax+b(a、b为常数),x与y的部分对应值如下表:三、解答题19.如图,在△ABC中,点D在BC边上,BC=3CD,分别过点B,D作AD,AB的平行线,并交于点E,且ED交AC于点F,AD=3DF.(1)求证:△CFD∽△CAB;(2)求证:四边形ABED为菱形;(3)若DF =53,BC =9,求四边形ABED 的面积.20.(1)计算:(0+3tan30°﹣2|+11()2- (2)解方程:3+1x xx x -= 21.某公司用100万元研发一种市场急需电子产品,已于当年投入生产并销售,已知生产这种电子产品的成本为4元/件,在销售过程中发现:每年的年销售量y (万件)与销售价格x (元/件)的关系如图所示,其中AB 为反比例函数图象的一部分,设公司销售这种电子产品的年利润为s (万元). (1)请求出y (万件)与x (元/件)的函数表达式;(2)求出第一年这种电子产品的年利润s (万元)与x (元/件)的函数表达式,并求出第一年年利润的最大值.22.为了“天更蓝,水更绿”某市政府加大了对空气污染的治理力度,经过几年的努力,空气质量明显改善,现收集了该市连续30天的空气质量情况作为样本,整理并制作了如下表格和一幅不完整的条形统计图:良;101≤ω≤150时,空气质量为轻度污染;151≤ω≤200时,空气质量为中度污染,…根据上述信息,解答下列问题:(1)请补全空气质量天数条形统计图:(2)根据已完成的条形统计图,制作相应的扇形统计图;(3)健康专家温馨提示:空气污染指数在100以下适合做户外运动,请根据以上信息,估计该市居民一年(以365天计)中有多少天适合做户外运动?23.先化简,再求值:2(2x 2y -xy 2)-(4x 2y -xy 2),其中x =-4,12y =. 24.一家商店销售某种商品,平均每天可售出20件,每件盈利40元为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件(1)若降价3元,则平均每天销售数量为 件;(2)求每件商品降价多少元时,该商店每天销售利润为1200元? (3)求每件商品降价多少元时,该商店每天销售利润的最大值是多少元?25.如图,在平面直角坐标系中,点A 在y 轴正半轴上,AC //x 轴,点B 、C 的横坐标都是3,且BC 2=,点D 在AC 上,若反比例函数k y (x 0)x =>的图象经过点B 、D ,且AO 3BC 2=.(1)求k 的值及点D 的坐标;(2)将ΔAOD 沿着OD 折叠,设顶点A 的对称点'A 的坐标是()'A m,n ,求代数式m 3n +的值.【参考答案】*** 一、选择题13.55° 14.5×10-6 15.3516.(21010﹣2,21009)17.47°18.x=1 x<1 三、解答题19.(1)见解析;(2)见解析;(3)四边形ABED 的面积为24. 【解析】 【分析】(1)由平行线的性质和公共角即可得出结论;(2)先证明四边形ABED 是平行四边形,再证出AD =AB ,即可得出四边形ABED 为菱形;(3)连接AE 交BD 于O ,由菱形的性质得出BD ⊥AE ,OB =OD ,由相似三角形的性质得出AB =3DF =5,求出OB =3,由勾股定理求出OA =4,AE =8,由菱形面积公式即可得出结果. 【详解】(1)证明:∵EF∥AB,∴∠CFD=∠CAB,又∵∠C=∠C,∴△CFD∽△CAB;(2)证明:∵EF∥AB,BE∥AD,∴四边形ABED是平行四边形,∵BC=3CD,∴BC:CD=3:1,∵△CFD∽△CAB,∴AB:DF=BC:CD=3:1,∴AB=3DF,∵AD=3DF,∴AD=AB,∴四边形ABED为菱形;(3)解:连接AE交BD于O,如图所示:∵四边形ABED为菱形,∴BD⊥AE,OB=OD,∴∠AOB=90°,∵△CFD∽△CAB,∴AB:DF=BC:CD=3:1,∴AB=3DF=5,∵BC=3CD=9,∴CD=3,BD=6,∴OB=3,由勾股定理得:OA4,∴AE=8,∴四边形ABED的面积=12AE×BD=12×8×6=24.【点睛】本题考查了相似三角形的判定与性质、菱形的判定和性质、平行四边形的判定、勾股定理、菱形的面积公式,熟练掌握相似三角形的判定与性质,证明四边形是菱形是解题的关键.20.(1);(2)x=﹣1.5.【解析】【分析】(1)根据0指数幂、特殊的三角函数值、绝对值及负整数指数幂即可解答.(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】(1)原式=132213+⨯-++=+(2)去分母得:x 2=x 2﹣2x ﹣3, 移项合并得:﹣2x =3, 解得:x =﹣1.5,经检验x =﹣1.5是原方程的解. 【点睛】本题考查了0指数幂、特殊的三角函数值、绝对值、负整数指数幂及解分式方程,掌握各种运算的法则是关键,解分式方程必须检验.21.(1)y =160(48)28(828)x x x x ⎧≤≤⎪⎨⎪-+≤⎩;(2)当每件的销售价格定为16元时,第一年年利润的最大值为44万元. 【解析】 【分析】(1)依据待定系数法,即可求出y (万件)与x (元/件)之间的函数关系式;(2)分两种情况进行讨论,当x =8时,s max =﹣20;当x =16时,s max =44;根据44>﹣20,可得当每件的销售价格定为16元时,第一年年利润的最大值为44万元. 【详解】解:(1)当4≤x≤8时,设y =kx,将A (4,40)代入得k =4×40=160, ∴y 与x 之间的函数关系式为y =160x; 当8<x≤28时,设y =k'x+b ,将B (8,20),C (28,0)代入得,820280k b k b +=⎧⎨+=''⎩, 解得k 1b 28=-⎧⎨='⎩,∴y 与x 之间的函数关系式为y =﹣x+28,综上所述,y =160(48)28(828)x x x x ⎧⎪⎨⎪-+<≤⎩剟;(2)当4≤x≤8时,s =(x ﹣4)y ﹣160=(x ﹣4)•160x ﹣100=640x-+60, ∵当4≤x≤8时,s 随着x 的增大而增大, ∴当x =8时,s max =640x-+60=﹣20; 当8<x≤28时,s =(x ﹣4)y ﹣80=(x ﹣4)(﹣x+28)﹣80=﹣(x ﹣100)2+44, ∴当x =16时,s max =44; ∵44>﹣20,∴当每件的销售价格定为16元时,第一年年利润的最大值为44万元. 【点睛】本题主要考查了反比例函数与二次函数的综合应用,在商品经营活动中,经常会遇到求最大利润,最大销量等问题,解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义;解题时注意,依据函数图象可得函数关系式为分段函数,解决问题时需要运用分类思想以及数形结合思想进行求解.22.(1)见解析;(2)见解析;(3)219天.【解析】【分析】(1)由题意,可得轻度污染的天数,即可补全条形统计图.(2)由题意,得优所占的圆心角的度数为:3÷30×360=36°,良所占的圆心角的度数为:15÷30×360=180°,轻度污染所占的圆心角的度数为:12÷30×360=144°.(3)由18÷30得出每天适合做户外运动的概率,再由得出的概率乘以365即可得到答案.【详解】解:(1)由题意,得轻度污染的天数为:30﹣3﹣15=12天.(2)由题意,得优所占的圆心角的度数为:3÷30×360=36°,良所占的圆心角的度数为:15÷30×360=180°,轻度污染所占的圆心角的度数为:12÷30×360=144°(3)该市居民一年(以365天计)适合做户外运动天数为:18÷30×365=219天.【点睛】本题考查条形统计图和扇形统计图,解题的关键是读懂条形统计图和扇形统计图中包含的信息. 23.【解析】【分析】根据乘法分配律去括号,合并同类项,代入求值即可【详解】解:原式=4x2y-2xy2-4x2y+xy2=-xy2,当x=-4,12y=时,原式=-(-4)×212⎛⎫⎪⎝⎭=1.【点睛】此题考查整式的加减-化简求值,掌握运算法则是解题关键24.(1)26;(2)每件商品应降价10元时,该商店每天销售利润为1200元;(3)当每件商品降价15元时,该商店每天销售利润最大值为1250元.【解析】【分析】(1)根据题意销售单价每降低1元,平均每天可多售出2件,计算即可.(2)设出设每件商品应降价x元时,该商店每天销售利润为1200元,根据题意列出方程求解即可. (3)根据题意设设每件商品降价n元时,该商店每天销售利润为y元,再根据一元二次方程求解最大值即可. 【详解】(1)若降价3元,则平均每天销售数量为20+2×3=26件. 故答案为:26;(2)设每件商品应降价x 元时,该商店每天销售利润为1200元,根据题意,得(40﹣x )(20+2x )=1200整理,得x 2﹣30x+200=0, 解得:x 1=10,x 2=20 要求每件盈利不少于25元 ∴x 2=20应舍去,解得x =10答:每件商品应降价10元时,该商店每天销售利润为1200元. (3)设每件商品降价n 元时,该商店每天销售利润为y 元 则:y =(40﹣n )(20+2n ) y =﹣2n 2+60n+800 n =﹣2<0 ∴y 有最大值当n =15时,y 有最大值=1250元,此时每件利润为25元,符合题意 即当每件商品降价15元时,该商店每天销售利润最大值为1250元. 【点睛】本题主要考查一元二次方程的应用问题,特别注意函数的取值范围,再求最大值是要先分析函数的取值范围,在计算函数值的最大值.25.(1)k=3;D (1,3);(2)m+3n=9 【解析】 【分析】 (1)先根据AO 3BC 2=,BC =2得出OA 的长,再根据点B 、C 的横坐标都是3可知BC ∥AO ,故可得出B 点坐标,再根据点B 在反比例函数ky (x 0)x=>的图象上可求出k 的值,由AC ∥x 轴可设点D (t ,3)代入反比例函数的解析式即可得出t 的值,进而得出D 点坐标;(2)过点A′作EF ∥OA 交AC 于E ,交x 轴于F ,连接OA′,根据AC ∥x 轴可知∠A′ED=∠A′FO=90°,由相似三角形的判定定理得出△DEA′∽△A′FO,设A′(m ,n ),可得出31m n n m -=-,再根据勾股定理可得出m 2+n 2=9,两式联立可得出m 3n +的值.【详解】 解:(1)∵AO 3BC 2=,BC =2, ∴OA =3,∵点B 、C 的横坐标都是3, ∴BC ∥AO , ∴B (3,1), ∵点B 在反比例函数ky (x 0)x=>的图象上, ∴13k=,解得k =3,∵AC∥x轴,∴设点D(t,3),∴3t=3,解得t=1,∴D(1,3);(2)过点A′作EF∥OA交AC于E,交x轴于F,连接OA′(如图所示),∵AC∥x轴,∴∠A′ED=∠A′FO=90°,∵∠OA′D=90°,∴∠A′DE=∠OA′F,∴△DEA′∽△A′FO,设A′(m,n),∴31 m nn m-=-,又∵在Rt△A′FO中,m2+n2=9,∴m+3n=9.【点睛】本题考查的是反比例函数综合题,涉及到勾股定理、相似三角形的判定与性质、反比例函数图象上点的坐标特点等知识,难度适中.。
【20套试卷合集】寿光现代中学2019-2020学年数学高一上期中模拟试卷含答案

2019-2020学年高一上数学期中模拟试卷含答案一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U ={1,2,3,4,5,6},设集合P ={1,2,3,4},集合Q ={3,4,5},P∩(∁U Q)( ) A.{1,2,3,4,6} B.{1,2,3,4,5} C.{1,2,5} D.{1,2}2.设f :x→l og 2x 是集合A 到集合B 的一一映射,若A ={1,2,4},则A∩B 等于( ) A.{1} B.{2} C.{1,2} D.{1,4}3.已知集合P ={y|y =(12)x ,x>0},Q ={x|y =lg(2x -x 2)},则(∁R P)∩Q 为 ( )A.[1,2)B.(1,+∞)C.[2,+∞)D.[1,+∞)4.设函数f(x)=⎩⎪⎨⎪⎧x 2-4x +6,x≥0,x +6,x<0,则不等式f(x)>f(1)的解集是 ( )A.(-3,1)∪(3,+∞)B.(-3,1)∪(2,+∞)C.(-1,1)∪(3,+∞)D.(-∞,-3)∪(1,3)5.偶函数f(x)在区间[0,a](a >0)上是单调函数,且f(0)·f(a)<0,则方程f(x)=0在区间[-a ,a]内根的个数是 ( )A.3B.2C.1D.0 6.函数f(x)=ln3x 2-2x的零点一定位于区间 ( ) A.(1,2) B.(2,3) C.(3,4) D.(4,5)7.函数f(x)对任意x ∈R ,满足f(x)=f(2-x).如果方程f(x)=0恰有2016个实根,则所有这些实根之和为 ( )A .0B .2016C .4032D .8064 8.2lg2-lg125的值为( ) A .1 B .2 C .3 D .4 9.设函数f(x)=⎩⎪⎨⎪⎧2xx ∈(-∞,2],log 2x x ∈(2,+∞).则满足f(x)=4的x 的值是 ( )A .2B .16C .2或16D .-2或1610.已知()f x 是定义在(,)-∞+∞上的偶函数,且在(,0]-∞上是增函数,设4(log 7)a f =,12(log 3)b f =, 1.6(2)c f =,则,,a b c 的大小关系是 ( )A.c a b <<B.c b a <<C.b c a <<D.a b c <<11.奇函数f(x),偶函数g(x)的图象分别如图1、2所示,方程f(g(x))=0,g(f(x))=0的实根个数分别为a ,b ,则a +b = ( ) A .14 B .10 C .7 D .312.已知函数f(x)在R 上是单调函数,且满足对任意x ∈R ,都有f[f(x)-3x]=4,则f(2)的值是( )A.4 B.8 C.10 D.12二、填空题:本大题共4小题,每小题5分,共20分,将答案填在答题纸上.13.若A={x|22x-1≤14},B={x|log116x≥12},实数集R为全集,则(∁R A)∩B=________.14.已知定义在R上的奇函数f(x)满足f(x)=x2+2x(x≥0),若f(3-a2)>f(2a),则实数a的取值范围是______.15.已知函数f(x)=|2x-1|的图象与直线y=a有两个公共点,则a的取值范围是________.16.已知幂函数f(x)=x m2-2m-3(m∈N*)的图象与x轴,y轴均无交点且关于原点对称,则m=________.三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知全集U=R,集合A={x|log2(3-x)≤2},集合B={x|5x+2≥1}.(1)求A、B;(2)求(∁U A)∩B.18.(本小题满分12分)A={x|x2-2x-8<0},B={x|x2+2x-3>0},C={x|x2-3ax+2a2<0}.(1)求A∩B;(2)试求实数a的取值范围,使C⊆(A∩B).19.(本小题满分12分)已知函数f(x)=x2-4x+a+3,a∈R.(1)若函数y=f(x)的图象与x轴无交点,求a的取值范围;(2)若函数y=f(x)在[-1,1]上存在零点,求a的取值范围;(3)设函数g(x)=bx+5-2b,b∈R.当a=0时,若对任意的x1∈[1,4],总存在x2∈[1,4],使得f(x1)=g(x2),求b的取值范围.20.(本小题满分12分)“城中观海”是近年来国内很多大中型城市内涝所致的现象,究其原因,除天气因素、城市规划等原因外,城市垃圾杂物也是造成内涝的一个重要原因.暴雨会冲刷城市的垃圾杂物一起进入下水道,据统计,在不考虑其他因素的条件下,某段下水道的排水量V(单位:立方米/小时)是杂物垃圾密度x(单位:千克/立方米)的函数.当下水道的垃圾杂物密度达到2千克/立方米时,会造成堵塞,此时排水量为0;当垃圾杂物密度不超过0.2千克/立方米时,排水量是90立方米/小时;研究表明,0.2≤x≤2时,排水量V 是垃圾杂物密度x 的一次函数. (1)当0≤x≤2时,求函数V(x)的表达式;(2)当垃圾杂物密度x 为多大时,垃圾杂物量(单位时间内通过某段下水道的垃圾杂物量,单位:千克/小时)f(x)=x·V(x)可以达到最大,求出这个最大值.21.(本小题满分12分)已知函数f(x)=log 4(4x+1)+2kx(k ∈R)是偶函数. (1)求k 的值;(2)若方程f(x)=m 有解,求m 的取值范围.22.(本小题满分12分) 已知函数223()()mm f x x m -++=∈Z 为偶函数,且在(0,)+∞上为增函数.(1)求m 的值,并确定()f x 的解析式;(2)若()log [()](0a g x f x ax a =->且1)a ≠,是否存在实数,a 使()g x 在区间[2,3]上的最大值为2,若存在,求出a 的值,若不存在,请说明理由.一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.D2.C3.A4.A5.B6.A7.B8.B9.C 10.B 11.B 12. C二、填空题:本大题共4小题,每小题5分,共20分,将答案填在答题纸上.13.{x|0<x≤14} 14.(-3,1) 15.(0,1) 16.2三、解答题本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)解析(1)由已知得log 2(3-x)≤log 24,∴⎩⎪⎨⎪⎧3-x≤4,3-x>0,解得-1≤x<3,∴A ={x|-1≤x<3}.由5x +2≥1,得(x +2)(x -3)≤0,且x +2≠0,解得-2<x≤3.∴B ={x|-2<x≤3}.……5分(2)由(1)可得∁U A ={x|x<-1或x≥3}.故(∁U A)∩B={x|-2<x<-1或x =3}.10分18.(本小题满分12分)解析(1)依题意得A ={x -2<x<4},B ={x|x>1或x<-3},∴A∩B={x|1<x<4}.6分(2)①当a =0时,C =∅,符合C ⊆(A∩B);②当a>0时,C ={x|a<x<2a},要使C ⊆(A∩B),则⎩⎪⎨⎪⎧a≥12a≤4,解得1≤a≤2;③当a<0时,C ={x|2a<x<a},∵a<0,C ⊆(A∩B)不可能成立,∴a<0不符合题设.∴综上所述得:1≤a≤2或a =0. ……12分19.(本小题满分12分)解析(1)∵f(x)的图象与x 轴无交点,∴Δ=16-4(a +3)<0,∴a>1.……3分(2)∵f(x)的对称轴为x =2,∴f(x)在[-1,1]上单调递减,欲使f(x)在[-1,1]上存在零点,应有⎩⎪⎨⎪⎧f(1)≤0,f(-1)≥0.即⎩⎪⎨⎪⎧a≤0,8+a≥0,∴-8≤a≤0. ……7分(3)若对任意的x 1∈[1,4],总存在x 2∈[1,4],使f(x 1)=g(x 2),只需函数y =f(x)的值域为函数y =g(x)值域的子集即可.∵函数y =f(x)在区间[1,4]上的值域是[-1,3],当b>0时,g(x)在[1,4]上的值域为[5-b,2b +5],只需⎩⎪⎨⎪⎧5-b≤-1,2b +5≥3,∴b≥6;当b =0时,g(x)=5不合题意,当b<0时,g(x)在[1,4]上的值域为[2b +5,5-b],只需⎩⎪⎨⎪⎧2b +5≤-1,5-b≥3,∴b≤-3.综上知b 的取值范围是b≥6或b≤-3.12分20.(本小题满分12分)解析当0.2≤x≤2时,排水量V 是垃圾杂物密度x 的一次函数,设为V(x)=mx +n ,将(0.2,90)、(2,0)代入得V(x)=-50x +100,V(x)=⎩⎪⎨⎪⎧,-50x +……6分(2)f(x)=x·V(x)=⎩⎪⎨⎪⎧,-50x(x -2)当0≤x≤0.2时,f(x)=90x ,最大值为1.8千克/小时;当0.2≤x≤2时,f(x)=50x(2-x)≤50,当x =1时,f(x)取到最大值50,所以,当杂物垃圾密度x =1千克/立方米,f(x)取得最大值50千克/小时.……12分21.(本小题满分12分)解析(1)由函数f(x)是偶函数可知,f(-x)=f(x),∴log 4(4x+1)+2kx =log 4(4-x+1)-2kx ,即log 44x+14-x +1=-4kx ,∴log 44x=-4kx ,∴x =-4kx ,即(1+4k)x =0,对一切x ∈R 恒成立,∴k =-14.……6分(2)由m =f(x)=log 4(4x+1)-12x =log 44x+12x =log 4(2x +12x ),∵2x >0,∴2x+12x ≥2,∴m≥log 42=12.故要使方程f(x)=m 有解,m 的取值范围为[12,+∞).……12分22.(本小题满分12分) 已知函数223()()mm f x x m -++=∈Z 为偶函数,且在(0,)+∞上为增函数.(1)求m 的值,并确定()f x 的解析式;(2)若()log [()](0a g x f x ax a =->且1)a ≠,是否存在实数,a 使()g x 在区间[2,3]上的最大值为2,若存在,求出a 的值,若不存在,请说明理由. 解析试题分析:(1)由条件幂函数223()()m m f x x m -++=∈Z ,在(0,)+∞上为增函数,得到 2230m m -++>解得 31,2m -<<2分 又因为 ,m Z ∈ 所以0m =或1. 3分 又因为是偶函数当0m =时,3(),f x x =不满足,()f x 为奇函数; 当1m =时,2(),f x x =满足()f x 为偶函数; 所以2().f x x = 6分(2)2()log (),a g x x ax =-令2()h x x ax =-,由()0h x >得:(,0)(,)x a ∈-∞+∞,()g x 在[2,3]上有定义,02a ∴<<且1,a ≠ 2()h x x ax ∴=-在[2,3]上为增函数.7分当12a <<时,max ()(3)log (93)2,a g x g a ==-= 2390a a a +-=⇒=因为12,a <<所以a =分 当01a <<时,max ()(2)log (42)2,a g x g a ==-=22401a a a ∴+-=∴=- 01,a <<∴此种情况不存在. 11分综上,存在实数32a -+=,使()g x 在区间[2,3]上的最大值为2. 12分2019-2020学年高一上数学期中模拟试卷含答案一.选择题:(12×3=36分)1.已知集合{}1,3,5,7,9A =,{}0,3,6,9,12B =,则()N A B =ðI ( ) (A ){}1,2,3 (B ){}1,3,9 (C ){}1,5,7 (D ){}3,5,72.已知集合2{|{|2}A x y B y y x x ===-,则A B =I ( )(A ){}22y y -≤≤ (B ){}1x x ≥- (C ){}12y y -≤≤ (D ){}2x x ≥3. 已知20.3a -=,0.312b ⎛⎫= ⎪⎝⎭,0.212c ⎛⎫= ⎪⎝⎭,则,,a b c 的大小关系是 ( )(A )a b c >> (B )a c b >> (C )c b a >> (D )b a c >>4.关于x 的不等式(1)(2)0mx x --<的解为12x m<<,则m 的取值范围是 ( ) (A )12m < (B )0m > (C )102m << (D )02m <<5.函数||()21x f x ax =++为偶函数,则a 等于 ( )(A )1a =- (B )0a = (C )1a = (D )1a > 6.函数1,[0,)1x y x x -=∈+∞+的值域为 ( ) (A )[1,1)- (B )(1,1]- (C )[1,)-+∞ (D )[0,)+∞7.若()12g x x =-,1[()]()3xf g x =,则(4)f = ( )(A )127(B )27- (C )9 (D )8.已知函数23,0(),0x x f x x x ⎧≥=⎨<⎩,若()9f x ≤,则x 的取值范围为 ( )(A )(,2]-∞ (B )[2,3]- (C )[3,2]- (D )[2,3] 9.,a b R ∈,记,min{,},a a b a b b a b≤⎧=⎨⎩>,函数2()min{2,}()f x x x x R =-∈的最大值( )(A) 1 (B)12 (C ) 32(D) 2 10.已知函数2()2(3)4f x mx m x =--+,()g x x =,若对于任一实数x ,()f x 与()g x至少有一个为正数,则实数m 的取值范围是 ( ) (A )(0,3] (B )(0,9) (C )(1,9) (D )(,9]-∞11.已知函数()f x 是定义在R 上的增函数,则函数()11y f x =--的图象可能是 ( )12.已知2()2||f x x x =-,则满足1[()]2f f x =-的实数x 的个数为 ( ) (A )2 (B )4 (C )6 (D )8二.填空题:(5×3=15分)13.已知函数20(),0x f x x x ≤=>⎪⎩,则[(1)]f f -= .14.函数||112x y -+⎛⎫= ⎪⎝⎭的单调增区间是 .15.若奇函数()()f x x R ∈满足()()()()22,22f f x f x f =+=+,则()5f 的值是 . 16.若0,0x y >>,且满足4x y xy +=,则y x +的最小值为 .17.已知函数3()f x x x =+,当[3,6]x ∈时,不等式2(6)[(3)]f x f m x m +≥-+恒成立,则实数m 的最大值为 .三.解答题(8+9+10+10+12=49分) 18.(8分)计算下列各题:(Ⅰ)求值:1121122200.25334753(0.0081)(9)()81(3)27838-----⎡⎤⎡⎤--⨯⨯⨯+-⎢⎥⎢⎥⎣⎦⎣⎦.(Ⅱ)若x =3211x x x -++错误!未找到引用源。
山东省寿光市现代中学2019-2020学年中考数学模拟考试试题

山东省寿光市现代中学2019-2020学年中考数学模拟考试试题一、选择题1.风力发电机可以在风力作用下发电.如图的转子叶片图案绕中心旋转n°后能与原来的图案重合,那么n的值可能是()A.45B.60C.90D.1202.若反比例函数y=kx(k≠0)的图象经过点P(﹣1,3),则该函数的图象不经过的点是( )A.(3,﹣1)B.(1,﹣3)C.(﹣1,3)D.(﹣1,﹣3)3.如图,在等腰直角三角形ABC中,∠C=90°,AC=6,D是BC上一点,若tan∠DAB=15,则AD的长为()A. C. D.84.函数y=的自变量x的取值范围在数轴上可表示为()A. B. C. D.5.下列计算正确的是()A. B.C. D.6.如图,要修建一条公路,从A村沿北偏东75°方向到B村,从B村沿北偏西25°方向到C村.若要保持公路CE与从A村到B村的方向一致,则应顺时针转动的度数为()A.50°B.75°C.100°D.105°7.已知|a|=3,b2=16,且|a+b|≠a+b,则代数式a﹣b的值为()A.1或7 B.1或﹣7 C.﹣1或﹣7 D.±1或±78.一元二次方程x(x﹣2)=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根9.规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作,若,则该等腰三角形的顶角为( )A.B. C. D.10.如果a 2+2a ﹣1=0,那么代数式(a ﹣4a )•22a a -的值是( )A.1B.12D.211.已知7x =是方程27x ax -=的解,则a =( ) A .1B .2C .3D .712( ) A .2和3 B .3和4C .4和5D .5和6二、填空题13x 的取值范围是_____. 14.二次函数y =x 2-2x +2图像的顶点坐标是______.15.不等式组1024x x -≤⎧⎨-<⎩的整数解...是_______. 16.一种商品每件成本a 元,按成本增加30%定价,现因出现库存积压减价,按定价的80%出售,每件还能盈利_____元(结果用含a 的式子表示).17.在平面直角坐标系xOy 中,已知点P (﹣2,1)关于y 轴的对称点P′,点T (t ,0)是x 轴上的一个动点,当△P′TO 是等腰三角形时,t 的值是_____.18.计算___. 三、解答题19.2019年4月23日是“第二十四个世界读书日”,我市某中学发起了“读好书”活动.为了解九年级学生阅读“艺术类、科普类、文学类、军事类“这四类书籍的情况,数学老师随机抽查了该年级学生课外阅读的数量,绘制了下面不完整的条形图和扇形图. (1)求本次抽查中阅读科普类书籍的人数,并补充完整条形图;(2)小明要从这四类书籍中任选两类来阅读,请你用列表法或树状图求小明刚好选择科普类和军事类书籍的概率.20.某幼儿园购买了A ,B 两种型号的玩具,A 型玩具的单价比B 型玩具的单价少9元,已知该幼儿园用了3120元购买A 型玩具的件数与用4200元购买B 型玩具的件数相等. (1)该幼儿园购买的A ,B 型玩具的单价各是多少元?(2)若A ,B 两种型号的玩具共购买200件,且A 型玩具数量不多于B 型玩具数量的3倍,则购买这些玩具的总费用最少需要多少元?21.(1)计算:(-2)2-()0 . (2)化简:(a+2)(a-2)-a (a-4).22.某校一课外小组准备进行“绿色环保”的宣传活动,需要印刷一批宣传单,学校附近有甲、乙两家印刷社,甲印刷社收费y (元)与印数x (张)的函数关系是:y =0.15x ;乙印刷社收费y (元)与印数x (张)的函数关系如图所示:(1)写出乙印刷社的收费y (元)与印数x (张)之间的函数关系式;(2)若该小组在甲、乙两印刷社打印了相同数量的宣传单共用去70元,则共打印多少张宣传单? (3)活动结束后,市民反映良好,兴趣小组决定再加印1500张宣传单,若在甲、乙印刷社中选一家,兴趣小组应选择哪家印刷社比较划算?23.解不等式组:273(1)423133x x x x -<-⎧⎪⎨+<-⎪⎩,并将解集表示在数轴上.24.公司有345台电脑需要一次性运送到某学校,计划租用甲、乙两种货车共8辆已知每辆甲种货车一次最多运送电脑45台、租车费用为400元,每辆乙种货车一次最多运送电脑30台、租车费用为280元 (Ⅰ)设租用甲种货车x 辆(x 为非负整数),试填写下表. 表一:25.一个无人超市仓库的货物搬运工作全部由机器人A 和机器人B 完成,工作记录显示机器人A 比机器人B 每小时多搬运50件货物.机器人A 搬运2000件货物与机器人B 搬运1600件货物所用的时间相等,求机器人A 和机器人B 每小时分别搬运多少件货物?【参考答案】*** 一、选择题13.x≥﹣3且x≠0. 14.(1,1) 15.-1,0,1 16.04a .17.54或418.4 三、解答题19.(1)阅读科普类书籍的人数为18人,补全图形见解析;(2)小明刚好选择科普类和军事类书籍的概率为16. 【解析】 【分析】(1)根据阅读文学类的人数除以占的百分比得到调查的总学生数,进而求出阅读科普类的人数,补全条形统计图即可;(2)列表得出所有等可能的情况数,找出小明刚好选择科普类和军事类书籍的情况,即可求出所求的概率. 【详解】(1)由题意可得:12÷25%=48(人),故阅读科普类书籍的人数为:48﹣10﹣12﹣8=18(人), 补全图形得:;(2)列表或画出树状图得:类和军事类书籍的概率为:21 126=. 【点睛】此题考查了列表法与树状图法、条形统计图,用到的知识点为:概率=所求情况数与总情况数之比. 20.(1)该幼儿园购买的A ,B 型玩具的单价各是26元,35元;(2)购买这些玩具的总费用最少需要5650元. 【解析】 【分析】(1)根据题意可以得到相应的分式方程,从而可以求得该幼儿园购买的A ,B 型玩具的单价各是多少元;(2)根据题意可以得到费用与购买A 型和B 型玩具之间的关系,从而可以解答本题. 【详解】解:(1)设购买A 型玩具的单价是x 元,则购买B 型玩具的单价是(x+9)元,312042009x x =+, 解得,x =26,经检验,x =26是原分式方程的解, ∴x+9=35,答:该幼儿园购买的A ,B 型玩具的单价各是26元,35元;(2)设购买A 型玩具a 件,则购买B 型玩具(200﹣a )件,所需费用为w 元, w =26a+35(200﹣a )=﹣9a+7000, ∵a≤3(200﹣a ), ∴a≤150,∴当a =150时,w 取得最小值,此时w =﹣9×150+7000=5650, 答:购买这些玩具的总费用最少需要5650元. 【点睛】本题考查一次函数的应用、分式方程的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和分式方程的知识解答. 21.(1)3+2)4a-4 【解析】 【分析】(1)先计算负整数指数幂,二次根式的化简,零指数幂,然后计算加减法. (2)利用平方差公式和单项式乘多项式法则解答. 【详解】(1)原式=4+2(2)原式=a 2-4-a 2+4a =4a-4. 【点睛】考查了平方差公式,实数的运算,单项式乘多项式等知识点.22.(1)0.2(0500)0.150(50)x x y x x ⎧=⎨+>⎩剟;(2)共打印400张宣传单;(3)兴趣小组决定再加印1500张宣传单,兴趣小组应选择乙印刷社比较划算【解析】 【分析】(1)分段函数:①0≤x≤500;②x>500;(2)根据函数关系是列方程即可解答; (3)根据两个函数关系是分类讨论,即可解答 【详解】解:(1)当0≤x≤500,设y =k 1x ,由题意可知500k 1=100,解得k 1=0.2,即y =0.2x ;当x >500时,设y =k 2x+b ,根据题意得22500100700120k b k b +=⎧⎨+=⎩ ,2k 0.1b 50=⎧⎨=⎩解得,即y =0.1x+50,故乙印刷社的收费y (元)与印数x (张)之间的函数关系式为:y =0.2(0500)0.150(50)x x x x <<⎧⎨+>⎩;(2)根据题意得:0.15x+0.2x =70,解得x =200, 故共打印400张宣传单;(3)当0≤x≤500时,0.15x <0.20x ,选择甲印刷社; 当x >500时, 若0.15x <0.1x+50, 解得:x <1000,即500<x <1000,选择甲印刷社划算; 若0.15x =0.1x+50, 解得:x =1000,即x =1000.选择两家印刷社一样划算 若0.15x >0.1x+50, 解得:x >1000,即x >1000,选择乙印刷社划算综上所述,0≤x<1000时选择甲印刷社划算,x =1000时选择两家印刷社一样划算,x >1000时选择乙印刷社划算.答:兴趣小组决定再加印1500张宣传单,兴趣小组应选择乙印刷社比较划算. 【点睛】本题考查一次函数的应用及一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题意,找出题目蕴含的数量关系解决问题. 23.﹣4<x <﹣1 【解析】 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集. 【详解】解不等式2x ﹣7<3(x ﹣1),得:x >﹣4, 解不等式43 x+3<1﹣23x ,得:x <﹣1, 则不等式组的解集为﹣4<x <﹣1, 将解集表示在数轴上如下:【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.24.(Ⅰ)表一:315,45x ,30,30240x -+,表二:1200,400x ,14002802240x -+;(Ⅱ)能完成此项运送任务的最节省费用的租车方案为甲种货车7辆、乙种货车1辆,见解析. 【解析】 【分析】(Ⅰ)根据计划租用甲、乙两种货车共8辆,已知每辆甲种货车一次最多运送机器45台、租车费用为400元,每辆乙种货车一次最多运送机器30台、租车费用为280元,可以分别把表一和表二补充完整; (Ⅱ)设租用甲种货车x 辆时,两种货车的总费用为y 元;根据(Ⅰ)中的数据和y=租用甲车的费用+租用乙车的费用,得出y 与x 的函数关系式,利用函数的增减性即可得出. 【详解】解:(Ⅰ)由题意可得,在表一中,当甲车7辆时,运送的机器数量为:45×7=315(台),则乙车8-7=1辆,运送的机器数量为:30×1=30(台),当甲车x 辆时,运送的机器数量为:45×x=45x(台),则乙车(8-x )辆,运送的机器数量为:30×(8-x )=-30x+240(台),在表二中,当租用甲货车3辆时,租用甲种货车的费用为:400×3=1200(元),则租用乙种货车8-3=5辆,租用乙种货车的费用为:280×5=1400(元),当租用甲货车x 辆时,租用甲种货车的费用为:400×x=400x(元),则租用乙种货车(8-x )辆,租用乙种货车的费用为:280×(8-x )=-280x+2240(元), 故答案为:表一:315,45x ,30,-30x+240; 表二:1200,400x ,1400,-280x+2240;(Ⅱ)能完成此项运送任务的最节省费用的租车方案是甲车7辆,乙车1辆, 理由如下:设租用甲种货车x 辆时,两种货车的总费用为y 元; ∴()40028022401202240y x x x =+-+=+, ∵()4530240345x x +-+≥,解得7x ≥. ∵1200>,∴y 随x 的增大而增大∴当7x =时,y 取得最小值,此时8-x=1答:能完成此项运送任务的最节省费用的租车方案为甲种货车7辆、乙种货车1辆. 【点睛】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件,列出相应的函数关系式和不等式,熟练掌握一次函数的性质.25.A 型机器人每小时搬运250件,B 型机器人每小时搬运200件. 【解析】 【分析】此题首先由题意得出等量关系,即A 型机器人搬运2000件货物与B 型机器人搬运1600件货物所用时间相等,列出分式方程,从而解出方程,最后检验并作答. 【详解】解:设B 型机器人每小时搬运x 件货物,则A 型机器人每小时搬运(x+50)件货物. 依题意列方程得:20001600.50x x=+ 解得:x =200.经检验x =200是原方程的根且符合题意. 当x =200时,x+50=250.答:A 型机器人每小时搬运250件,B 型机器人每小时搬运200件. 【点睛】本题主要考查分式方程的应用,解题的关键是熟练掌握列分式方程解应用题的一般步骤,即:①根据题意找出等量关系,②列出方程,③解出分式方程,④检验,⑤作答.注意:分式方程的解必须检验.。
山东省寿光市实验中学2019-2020学年中考数学模拟试卷

山东省寿光市实验中学2019-2020学年中考数学模拟试卷一、选择题1.关于x 的方程2(5)410a x x ---=有实数根,则a 满足( )A .1a ≥B .1a >且5a ≠C .1a ≥且5a ≠D .5a ≠ 2.下列命题中真命题是( ) A .若a 2=b 2,则a=b B .4的平方根是±2C .两个锐角之和一定是钝角D .相等的两个角是对顶角3.如图,将△ABC 绕C 顺时针旋转,使点B 落在AB 边上的点B′处,此时,点A 的对应点A′恰好落在BC 边的延长线上,则下列结论中错误的是( )A.∠BCB′=∠ACA′B.∠ACB =2∠BC.B′C 平分∠BB′A′D.∠B′CA=∠B′AC4.在Rt △ABC 中,∠ACB =90°,AB =2,AC =1,则cosA 的值是( )A .12BCD 5.现有以下命题:①斜边中线和一个锐角分别对应相等的两个直角三角形全等;②一组对边平行,另一组对边相等的四边形是平行四边形;③在圆中,平分弦的直径垂直于弦;④平行于同一条直线的两直线互相平行.其中真命题的个数为( )A .1个B .2个C .3个D .4个 6.关于x 的方程(m ﹣2)x 2﹣4x+1=0有实数根,则m 的取值范围是( )A .m≤6B .m <6C .m≤6且m≠2D .m <6且m≠2 7.下列二次根式中是最简二次根式的是( )A B C D 8.有一张矩形ABCD 的纸片(AB <BC ),按如图所示的方式,在A ,C 两端截去两个矩形AEFG 和CE′F′G′,且AE =CE′,AG =CG′,再分别过EF ,FG ,E′F′,F′G′四边的中点,沿平行于原矩形各边的方向剪裁,得到如图的阴影部分,分别记为L 1,L 2.若L 1的周长是矩形ABCD 的34,L 2的周长是矩形ABCD 的35,则AE AG的值为( )A .54B .85C .32D .2099.如果关于x 的一元二次方程220x x k -+=有两个不相等的实数根,则k 的取值范围是( )A .1k <B .1k ≤C .1k >D .1k ³ 10.如图,正方形ABCD 的边长为8,M 在DC 上,且DM 2=,N 是AC 上一动点,则DN MN +的最小值为( )A .6B .8C .10D .1211.2019年1月3日上午10时26分,嫦娥四号探测器成功着陆在月球背面,开启了月球探测的新篇章,中国人迈开了走向星辰大海的第一步.如图是某正方体的展开图,在原正方体上“星”字所在面相对的面上的汉字是( )A .走B .向C .大D .海 12.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形共有( )个〇.A .6055B .6056C .6057D .6058二、填空题 13.如图,四边形ABCD 是⊙O 的内接四边形,点E 在AB 的延长线上,BF 是∠CBE 的平分线,∠ADC=100°,则∠FBE=_______.14.一组数据2,x ,4,3,3的平均数是3,则这组数据的中位数是__.15.如果有理数x ,y 满足方程组2214x y x y -=⎧⎨+=⎩那么x 2-y 2=________. 16.﹣124的倒数是____.17.如图,▱ABCD 中,E 是AD 边上一点,,CD=3,,∠A=45°,点P 、Q 分别是BC ,CD 边上的动点,且始终保持∠EPQ=45°,将△CPQ 沿它的一条边翻折,当翻折前后两个三角形组成的四边形为菱形时,线段BP 的长为______.18.在实数范围内因式分解:34a a -=__________.三、解答题19.小刚和小强两位同学参加放风筝比赛.当他俩把风筝线的一端固定在同一水平的地面时,测得一些数据如表.2.2361≈≈≈).20.近些年全国各地频发雾霾天气,给人民群众的身体健康带来了危害,某商场看到商机后决定购进甲、乙两种空气净化器进行销售.若每台甲种空气净化器的进价比每台乙种空气净化器的进价少300元,且用6000元购进甲种空气净化器的数量与用7500元购进乙种空气净化器的数量相同.(1)求每台甲种空气净化器、每台乙种空气净化器的进价分别为多少元?(2)若该商场准备进货甲、乙两种空气净化器共30台,且进货花费不超过42000元,问最少进货甲种空气净化器多少台?21.某商场将进价为1800元的电冰箱以每台2400元售出,平均每天能售出8台,为了配合国家"家电下乡”政策的实施,商场决定采取适当的降价措施,调查表明:这种冰箱的售价每降价50元,平均每天就能多售出4台(1)设每台冰箱降价x元,商场每天销售这种冰箱的利润为y元,求y与x之间的函数关系式(不要求写自变量的取值范围)(2)商场想在这种冰箱的销售中每天盈利8000元,同时又要使顾客得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少元?22.图①、图②、图③都是4×4的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,线段AB的顶点都在格点上.(1)利用图①以AB为边画一个面积最大的平行四边形,且这个平行四边形的其他两个顶点在格点上;(2)利用图②以AB为边画一个面积为4的平行四边形,且这个平行四边形的其他两个顶点在格点上;(3)利用图③以AB为边画一个面积为4的菱形,且这个菱形的其他两个顶点在格点上。
山东省寿光市现代中学2020届数学中考模拟试卷

山东省寿光市现代中学2020届数学中考模拟试卷一、选择题1.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x 名同学,根据题意,列出方程为( )A .x(x+1)=1035B .x(x-1)=1035C .12x(x+1)=1035 D .12x(x-1)=1035 2.如图,在等腰直角三角形ABC 中,∠C=90°,AC=6,D 是BC 上一点,若tan ∠DAB=15,则AD 的长为( )A.C. D.83.下面的统计图反映了我国五年来农村贫困人口的相关情况,其中“贫困发生率”是指贫困人口占目标调查人口的百分比.(以上数据来自国家统计局)根据统计图提供的信息,下列推断不合理...的是( ) A.与2017年相比,2018年年末全国农村贫困人口减少了1386万人 B.2015~2018年年末,与上一年相比,全国农村贫困发生率逐年下降C.2015~2018年年末,与上一年相比,全国农村贫困人口的减少量均超过1000万D.2015~2018年年末,与上一年相比,全国农村贫困发生率均下降1.4个百分点 4.函数243y x x =---图象的顶点坐标是( ). A .(2,-1) B .(2,1)C .(-2,-1)D .(-2,1)5.如图,将ABC 绕点A 逆时针旋转110,得到ADE ,若点D 在线段BC 的延长线上,则ADE ∠的大小为( )A .55B .50C .45D .356.如图,△ABC 中,AD ⊥BC 于点D ,AD=ABC S ∆=tanC 的值为( )A .13B .12C D 7.如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,且点C 、D 在AB 的异侧,连接AD 、BD 、OD 、OC ,若∠ABD =15°,且AD ∥OC ,则∠BOC 的度数为( )A.120°B.105°C.100°D.110°8.分式方程1232x x =-的解为( ) A .25x =-B .1x =-C .1x =D .25x =9.如图,在扇形OAB 中,点C 是弧AB 上任意一点(不与点A ,B 重合),CD ∥OA 交OB 于点D ,点I 是△OCD 的内心,连结OI ,BI .若∠AOB=β,则∠OIB 等于( )A .180°12-β B .180°-β C .90°+12β D .90°+β10.木匠有32米的木材,想要在花圃周围做边界,以下四种设计方案中,设计不合理的是( )A .B .C .D .11.如图,已知BC 是圆柱底面的直径,AB 是圆柱的高,在圆柱的侧面上,过点A 、C 嵌有一圈路径最短的金属丝,现将圆柱侧面沿AB 剪开,所得的圆柱侧面展开图是( )A .B .C .D .12.如图,在△ABC 中,点D 是AB 边上的一点,若∠ACD =∠B .AD =1,AC =2,△ADC 的面积为S ,则△BCD 的面积为( )A .SB .2SC .3SD .4S二、填空题13.同时抛掷两枚硬币,恰好均为正面向上的概率是______. 14.已知2ab =,23a b -=-,则322344a b a b ab -+的值为______.15.如图,圆内接四边形ABCD 的边AB 过圆心O ,过点C 的切线与边AD 所在直线垂直于点M ,若∠ABC =65°,则∠ACD =_____°.16.在背面完全相同四张不透明的卡片,正面分别印有下列函数解析式:21,2,,21y y x y x y x x==-+==+,将它们背面朝上洗均匀后,从中抽取一张卡片,则抽到的函数图像不过第四象限的卡片的概率是__________.17.如图,一块试验田的形状是三角形(设其为△ABC ),管理员从BC 边上的一点D 出发,沿DC→CA→AB→BD 的方向走了一圈回到D 处,则管理员从出发到回到原处在途中身体转过_____°.18.用科学记数法表示0.00000093的结果是_______. 三、解答题19.校园安全受到全社会的广泛关注,某市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)在这次活动中抽查了多少名中学生?(2)若该中学共有学生1600人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”程度的人数.(3)若从对校园安全知识达到“了解程度的2个女生和2个男生中随机抽取2人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.20.如图,点A、B、C、D依次在同一条直线上,点E、F分别在直线AD的两侧,已知BE∥CF,∠A=∠D,AE=DF.(1)求证:四边形BFCE是平行四边形;(2)填空:若AD=7,AB=2.5,∠EBD=60°,当四边形BFCE是菱形时,菱形BFCE的面积是.21.(1)解不等式组:4(1)710853x xxx++⎧⎪-⎨-<⎪⎩…(2)化简:22242442x x xx x x x--+÷-+-22.某文化商店计划同时购进A、B两种仪器,若购进A种仪器2台和B种仪器3台,共需要资金1700元;若购进A种仪器3台,B种仪器1台,共需要资金1500元.(1)求A、B两种型号的仪器每台进价各是多少元?(2)已知A种仪器的售价为760元/台,B种仪器的售价为540元/台.该经销商决定在成本不超过30000元的前提下购进A、B两种仪器,若B种仪器是A种仪器的3倍还多10台,那么要使总利润不少于21600元,该经销商有哪几种进货方案?23.某商场销售一种小商品,每件进货价为190元.调查发现,当销售价为210元时,平均每天能销售8件;当销售价每降低2元时,平均每天就能多销售4件.设每件小商品降价x元,平均每天销售y件. (1)直接写出y与x之间的函数关系式(不必写出x的取值范围);(2)商场要想使这种小商品平均每天的销售利润达到280元,求每件小商品的销售价应定为多少元? (3)设每天的销售总利润为w元,求w与x之间的函数关系式;每件商品降价多少元时,每天的总利润最大?最大利润是多少?24.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y (件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系;(2)如果规定每天漆器笔筒的销售量不低于260件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3490元,试确定该漆器笔筒销售单价的范围.25.体育老师要从每班选取一名同学,参加学校的跳绳比赛.小静和小炳是跳绳能手,下面分别是小静、小炳各6次跳绳成绩统计图和成绩分析表小静、小炳各6次跳绳成绩分析表=;(2)结合以上信息,请你从两个不同角度评价这两位学生的跳绳水平.【参考答案】***一、选择题13.1 414.18 15.4016.3 417.36018.79.310-⨯ 三、解答题19.(1)80(2)400(3)23【解析】 【分析】(1)用“基本了解”的人数除以它所占的百分比得到调查的总人数;(2)计算出样本中“了解”程度的人数,然后用1600乘以基本中“了解”程度的人数的百分比可估计该中学学生中对校园安全知识达到“了解”程度的人数.(3)画树状图展示所有12种等可能的结果数,找出恰好抽到1个男生和1个女生的结果数,然后利用概率公式求解. 【详解】解:(1)32÷40%=80(名), 所以在这次活动中抽查了80名中学生; (2)“了解”的人数为80﹣32﹣18﹣10=20, 1600×2080=400, 所以估计该中学学生中对校园安全知识达到“了解”程度的人数为400人; (3)由题意列树状图:由树状图可知,在 4 名同学中随机抽取 2 名同学的所有等可能的结果有12 种,恰好抽到一男一女(记为事件A )的结果有8种, 所以P (A )=82123=. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.也考查了统计图. 20.(1)详见解析;(2)【解析】 【分析】(1)证明△ABE ≌△DCF ,继而得到BE =CF ,再结合BE//CF 即可解决问题.(2)利用全等三角形的性质证明AB =CD ,由菱形的性质求出EF 的长,即可解决问题. 【详解】 (1)∵BE ∥CF , ∴∠EBC =∠FCB , ∴∠EBA =∠FCD , 在△ABE 和△DCF 中,A D EBA FCD AE DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△DCF(AAS),∴BE=CF,又∵BE//CF,∴四边形BFCE是平行四边形;(2)连接EF交BC于O,如图所示:∵△ABE≌△DCF,∴AB=CD,∵AD=7,AB=DC=2.5,∴BC=AD﹣AB﹣DC=2,∵四边形BFCE是菱形,∠EBD=60°,EF⊥BC,OB=12BC=1,OE=OF,∴△CBE是等边三角形,∠BEO=30°,∴BE=BC=2,∴OE∴EF=∴菱形BFCE的面积=12BC×EF=12故答案为:【点睛】本题考查菱形的性质,全等三角形的判定和性质,平行四边形的判定等知识,熟练掌握相关知识是解题的关键.21.(1)﹣2≤x<72;(2)22xx-【解析】【分析】(1)根据解不等式组的方法可以解答本题;(2)根据分式的除法和加法可以解答本题.【详解】解:(1)4(1)710853x xxx++⎧⎪⎨--<⎪⎩①②…,由不等式①,得x≥﹣2,由不等式②,得x<,故原不等式组的解集是﹣2≤x<72;(2) 22242442x x xx x x x --+÷-+-2(2)(2)(2)1(2)2x x x x x x x+--=+⋅-- 212x x +=+- 222x x x ++-=-22xx =- 【点睛】本题考查分式的混合运算、解一元一次不等式组,解答本题的关键是明确它们各自的解答方法. 22.(1)A 、B 两种型号的仪器每台进价各是400元、300元;(2)有三种具体方案:①购进A 种仪器18台,购进B 种仪器64台;②购进A 种仪器19台,购进B 种仪器67台;③购进A 种仪器20台,购进B 种仪器70台. 【解析】 【分析】(1)设A 、B 两种型号的仪器每台进价各是x 元和y 元.此问中的等量关系:①购进A 种仪器2台和B 种仪器3台,共需要资金1700元;②购进A 种仪器3台几,B 种仪器1台,共需要资金1500元;依此列出方程组求解即可.(2)结合(1)中求得的结果,根据题目中的不等关系:①成本不超过30000元;②总利润不少于21 600元.列不等式组进行分析. 【详解】解:(1)设A 、B 两种型号的仪器每台进价各是x 元和y 元. 由题意得:23170031500x y x y +=⎧⎨+=⎩,解得:400300x y =⎧⎨=⎩.答:A 、B 两种型号的仪器每台进价各是400元、300元; (2)设购进A 种仪器a 台,则购进A 种仪器(3a+10)台.则有:400300(310)30000(760400)(540300)(310)21600a a a a ++⎧⎨-+-+⎩……,解得7101720913a ≤≤. 由于a 为整数,∴a 可取18或19或20. 所以有三种具体方案:①购进A 种仪器18台,购进B 种仪器64台; ②购进A 种仪器19台,购进B 种仪器67台; ③购进A 种仪器20台,购进B 种仪器70台. 【点睛】考查了二元一次方程组的应用,一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.注意:利润=售价﹣进价.23.(1)28y x =+;(2)当每件小商品的销售价定为200元或204元时,平均每天的销售利润可达到280元;(3)每件小商品降价8元时,每天的总利润最大,最大利润为288元. 【解析】 【分析】(1)根据销售单价是210元时平均每天销售量是8件,而销售价每降低2元,平均每天就可以多售出4件,即可得出关系式;(2)利用每件商品利润×销量=总利润,得出关系式求出即可;(3)由题意得出:w=(210-190-x )(8+2x )进而得出二次函数的最值即可得出答案. 【详解】解:⑴y 与x 之间的函数关系式为28y x =+. ⑵由题意可得:(28)(210190)280x x +--=. 整理得216600x x -+=. 解得12x 6,x 10==.2106204-=(元),21010200-=(元)答:当每件小商品的销售价定为200元或204元时,平均每天的销售利润可达到280元. ⑶由题意可得,2w (2x 8)(210190x)2(x 8)288=+--=-+∵20a =-<,抛物线开口向下,当8x =时,有最大值,最大值为288. 答:每件小商品降价8元时,每天的总利润最大,最大利润为288元. 【点睛】本题考查二次函数的实际应用,解题的关键是熟练掌握二次函数的实际应用.24.(1)10700y x =-+;(2)销售单价为44元时,每天获取的利润最大,3640W =最大元;(3)4456x ≤≤.【解析】 【分析】(1)可用待定系数法来确定y 与x 之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w 与x 的函数关系式,进而利用所获利润等于3490元时,对应x 的值,根据增减性,求出x 的取值范围. 【详解】(1)设y kx b =+y=k x+b ∴ 经过点(40,300),(55,150)4030055150k b k b +=⎧∴⎨+=⎩解得10700k b =-⎧⎨=⎩故y 与x 的关系式为:10700y x =-+ (2)30<44x ≤设利润为(30)(30)(10700)w x y x x =-⋅=--+221010002100010(50)4000w x x x =-+-=--+100-<∴x<50时,w 随x 的增大而增大, ∴当44x =时,3640W =最大 (2)由题意,得 -10x+700≥260, 解得x≤44, ∴30<x≤44,设利润为w=(x-30)•y=(x-30)(-10x+700), w=-10x 2+1000x-21000=-10(x-50)2+4000, ∵-10<0,∴x <50时,w 随x 的增大而增大,∴x=44时,w 最大=-10(44-50)2+4000=3640,答:当销售单价为44元时,每天获取的利润最大,最大利润是3640元; (3)w-150=-10x 2+1000x-21000-150=3490, -10(x-50)2=-360, x-50=±6, x 1=56,x 2=44, 如图所示,由图象得:当44≤x≤56时,捐款后每天剩余利润不低于3490元. 【点睛】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点. 25.(1)175;(2)见解析 【解析】 【分析】(1)根据中位数的概念求解可得; (2)可从各统计量分析求解,合理均可. 【详解】解:(1)成绩分析表中a =1781802+=175, 故答案为:175.(2)从中位数看,小静的中位数大于小炳的中位数,所以小静取得高分可能性较大; 从方差看,小炳的方差小于小静的方差,所以小炳成绩更为稳定. 【点睛】考查了折线统计图,用一个单位长度表示一定数量,用折线的上升或下降表示数量的多少和增减变化,容易看出数量的增减变化情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中学自主招生数学试卷一、选择题(本大题共10小题,共30.0分)1.给出四个实数,2,0,-1,其中无理数是()A. B. 2 C. 0 D.2.我国某国产手机使用了新一代移动SOC处理器麒麟980,麒麟980实现了基于Cortex-A76的开发商用,相较上一代处理器在表现上提升75%,在能效上提升58%,采用7nm制程工艺的手机芯片,在指甲盖大小的尺寸上塞进69亿个晶体管数据“69亿”用科学记数法表示为()A. B. C. D.3.如图是正方体的表面展开图,则与“2019”字相对的字是()A. 考B. 必C. 胜D.4.下列计算正确的是()A. B.C. D.5.九年级(15)班小姜同学所在小组的7名成员的中招体育成绩(单位:分)依次为70,65,63,68,64,68,69,则这组数据的众数与中位数分别是()A. 68分,68分B. 68分,65分C. 67分分D. 70分,65分6.某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.求甲、乙两种图书每本价格分别为多少元?我们设乙图书每本价格为x元,则可得方程()A. B.C. D.7.已知不等式≤<,其解集在数轴上表示正确的是()A.B.C.D.8.一个布袋里装有4个只有颜色不同的球,其中3个红球,1个白球.从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球,则两次摸到的球都是红球的概率是()A. B. C. D.9.如图,四边形OABC为矩形,点A,C分别在x轴和y轴上,连接AC,点B的坐标为(8,6),以A为圆心,任意长为半径画弧,分别交AC、AO于点M、N,再分别以M、N为圆心,大于MN长为半径画弧两弧交于点Q,作射线AQ交y轴于点D,则点D的坐标为()A. B. C. D.10.如图①,在菱形ABCD中,动点P从点B出发,沿折线B→C→D→B运动.设点P经过的路程为x,△ABP的面积为y.把y看作x的函数,函数的图象如图②所示,则图②中的b等于()A. B. C. 5 D. 4二、填空题(本大题共5小题,共15.0分)11.如果分式有意义,那么实数x的取值范围是______.12.已知点A(x1,y1)、B(x2,y2)在直线y=kx+b上,且直线经过第一、二、四象限,当x1<x2时,y1与y2的大小关系为______.13.关于x的一元二次方程(a-1)x2-2x+1=0有实数根,则a的取值范围是______.14.如图,四边形ABCD为矩形,以A为圆心,AD为半径的弧交AB的延长线于点E,连接BD,若AD=2AB=4,则图中阴影部分的面积为______.15.如图,∠AOB=90°,点P为∠AOB内部一点,作射线OP,点M在射线OB上,且OM=,点M′与点M关于射线OP对称,且直线MM′与射线OA交于点N.当△ONM'为等腰三角形时,ON的长为______.三、计算题(本大题共1小题,共8.0分)16.先化简,再求值,其中a=2sin45°,b=四、解答题(本大题共7小题,共67.0分)17.2019年央视315晚会曝光了卫生不达标的“毒辣条”,“食品安全”受到全社会的广泛关注,“安全教育平台”也推出了“将毒食品拋出窗外”一课我校为了了解九年级家长和学生参“将毒食品抛出窗外”的情况,在我校九年级学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A仅学生自己参与;B.家长和学生一起参与;C仅家长自己参与;D.家长和学生都未参请根据图中提供的信息解答下列问题(1)在这次抽样调查中,共调查了______名学生(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数(3)根据抽样调查结果,估计我校九年级2000名学生中“家长和学生都未参与”的人数18.如图直线y1=-x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点(1)求k的值;(2)直接写出当x>0时,不等式x+b>的解集;(3)若点P在x轴上,连接AP,且AP把△ABC的面积分成1:2两部分,求此时点P 的坐标.19.如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交弧AC于点D,过点D作⊙O的切线,交BA的延长线于点E.(1)求证:AC∥DE;(2)连接AD、CD、OC.填空①当∠OAC的度数为______时,四边形AOCD为菱形;②当OA=AE=2时,四边形ACDE的面积为______.20.如图是某户外看台的截面图,长10m的看台AB与水平地面AP的夹角为35°,与AP平行的平台BC长为1.9m,点F是遮阳棚DE上端E正下方在地面上的一点,测得AF=2m,(参考数据:sin35°≈0.57,在挡风墙CD的点D处测得点E的仰角为26°,求遮阳棚DE的长.cos35°≈0.82,sin26°≈0.44,cos26°≈0.90)21.有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨.(1)请问1辆大货车和1辆小货车一次可以分别运货多少吨?(2)目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完.其中每辆大货车一次运货花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?22.如图,△ABC与△CDE为等腰直角三角形,∠BAC=∠DEC=90°,连接AD,取AD中点P,连接BP,并延长到点M,使BP=PM,连接AM、EM、AE,将△CDE绕点C顺时针旋转.(1)如图①,当点D在BC上,E在AC上时,AE与AM的数量关系是______,∠MAE=______;(2)将△CDE绕点C顺时针旋转到如图②所示的位置,(1)中的结论是否仍然成立,若成立,请给出证明,若不成立,请说明理由;(3)若CD=BC,将△CDE由图①位置绕点C顺时针旋转α(0°<α<360°),当ME=CD时,请直接写出α的值.23.如图,已知抛物线经过点A(-1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是线段AB上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q,交直线BD于点M.(1)求该抛物线所表示的二次函数的表达式;(2)在点P运动过程中,是否存在点Q,使得△BQM是直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由;(3)连接AC,将△AOC绕平面内某点H顺时针旋转90°,得到△A1O1C1,点A、O、C的对应点分别是点A、O1、C1、若△A1O1C1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“和谐点”,请直接写出“和谐点”的个数和点A1的横坐标.答案和解析1.【答案】A【解析】解:A、=2,是无理数,故本选项符合题意;B、,2是有理数,不是无理数,故本选项不符合题意;C、0是有理数,不是无理数,故本选项不符合题意;D、-1是有理数,不是无理数,故本选项不符合题意;故选:A.分别根据无理数、有理数的定义即可判定选择项.此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.【答案】B【解析】解:69亿=6.9×109,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】C【解析】解:由图形可知,与“2019”字相对的字是“胜”.故选:C.由平面图形的折叠及正方体的展开图解题.对于正方体的平面展开图中相对的面一定相隔一个小正方形.本题考查了正方体的平面展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.4.【答案】C【解析】解:A、a2•a3=a2+3=a5,故此选项错误;B、(a+b)(a-2b)=a•a-a•2b+b•a-b•2b=a2-2ab+ab-2b2=a2-ab-2b2.故此选项错误;C、(ab3)2=a2•(b3)2=a2b6,故此选项正确;D、5a-2a=(5-2)a=3a,故此选项错误.故选:C.根据同底数幂的乘法法则:底数不变,指数相加;多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn;积的乘方:等于把积的每一个因式分别乘方再把所得的幂相乘;合并同类项:只把系数相加,字母部分完全不变,一个个计算筛选,即可得到答案.本题主要考查多项式乘以多项式,同底数幂的乘法,积的乘方,合并同类项的法则,注意正确把握每一种运算的法则,不要混淆.5.【答案】A【解析】解:中招体育成绩(单位:分)排序得:63,64,65,68,68,69,70;处在中间的是:68分,因此中位数是:68分;出现次数最多的数也是68分,因此众数是68分;故选:A.根据众数、中位数的意义,将这组数据从小到大排序后,处在中间位置的数是中位数,出现次数最多的数就是众数考查中位数、众数的意义和求法,准确理解中位数、众数的意义和求法是解决问题的前提.【解析】解:(1)设乙图书每本价格为x元,则甲图书每本价格是2.5x元,根据题意可得:-=24,解得:x=20,经检验得:x=20是原方程的根,则2.5x=50.答:甲图书每本价格是50元,乙图书每本价格为20元.故选:B.可设乙图书每本价格为x元,则甲图书每本价格是2.5x元,利用用800元单独购买甲图书比用800元单独购买乙图书要少24本得出等式求出答案.此题主要考查了分式方程的应用,正确表示出图书的价格是解题关键.7.【答案】A【解析】解:根据题意得:,由①得:x≥2,由②得:x<5,∴2≤x<5,表示在数轴上,如图所示,故选:A.把已知双向不等式变形为不等式组,求出各不等式的解集,找出解集的公共部分即可.此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.【解析】解:画树状图得:∵共有16种等可能的结果,两次摸出红球的有9种情况,∴两次摸出红球的概率为;故选:D.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出红球情况,再利用概率公式即可求得答案.本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.9.【答案】B【解析】解:如图,过点D作DE⊥AC于点E,∵四边形OABC为矩形,点B的坐标为(8,6),∴OA=8,OC=6∴AC==10由题意可得AD平分∠OAC∴∠DAE=∠DAO,AD=AD,∠AOD=∠AED=90°∴△ADO≌△ADE(AAS)∴AE=AO=8,OD=DE∴CE=2,∵CD2=DE2+CE2,∴(6-OD)2=4+OD2,∴OD=∴点D(0,)故选:B.过点D作DE⊥AC于点E,由勾股定理可求AC=10,由“AAS”可证△ADO≌△ADE,可证AE=AO=8,OD=DE,可得CE=2,由勾股定理可求OD的长,即可求点D坐标.本题考查了矩形的性质,坐标与图形的性质,勾股定理,全等三角形的判定和性质,证明△ADO≌△ADE是本题的关键.10.【答案】B【解析】解:如图,连接AC交BD于O,由图②可知,BC=CD=4,BD=14-8=6,∴BO=BD=×6=3,在Rt△BOC中,CO===,AC=2CO=2,所以,菱形的面积=AC•BD=×2×6=6,当点P在CD上运动时,△ABP的面积不变,为b,所以,b=×6=3.故选:B.连接AC交BD于O,根据图②求出菱形的边长为4,对角线BD为6,根据菱形的对角线互相垂直平分求出BO,再利用勾股定理列式求出CO,然后求出AC的长,再根据菱形的面积等于对角线乘积的一半求出菱形的面积,b为点P在CD上时△ABP的面积,等于菱形的面积的一半,从而得解.本题考查了动点问题的函数图象,主要利用了菱形的对角线互相垂直平分的性质,菱形的面积等于对角线乘积的一半,根据图形得到菱形的边长与对角线BD 的长是解题的关键.11.【答案】x≠2【解析】解:由题意得:x-2≠0,解得:x≠2,故答案为:x≠2.根据分式有意义的条件可得x-2≠0,再解即可.此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.12.【答案】>【解析】解:∵直线经过第一、二、四象限,∴y随x的增大而减小,∵x1<x2,∴y1与y2的大小关系为:y1>y2.故答案为:>.直接利用一次函数的性质分析得出答案.此题主要考查了一次函数图象上点的坐标特征,正确掌握一次函数增减性是解题关键.13.【答案】a≤2且a≠1【解析】解:∵一元二次方程(a-1)x2-2x+1=0有实数根,∴△=b 2-4ac=(-2)2-4(a-1)≥0,且a-1≠0,∴a≤2且a≠1.故答案为:a≤2且a≠1.根据根的判别式和一元二次方程的定义可得△=b 2-4ac≥0,且a-1≠0,再进行整理即可.此题考查了根的判别式和一元二次方程的定义,根的判别式大于0,方程有两个不相等的实数根;根的判别式等于0,方程有两个相等的实数根;根的判别式小于0,方程没有实数根.14.【答案】 π+2 -4【解析】 解:BC 交弧DE 于F ,连接AF ,如图,AF=AD=4,∵AD=2AB=4∴AB=2,在Rt △ABF 中,∵sin ∠AFB==,∴∠AFB=30°, ∴∠BAF=60°,∠DAF=30°,BF=AB=2,∴图中阴影部分的面积=S 扇形ADF +S △ABF -S △ABD=+×2×2-×2×4=π+2-4. BC 交弧DE 于F ,连接AF ,如图,先利用三角函数得到∠AFB=30°,则∠BAF=60°,∠DAF=30°,BF=AB=2,然后根据三角形面积公式和扇形的面积公式,利用图中阴影部分的面积=S 扇形ADF +S △ABF -S △ABD 进行计算即可.本题考查了扇形面积的计算:设圆心角是n°,圆的半径为R 的扇形面积为S ,则S 扇形=或S 扇形lR (其中l 为扇形的弧长);求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.也考查了矩形的性质.15.【答案】3或1【解析】解:M'位置有两种情况,Ⅰ.M'在∠AOB内部,如图1,∵点M′与点M关于射线OP对称,△ONM'为等腰三角形,∴M′N=OM′=OM=,MH=M′H,∵∵∠AOB=90°,cos∠OMN=∴,解得MH=,∴MN=2,在Rt△MON中,ON==3Ⅱ.M'在∠AOB外部,如图2,过N点作QN⊥OM′,∵△ONM'为等腰三角形,即M′N=ON,∴M′Q=M′O,∵OM=,点M′与点M关于射线OP对称,∴M′Q=,OM=OM′,∴∠OM′M=∠OMM′,cos∠OM′M=,cos∠OMM′=,设ON=M′N=x,NH=M′H=y,,解得:x=1,y=,综上所述:当△ONM'为等腰三角形时,ON的长为3或1.故答案为3,1.如图分两种情况,Ⅰ.M'在∠AOB内部,Ⅱ.M'在∠AOB外部,由已知和等腰三角形性质、利用三角函数列方程,解直角三角形即可解答.本题主要考查了等腰三角形存在性问题,解决本题的关键是正确认识到需要讨论,△ONM'为等腰三角形存在情况有两种,并用解直角三角形方法求解.16.【答案】解:原式=•=,当a=2×=,b=2时,原式==.【解析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a与b的值代入计算即可求出值.此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.17.【答案】400【解析】解:(1)本次调查总人数80÷20%=400(人),故答案为400;(2)B类人数400-(80+60+20)=240(人),补全统计图如下C类所对应扇形的圆心角的度数=54°;(3)我校九年级2000名学生中“家长和学生都未参与”的人数2000×=100(人),答:我校九年级2000名学生中“家长和学生都未参与”的人数约100人.(1)本次调查总人数80÷20%=400(人);(2)B类人数400-(80+60+20)=240(人),C类所对应扇形的圆心角的度数=54°;(3)我校九年级2000名学生中“家长和学生都未参与”的人数2000×=100(人).本题考查读频数(率)分布直方图的能力和利用统计图获取信息的能力,以及条形统计图;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.18.【答案】解:(1)把A(1,m)代入y1=-x+4,可得m=-1+4=3,∴A(1,3),把A(1,3)代入双曲线y=,可得k=1×3=3,(2)∵A(1,3),∴当x>0时,不等式x+b>的解集为:x>1;(3)y1=-x+4,令y=0,则x=4,∴点B的坐标为(4,0),把A(1,3)代入y2=x+b,可得3=×1+b,∴b=,∴y2=x+,令y=0,则x=-3,即C(-3,0),∴BC=7,∵AP把△ABC的面积分成1:2两部分,∴CP=BC=,或BP=BC=,∴OP=3-=,或OP=4-=,∴P(-,0)或(,0).【解析】(1)求得A(1,3),把A(1,3)代入双曲线y=,可求得k的值;(2)依据A(1,3),可得当x>0时,不等式x+b>的解集为x>1;(3)分两种情况进行讨论,AP把△ABC的面积分成1:2两部分,则CP=BC=,或BP=CP=BC=,即可得到OP=3-=,或OP=4-=,进而得出点P的坐标.本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.19.【答案】30°2【解析】证明:(1)∵F为弦AC的中点,∴AF=CF,且OF过圆心O∴FO⊥AC,∵DE是⊙O切线∴OD⊥DE∴DE∥AC(2)①当∠OAC=30°时,四边形AOCD是菱形,理由如下:如图,连接CD,AD,OC,∵∠OAC=30°,OF⊥AC∴∠AOF=60°∵AO=DO,∠AOF=60°∴△ADO是等边三角形又∵AF⊥DO∴DF=FO,且AF=CF,∴四边形AOCD是平行四边形又∵AO=CO∴四边形AOCD是菱形②如图,连接CD,∵AC∥DE∴△AFO∽△ODE∴∴OD=2OF,DE=2AF∵AC=2AF∴DE=AC,且DE∥AC∴四边形ACDE是平行四边形∵OA=AE=OD=2∴OF=DF=1,OE=4∵在Rt△ODE中,DE==2∴S=DE×DF=2×1=2四边形ACDE故答案为:2(1)由垂径定理,切线的性质可得FO⊥AC,OD⊥DE,可得AC∥DE;(2)①连接CD,AD,OC,由题意可证△ADO是等边三角形,由等边三角形的性质可得DF=OF,AF=FC,且AC⊥OD,可证四边形AOCD为菱形;②由题意可证△AFO∽△ODE,可得,即OD=2OF,DE=2AF=AC,可证四边形ACDE是平行四边形,由勾股定理可求DE的长,即可求四边形ACDE的面积.本题是圆的综合题,考查了圆的有关知识,菱形的判定,等边三角形的判定和性质,平行四边形的判定和性质,相似三角形的判定和性质,勾股定理,熟练运用这些性质进行推理是本题的关键.20.【答案】解:分别过点B、D作BH⊥AP,DG⊥EF,垂足分别为点H,G.∴∠BHA=∠DGE=90°,由题意得:AB=10m,∠A=35°,∠EDG=26°,在Rt△BAH中,AH=AB•cos35°≈10×0.82=8.2(m),∴FH=AH-AF=8.2-2=6.2m,GD=FH+BC=6.2+1.9=8.1(m),在Rt△EGD中,cos∠EDG=,∴DE=≈=9(m)答:遮阳棚DE的长约为9米.【解析】作BH⊥AP,DG⊥EF,根据余弦的定义求出AH,得到DG的长,根据余弦的定义计算即可.本题考查的是解直角三角形的应用-仰角俯角问题、坡度坡角问题,掌握仰角俯角的概念、坡度的概念、熟记锐角三角函数的定义是解题的关键.21.【答案】解:(1)设1辆大货车和1辆小货车一次可以分别运货x吨和y吨,根据题意可得:,解得:,答:1辆大货车和1辆小货车一次可以分别运货4吨和1.5吨;(2)设货运公司拟安排大货车m辆,则安排小货车(10-m)辆,根据题意可得:4m+1.5(10-m)≥33,解得:m≥7.2,令m=8,大货车运费高于小货车,故用大货车少费用就小则安排方案有:大货车8辆,小货车2辆,【解析】(1)设1辆大货车和1辆小货车一次可以分别运货x吨和y吨,根据“3辆大货车与4辆小货车一次可以运货18吨、2辆大货车与6辆小货车一次可以运货17吨”列方程组求解可得;(2)因运输33吨且用10辆车一次运完,故10辆车所运货不低于10吨,且因为大货车运费高于小货车,故用大货车少费用就小进行安排即可.本题以运货安排车辆为背景考查了二元一次方程组和一元一次不等式的应用,体现了数学建模思想,考查了学生用方程解实际问题的能力,解题的关键是根据题意建立方程组,并利用不等式求解大货车的数量,解题时注意题意中一次运完的含义,此类试题常用的方法为建立方程,利用不等式或者一次函数性质确定方案.22.【答案】AM=AE45°【解析】解:(1)结论:AM=AE,∠MAE=45°.理由:如图1中,∵AP=PD,BP=PM,∴四边形ABDM是平行四边形,∴AM∥BC,∴∠MAE=∠C,∵AB=AC,∠BAC=90°,∴∠C=45°,∴∠MAE=45°,∵∠AEM=∠DEC=90°,∴∠AME=∠EAM=45°,∴MA=AE.故答案为:AM=AE,45°.(2)如图2中,连接BD,DM,BD交AC于点O,交AE于G.∵BC=AC,CD=CE,∴==,∵∠ACB=∠DCE=45°,∴∠BCD=∠ACE,∴△BCD∽△ACE,∴∠CBD=∠CAE,==,∴BD=AE,∵∠BOC=∠AOG,∴∠AGO=∠BCO=45°,∵AP=PD,BP=PM,∴四边形ABDM是平行四边形,∴AM∥BD,AM=BD=AE,∴∠MAE=∠BGA=45°,∵EH⊥AM,∴△AHE是等腰直角三角形,∴AH=AE,∵AM=AE,∴AH=MH,∴EA=EM,∴∠EAM=∠EMA=45°,∴∠AEM=90°.(3)如图2中,作EH⊥AM于H.∵EH⊥AM,∠MAE=45°,∴△AHE是等腰直角三角形,∴AH=AE,∵AM=AE,∴AH=MH,∴EA=EM,∴∠EAM=∠EMA=45°,∴∠AEM=90°.如图3-1中,∵EM=EA=CD,设CD=a,则CE=a,BC=2a,AC=2a,EA=a,∴AC2=AE2+EC2,∴∠AEC=90°,∴tan∠ACE==,∴∠ACE=60°,∴旋转角α=60°.如图3-2中,同法可证∠AEC=90°,∠ACE=60°,此时旋转角α=300°.综上所述,满足条件的α的值为60°或300°.(1)证明四边形ABDM是平行四边形即可解决问题.(2)如图2中,连接BD,DM,BD交AC于点O,交AE于G.证明△BCD∽△ACE,推出∠CBD=∠CAE,==,即可解决问题.(3)如图2中,首先证明△AEM是等腰直角三角形,分两种情形画出图形分别求解即可.本题属于四边形综合题,考查了等腰直角三角形的判定和性质的判定和性质,平行四边形的判定和性质,勾股定理的逆定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.23.【答案】解:(1)设抛物线解析式为y=ax2+bx+c,将点A(-1,0),B(4,0),C(0,2)代入解析式,∴ ,∴ ,∴y=-+x+2;(2)∵点C与点D关于x轴对称,∴D(0,-2).设直线BD的解析式为y=kx-2.∵将(4,0)代入得:4k-2=0,∴k=.∴直线BD的解析式为y=x-2.当P点与A点重合时,△BQM是直角三角形,此时Q(-1,0);当BQ⊥BD时,△BQM是直角三角形,则直线BQ的直线解析式为y=-2x+8,∴-2x+8=-+x+2,可求x=3或x=4(舍)∴x=3;∴Q(3,2)或Q(-1,0);(3)两个和谐点;AO=1,OC=2,设A1(x,y),则C1(x+2,y-1),O1(x,y-1),①当A1、C1在抛物线上时,∴,∴ ,∴A1的横坐标是1;当O1、C1在抛物线上时,,∴ ,∴A1的横坐标是;【解析】(1)把点A(1,0)、B(4,0)、C(0,3)三点的坐标代入函数解析式,利用待定系数法求解;(2)分两种情况分别讨论,当∠QBM=90°或∠MQB=90°,即可求得Q点的坐标.(3)(3)两个和谐点;AO=1,OC=2,设A1(x,y),则C1(x+2,y-1),O1(x,y-1),①当A1、C1在抛物线上时,A1的横坐标是1;当O1、C1在抛物线上时,A1的横坐标是2;本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,轴对称-最短路线问题,等中学自主招生数学试卷一.选择题(每题3分,满分36分)1.﹣的倒数是()A.B.﹣C.D.﹣2.下列标志的图形中,是轴对称图形的是但不是中心对称图形的是()A.B.C.D.3.下列运算中,结果是a6的式子是()A.a2•a3B.a12﹣a6C.(a3)3D.(﹣a)64.下列调查方式,你认为最合适的是()A.了解北京市每天的流动人口数,采用抽样调查方式B.旅客上飞机前的安检,采用抽样调查方式C.了解北京市居民”一带一路”期间的出行方式,采用全面调查方式D.日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式5.若x=﹣4,则x的取值范围是()A.2<x<3 B.3<x<4 C.4<x<5 D.5<x<66.已知|a|=3,b2=16,且|a+b|≠a+b,则代数式a﹣b的值为()A.1或7 B.1或﹣7 C.﹣1或﹣7 D.±1或±7 7.无论a取何值时,下列分式一定有意义的是()A.B.C.D.8.在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(﹣1,1)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)9.如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是()A.2 B.3 C.4 D.510.如图,AB为半圆O的直径,C是半圆上一点,且∠COA=60°,设扇形AOC、△COB、弓形BmC的面积为S1、S2、S3,则它们之间的关系是()A.S1<S2<S3B.S2<S1<S3C.S1<S3<S2D.S3<S2<S111.如图,已知菱形ABCD中,∠A=40°,则∠ADB的度数是()A.40°B.50°C.60°D.70°12.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.abc>0 B.b2﹣4ac<0 C.9a+3b+c>0 D.c+8a<0二.填空题(满分18分,每小题3分)13.据测算,我国每年因沙漠造成的直接经济损失超过5 400 000万元,这个数用科学记数法表示为万元.14.已知扇形的弧长为4π,圆心角为120°,则它的半径为.15.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD =22°30′,则⊙O的半径为cm.16.如图,将直线y=x向下平移b个单位长度后得到直线l,l与反比例函数y=(x>0)的图象相交于点A,与x轴相交于点B,则OA2﹣OB2的值为.17.若一次函数y =(1﹣2m )x +m 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1<x 2时,y 1<y 2,且与y 轴相交于正半轴,则m 的取值范围是 .18.如图(1)是重庆中国三峡博物馆,又名重庆博物馆,中央地方共建国家级博物馆图(2)是侧面示意图.某校数学兴趣小组的同学要测量三峡博物馆的高GE .如(2),小杰身高为1.6米,小杰在A 处测得博物馆楼顶G 点的仰角为27°,前进12米到达B 处测得博物馆楼顶G 点的仰角为39°,斜坡BD 的坡i =1:2.4,BD 长度是13米,GE ⊥DE ,A 、B 、D 、E 、G 在同一平面内,则博物馆高度GE 约为 米.(结果精确到1米,参考数据tan27°≈0.50,tan39°≈0.80)三.解答题19.(6分)计算:(1)sin30°﹣cos45°+tan 260° (2)2﹣2+﹣2sin60°+|﹣|20.(6分)求不等式组的非负整数解.21.(8分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△△CDF;(2)当线段AB与线段AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.22.(8分)今年西宁市高中招生体育考试测试管理系统的运行,将测试完进行换算统分改为计算机自动生成,现场公布成绩,降低了误差,提高了透明度,保证了公平.考前张老师为了解全市初三男生考试项目的选择情况(每人限选一项),对全市部分初三男生进行了调查,将调查结果分成五类:A、实心球(2kg);B、立定跳远;C、50米跑;D、半场运球;E、其它.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)将上面的条形统计图补充完整;(2)假定全市初三毕业学生中有5500名男生,试估计全市初三男生中选50米跑的人数有多少人?(3)甲、乙两名初三男生在上述选择率较高的三个项目:B、立定跳远;C、50米跑;D、半场运球中各选一项,同时选择半场运球、立定跳远的概率是多少?请用列表法或画树形图的方法加以说明并列出所有等可能的结果.23.(9分)随着经济水平的不断提升,越来越多的人选择到电影院去观看电影,体验视觉盛宴,并且更多的人通过淘票票,猫眼等网上平台购票,快捷且享受更多优惠,电影票价格也越来越便宜.2018年从网上平台购买5张电影票的费用比在现场购买3张电影票的费用少10元,从网上平台购买4张电影票的费用和现场购买2张电影票的费用共为190元.(1)请问2018年在网上平台购票和现场购票的每张电影票的价格各为多少元?(2)2019年“元旦”当天,南坪上海城的“华谊兄弟影院”按照2018年在网上平台购票和现场购票的电影票的价格进行销售,当天网上和现场售出电影票总票数为600张.“元旦”假期刚过,观影人数出现下降,于是该影院决定将1月2日的现场购票的价格下调,网上购票价格保持不变,结果发现现场购票每张电影票的价格每降价0.5元,则当天总票数比“元旦”当天总票数增加4张,经统计,1月2日的总票数中有通过网上平台售出,其余均由电影院现场售出,且当天票房总收益为19800元,请问该电影院在1月2日当天现场购票每张电影票的价格下调了多少元?24.(9分)如图所示,△ABC内接于⊙O,AB是⊙O的直径,点D在⊙O上,过点C的切线交AD的延长线于点E,且AE⊥CE,连接CD.(1)求证:DC=BC;(2)若AB=5,AC=4,求tan∠DCE的值.25.(10分)若关于x的二次函数y=ax2+bx+c(a,b,c为常数)与x轴交于两个不同的点A(x1,0),B(x2,0)与y轴交于点C,其图象的顶点为点M,O是坐标原点.(1)若A(﹣2,0),B(4,0),C(0,3)求此二次函数的解析式并写出二次函数的对称轴;(2)如图1,若a>0,b>0,△ABC为直角三角形,△ABM是以AB=2的等边三角形,试确定a,b,c的值;(3)设m,n为正整数,且m≠2,a=1,t为任意常数,令b=3﹣mt,c=﹣3mt,如果对于一切实数t,AB≥|2t+n|始终成立,求m、n的值.。