立体几何中折叠与展开问题(2)(优.选)

合集下载

高中数学立体几何动点和折叠问题-含答案

高中数学立体几何动点和折叠问题-含答案

高中数学立体几何动点和折叠问题-含答案1.在正方体ABCD-A1B1C1D1中,BC的中点为M,点P在正方体的表面DCC1D1上移动,且满足∠APD=∠MPC。

求三棱锥P-BCD的体积的最大值。

2.△ABC是边长为23的等边三角形,E、F分别为AB、AC的中点,沿EF把四面体OAEF折起,使点A翻折到点P的位置,连接PB、PC。

当四棱锥P-BCFE的外接球的表面积最小时,求四棱锥P-BCFE的体积。

3.△ABC是边长为23的等边三角形,E、F分别在线段AB、AC上滑动,且EF//BC,沿EF把△AEF折起,使点A翻折到点P的位置,连接PB、PC。

求四棱锥P-BCFE的体积的最大值。

4.已知三棱锥P-ABC满足PA⊥底面ABC,在△ABC中,AB=6,AC=8,且AB⊥AC,D是线段AC上一点,且AD=3DC,球O为三棱锥P-ABC的外接球,过点D作球O的截面。

若所得截面圆的面积的最小值与最大值之和为44π,则求球O的表面积。

5.已知A、B、C、D四点均在半径为R(R为常数)的球O的球面上运动,且AB=AC,AB⊥AC,AD⊥BC。

若四面体ABCD的体积的最大值为V,求V的值。

6.已知A、B、C是球O的球面上的三点,AB=2,AC=23,∠ABC=60°,且三棱锥O-ABC的体积为V。

求V的值。

7.已知三棱柱ABC-A1B1C1内接于一个半径为3的球,四边形A1ACC1与B1BCC1为两个全等的矩形,M是A1B1的中点,且C1M=√3.求三棱锥C1-ABC的体积。

8.在四棱柱ABCD-A1B1C1D1中,底面四边形ABCD是菱形,∠ADC=120°,连接AC,BD交于点O,A1O⊥平面ABCD,AO=BD=4,点C'与点C关于平面BC1D对称。

求三棱锥C'-ABD的体积。

1.删除该题,因为这明显是一道数学计算题,没有文章可言。

2.球O的表面积为4π,则球O的体积为(4/3)π。

立体几何中的折叠、展开与动点问题

立体几何中的折叠、展开与动点问题

2 尽
于是

由余 弦定理可求得 AC= 5 z

A + D = D , B B 2 A
A B上B D.
又平面 E D上平面 A D, 面 E D n平 面 A D= B B 平 B B B A D,Bc平 面 A D, A B 得 B上平 面 E D 由 D B. Ec平
B= 0 , 6 。得
例 1 一 张正 方形 的 纸 A C B 是对 角线 , B D, D 过 A C 的中点 E, B,D F的线段交 B D于点 0, E 以 F

3 ・ 0
中 学教 研 ( 学 ) 数
/ _A1 = 1 5。, C1 C 3
BD= 、A +A /B D 一2 B ・ Dc s_D B = A A o/ A
性 和交 汇性. 立体 几何 中 的轨迹 问题将立体几何 与 解析几何 有机地结合 起来 , 解决 此类问题 的关 键是
把空 间问题转化 为平 面问题 , 然后 再根据 曲线 的定
√ 芎 / 。 2 + a . n
又在 AB D中 , O 由余 弦定 理可得
c s BOD = o 2 2 2 2 6
问题 , 常把几何体 的侧面 展开转化 为平面 图形 中 通 的两点距离 问题.
在 R △ t 培E中 , 由
解析 几何 与立体几何 的知识交 汇处设 计图形 , 仅 不
能考查 立体几何点 、 、 线 面之 间的位置关系 , 而且 能
△C D沿 B B D折起 到 △船 D

巧妙地考 查求轨迹 的基本 方 法. 由于知 识点 多 , 数 学思想 和方法 考查 充分 , 因此 笔 者预 计 2 1 高 00年

立体几何中“折叠问题”解题策略(含详细解析)

立体几何中“折叠问题”解题策略(含详细解析)

立体几何中“折叠问题”的解题策略[例题]如图1,在直角梯形ABCD中,AD∥BC,AB∥BC,BD∥DC,点E是BC边的中点,将∥ABD沿BD折起,使平面ABD∥平面BCD,连接AE,AC,DE,得到如图2所示的几何体.(1)求证:AB∥平面ADC;(2)若AD=1,二面角C­AB­D的平面角的正切值为6,求二面角B­AD­E的余弦值.[解](1)证明:因为平面ABD∥平面BCD,平面ABD∩平面BCD=BD,BD∥DC,DC∥平面BCD,所以DC∥平面ABD.因为AB∥平面ABD,所以DC∥AB.又因为折叠前后均有AD∥AB,DC∩AD=D,所以AB∥平面ADC.(2)由(1)知AB∥平面ADC,所以二面角C­AB­D的平面角为∥CAD.又DC∥平面ABD,AD∥平面ABD,所以DC∥AD.依题意tan∥CAD =CDAD = 6. 因为AD =1,所以CD = 6. 设AB =x (x >0),则BD =x 2+1. 依题意∥ABD ∥∥DCB ,所以AB AD =CDBD , 即x 1=6x 2+1,解得x =2,故AB =2,BD =3,BC =BD 2+CD 2=3.以D 为坐标原点,射线DB ,DC 分别为x 轴,y 轴的正半轴,建立如图所示的空间直角坐标系D ­xyz ,则D (0,0,0), B (3,0,0), C (0,6,0), E (23,26,0), A (33,0,36), 所以DE ―→=(23,26,0),DA ―→=(33,0,36).由(1)知平面BAD 的一个法向量n =(0,1,0). 设平面ADE 的法向量为m =(x ,y ,z ),由⎩⎨⎧m·DE ―→=0,m·DA ―→=0,得⎩⎨⎧32x +62y =0,33x +63z =0.令x =6,得y =-3,z =-3,所以m =(6,-3,-3)为平面ADE 的一个法向量. 所以cos<n ,m>=n ·m |n |·|m |=-12.由图可知二面角B ­AD ­E 的平面角为锐角, 所以二面角B ­AD ­E 的余弦值为12. 解题策略:1.确定翻折前后变与不变的关系画好翻折前后的平面图形与立体图形,分清翻折前后图形的位置和数量关系的变与不变.一般地,位于“折痕”同侧的点、线、面之间的位置和数量关系不变,而位于“折痕”两侧的点、线、面之间的位置关系会发生变化;对于不变的关系应在平面图形中处理,而对于变化的关系则要在立体图形中解决.2.确定翻折后关键点的位置所谓的关键点,是指翻折过程中运动变化的点.因为这些点的位置移动,会带动与其相关的其他的点、线、面的关系变化,以及其他点、线、面之间位置关系与数量关系的变化.只有分析清楚关键点的准确位置,才能以此为参照点,确定其他点、线、面的位置,进而进行有关的证明与计算.变式练习:1.如图1,在四边形ABCD 中,AD ∥BC ,∥BAD =90°, AB =23,BC =4,AD =6,E 是AD 上的点,AE =13AD , P 为BE 的中点,将∥ABE 沿BE 折起到∥A 1BE 的位置, 使得A 1C =4,如图2.(1)求证:平面A1CP∥平面A1BE;(2)求二面角B­A1P­D的余弦值.解:(1)证明:如图3,连接AP,PC.∥在四边形ABCD中,AD∥BC,∥BAD=90°,AB=23,BC=4,AD=6,E是AD上的点,AE=13AD,P为BE的中点,∥BE=4,∥ABE=30°,∥EBC=60°,BP=2,∥PC=23,∥BP2+PC2=BC2,∥BP∥PC.∥A1P=AP=2,A1C=4,∥A1P2+PC2=A1C2,∥PC∥A1P.∥BP∩A1P=P,∥PC∥平面A1BE.∥PC∥平面A1CP,∥平面A1CP∥平面A1BE.(2)如图4,以P 为坐标原点,PB 所在直线为x 轴,PC 所在直线为y 轴,过P 作平面BCDE 的垂线为z 轴,建立空间直角坐标系,则A 1(-1,0,3),P (0,0,0),D (-4,23,0), ∥P A 1―→=(-1,0,3), PD ―→=(-4,23,0), 设平面A 1PD 的法向量为m =(x ,y ,z ),则⎩⎨⎧m·P A 1―→=0,m·PD ―→=0,即⎩⎪⎨⎪⎧-x +3z =0,-4x +23y =0,取x =3,得m =(3,2,1).易知平面A 1PB 的一个法向量n =(0,1,0), 则cos 〈m ,n 〉=m ·n |m||n|=22. 由图可知二面角B ­A 1P ­D 是钝角, ∥二面角B ­A 1P ­D 的余弦值为-22.2.如图1,在高为2的梯形ABCD 中,AB ∥CD ,AB =2,CD =5,过A ,B 分别作AE ∥CD ,BF ∥CD ,垂足分别为E ,F .已知DE =1,将梯形ABCD 沿AE ,BF 同侧折起,得空间几何体ADE ­BCF ,如图2.(1)若AF ∥BD ,证明:DE ∥BE ;(2)若DE ∥CF ,CD =3,在线段AB 上是否存在点P ,使得CP 与平面ACD 所成角的正弦值为3535?并说明理由.解:(1)证明:由已知得四边形ABFE 是正方形,且边长为2, ∥AF ∥BE .∥AF ∥BD ,BE ∩BD =B ,∥AF ∥平面BDE . 又DE ∥平面BDE ,∥AF ∥DE .∥AE ∥DE ,AE ∩AF =A ,∥DE ∥平面ABFE . 又BE ∥平面ABFE ,∥DE ∥BE .(2)当P 为AB 的中点时满足条件.理由如下: ∥AE ∥DE ,AE ∥EF ,DE ∩EF =E ,∥AE ∥平面DEFC . 如图,过E 作EG ∥EF 交DC 于点G ,可知GE ,EA ,EF 两两垂直,以E 为坐标原点,以EA ―→,EF ―→,EG ―→分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,则A (2,0,0),B (2,2,0),C (0,1,3),D (0,21-,23), AC ―→=(-2,1,3),AD ―→=(-2,21-,23).设平面ACD 的法向量为n =(x ,y ,z ),则⎩⎨⎧ n ·AC ―→=0,n ·AD ―→=0,即⎩⎨⎧-2x +y +3z =0,-2x -12y +32z =0,令x =1,得n =(1,-1,3).设AP ―→=λPB ―→,则P (2,λλ+12,0),λ∥(0,+∞),可得CP ―→=(2,λλ+-11,-3).设CP 与平面ACD 所成的角为θ,则sin θ=|cos<CP ,n>|=52)11(7111⨯+-++---λλλλ=3535,解得λ=1或λ=-25(舍去),∥P 为AB 的中点时,满足条件.。

苏科版数学七年级上册5.3《展开与折叠》说课稿

苏科版数学七年级上册5.3《展开与折叠》说课稿

苏科版数学七年级上册5.3《展开与折叠》说课稿一. 教材分析《展开与折叠》是苏科版数学七年级上册第五章第三节的内容。

本节内容是在学生学习了平面几何图形的基础上,引入立体几何图形的一种表现形式——展开图。

通过展开与折叠,使学生更好地理解立体图形和平面图形之间的关系,提高学生的空间想象能力。

二. 学情分析七年级的学生已经掌握了平面几何图形的基本知识,具备一定的空间想象能力。

但立体几何图形对于他们来说还是一个新的领域,需要通过具体的活动和操作来建立立体几何图形和平面几何图形之间的联系。

三. 说教学目标1.知识与技能目标:理解展开与折叠的概念,掌握展开图的基本特点,能将立体几何图形正确地展开成平面图形。

2.过程与方法目标:通过观察、操作、思考,培养学生的空间想象能力,提高学生的动手实践能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学与生活的紧密联系。

四. 说教学重难点1.教学重点:展开图的概念及其基本特点。

2.教学难点:如何将立体几何图形正确地展开成平面图形,以及展开图与立体图形的相互转化。

五. 说教学方法与手段1.教学方法:采用问题驱动法、合作交流法、实践操作法等,引导学生主动探究,培养学生的空间想象能力。

2.教学手段:利用多媒体课件、实体模型、展开图卡片等,帮助学生直观地理解展开与折叠的概念。

六. 说教学过程1.导入新课:通过一个简单的谜语,引发学生对展开与折叠的思考,激发学生的学习兴趣。

2.自主探究:学生分组讨论,观察生活中的展开图,总结展开图的特点。

3.教师讲解:讲解展开图的概念及其基本特点,引导学生理解展开图与立体图形之间的关系。

4.实践操作:学生动手操作,尝试将立体几何图形正确地展开成平面图形。

5.合作交流:学生分组展示自己的展开图作品,互相评价,总结经验。

6.巩固提高:出示一些生活中的展开图,让学生判断其是否正确,并提出改进意见。

7.课堂小结:教师引导学生总结本节课的学习内容,巩固知识点。

高考数学专题四立体几何 微专题29 立体几何中的动态问题

高考数学专题四立体几何 微专题29 立体几何中的动态问题
形的面积为2π
√C.若点N到直线BB1与直线DC的距离相等,则点N的轨迹为抛物线 √D.若D1N与AB所成的角为 π3,则点N的轨迹为双曲线
如图所示,对于A, 根据正方体的性质可知,MD⊥平面ABCD, 所以∠MND为MN与平面ABCD所成的角, 所以∠MND=4π,所以 DN=DM=12DD1=12×4=2, 所以点N的轨迹是以D为圆心,2为半径的圆,故A正确;
思维导图
内容索引
典型例题
热点突破
PART ONE
典型例题
考点一 动点的轨迹
典例1 (1)(多选)已知正方体ABCD-A1B1C1D1 的棱长为4,M为DD1的中点,N为四边形ABCD 所在平面上一动点,则下列命题正确的是
√A.若MN与平面ABCD所成的角为 π4,则点N的
轨迹为圆
B.若MN=4,则MN的中点P的轨迹所围成图
当 B 是 AC 的中点时,AB=BC= 6,
此时△SAB为等腰三角形,△ABC为等腰直角三角形,
将△SAB,△ABC沿AB展开至同一个平面,得到如
图2所示的平面图形,
取AB的中点D,连接SC,SD,CD,
则 SD=
22-
262=
210,
所以 sin ∠ABS=SSDB= 410, 所以 cos∠CBS=cos(90°+∠ABS)=-sin∠ABS=- 410,
此时点B与点Q重合,点P与点O1重合,故C正确;
对于D,当点P与点B1,点Q与点A重合时,
AP+PQ+QB1 的值为 3AP=3 12+22=3 5>2 3+ 5,故 D 错误.
考点二 折叠、展开问题
典例2 (多选)如图,在矩形ABCD中,M为BC的中点,将△ABM沿直线 AM翻折成△AB1M,连接B1D,N为B1D的中点,则在翻折过程中,下列 说法正确的是 A.存在某个位置,使得CN⊥AB1

立体形的展开与折叠综合练习题

立体形的展开与折叠综合练习题

立体形的展开与折叠综合练习题在几何学中,立体形的展开与折叠是一种重要的技巧和练习。

通过将立体形展开成平面图形,我们可以更好地理解其结构和特点,同时也有助于解决一些与立体形相关的问题。

本文将介绍一些立体形的展开与折叠综合练习题,帮助读者提升立体几何的认知和技能。

练习一:正方体的展开与折叠第一个练习题是关于正方体的展开与折叠。

正方体是一种最简单的立体形,由六个正方形面构成。

将正方体展开成平面图形可以帮助我们更清晰地观察其面、边和顶点的关系。

解答:(在这里插入正方体展开的图片)首先,可以将正方体的底部面沿着边缘剪开,并将其展开成一个正方形。

接下来,将正方体的四个侧面剪开,并展开成四个矩形,这四个矩形与正方形相连,构成了整个正方体的展开图。

通过将这个展开图沿着边缘折叠并粘贴起来,我们就可以重新组装成一个正方体。

练习二:四面体的展开与折叠第二个练习题是关于四面体的展开与折叠。

四面体是一种由四个三角形面构成的立体形,它有一个顶点和四个面上的三个顶点连接而成。

解答:(在这里插入四面体展开的图片)将四面体展开,我们可以观察到其顶点和面的关系。

首先,将四面体的底面剪开,并展开成一个三角形。

接着,将四面体的其他三个面分别剪开,并展开成三个小三角形。

这四个三角形可以连接起来,构成整个四面体的展开图。

通过将展开图折叠并粘贴起来,我们就可以重新组装成一个四面体。

练习三:圆柱体的展开与折叠第三个练习题是关于圆柱体的展开与折叠。

圆柱体是一种由一个圆形底面和一个平行于底面的圆柱面构成的立体形。

解答:(在这里插入圆柱体展开的图片)展开圆柱体的过程比较有趣。

首先,将圆柱体的圆柱面剪开,并展开成一个长方形。

接着,将圆柱体的两个底面分别剪开,并展开成两个圆形。

这个长方形和两个圆形可以连接起来,构成整个圆柱体的展开图。

通过将展开图折叠并粘贴起来,我们就可以重新组装成一个圆柱体。

通过以上三个练习题,我们可以更加深入地理解立体形的展开与折叠。

立体几何中的折叠问题PPT课件

立体几何中的折叠问题PPT课件

2020/10/13
图5-10
7
易得:D(0,0,0),B(1,0,0),C(0,3,0),A(0,0, 3),E12,23,0,
∴ AE =12,32,-
3, DB =(1,0,0),
1
∴cos< AE , DB >=|A→A→EE|··D|→D→BB|=1× 2
= 22 4
22 22 .

AE
2020/10/13
6
解析:(1)证明:∵折起前 AD 是 BC 边上的高, ∴当△ABD 折起后,AD⊥DC,AD⊥DB. 又 DB∩DC=D,∴AD⊥平面 BDC. ∵AD⊆平面 ABD,∴平面 ABD⊥平面 BDC. (2)由∠BDC=90°及(1)知 DA,DB,DC 两两垂直,不妨设|DB| =1,以 D 为坐标原点,以DB,DC ,DA所在直线为 x,y,z 轴 建立如图 5-10 所示的空间直角坐标系,
与 DB
夹角的余弦值是
22 22 .
2020/10/13
8
(1)确定图形在折起前后的不变性质,如角的大小不 变,线段长度不变,线线关系不变,再由面面垂直的判定定理 进行推理证明.(2)在(1)的基础上确定出三线两两垂直,建立空 间直角坐标系,利用向量的坐标和向量的数量积运算求解.
2020/10/13
2020/10/13
11
小结
折叠的问题通常涉及空间元素的位置关系和 几何量的求解
解答折叠问题的关键在于画好折叠前后的平 面图形与立体图形,并弄清折叠前后哪些发生 了变化,哪些没有发生变化.这些未变化。
2020/10/13
12
谢谢您的指导
THANK YOU FOR YOUR GUIDANCE.

高三一轮复习-立体几何常见问题(带答案)

高三一轮复习-立体几何常见问题(带答案)

个性化辅导授课教案学员姓名 : 辅导类型(1对1、小班): 年 级: 辅 导 科 目 : 学 科 教 师 : 课 题课 型 □ 预习课 □ 同步课 □ 复习课 □ 习题课 授课日期及时段年 月 日 时间段教 学 内 容 多面体与球组合问题纵观近几年高考对于组合体的考查,重点放在与球相关的外接与内切问题上.要求学生有较强的空间想象能力和准确的计算能力,才能顺利解答.从实际教学来看,这部分知识是学生掌握最为模糊,看到就头疼的题目.分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理.本文就高中阶段出现这类问题加以类型的总结和方法的探讨.一、球与柱体的组合体规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题. 1.1 球与正方体如图1所示,正方体1111ABCD A B C D -,设正方体的棱长为a ,,,,E F H G 为棱的中点,O 为球的球心.常见组合方式有三类:一是球为正方体的内切球,截面图为正方形EFGH 和其内切圆,则2aOJ r ==;二是与正方体各棱相切的球,截面图为正方形EFGH 和其外接圆,则22GO R a ==;三是球为正方体的外接球,截面图为长方形11ACA C 和其外接圆,则132A O R a '==.通过这三种类型可以发现,解决正方体与球的组合问题,常用工具是截面图,即根据组合的形式找到两个几何体的轴截面,通过两个截面图的位置关系,确定好正方体的棱与球的半径的关系,进而将空间问题转化为平面问题.例 1 棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为( )A .22B .1C .212+D .2解:由题意可知,球为正方体的外接球.平面11AA DD 截面所得圆面的半径12,22AD R ==11EF AA DD ⊂面,∴直线EF 被球O 截得的线段为球的截面圆的直径22R =.【牛刀小试】将棱长为2的正方体木块削成一个体积最大的球,则这个球的表面积为( ) A .2πB .4πC .8πD .16π【答案】B【解析】体积最大的球是其内切球,即球半径为1,所以表面积为ππ4142=⋅=S .1.2 球与长方体长方体各顶点可在一个球面上,故长方体存在外切球.但是不一定存在内切球.设长方体的棱长为,,,a b c 其体对角线为l .当球为长方体的外接球时,截面图为长方体的对角面和其外接圆,和正方体的外接球的道理是一样的,故球的半径222.22l a b c R ++==例 2 在长、宽、高分别为2,2,4的长方体内有一个半径为1的球,任意摆动此长方体,则球经过的空间部分的体积为( ) A.10π3B.4πC.8π3D.7π3【牛刀小试】已知正四棱柱的底边和侧棱长均为32,则该正四棱锥的外接球的表面积为 .1.3 球与正棱柱球与一般的正棱柱的组合体,常以外接形态居多.下面以正三棱柱为例,介绍本类题目的解法构造直角三角形法.设正三棱柱111ABC A B C -的高为,h 底面边长为a ,如图2所示,D 和1D 分别为上下底面的中心.根据几何体的特点,球心必落在高1DD 的中点O ,3,,,23h OD AO R AD a ===借助直角三角形AOD 的勾股定理,可求223()()23hR a =+.例3 正四棱柱1111ABCD A B C D -的各顶点都在半径为R 的球面上,则正四棱柱的侧面积有最 值,为 .【牛刀小试】直三棱柱111ABC A B C -的六个顶点都在球O 的球面上,若1AB BC ==,0120ABC ∠=,123AA =,则球O 的表面积为( )A .4πB .8πC .16πD .24π二、球与锥体的组合体规则的锥体,如正四面体、正棱锥、特殊的一些棱锥等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱锥的棱和高产生联系,然后考查几何体的体积或者表面积等相关问题.2.1 球与正四面体正四面体作为一个规则的几何体,它既存在外接球,也存在内切球,并且两心合一,利用这点可顺利解决球的半径与正四面体的棱长的关系.如图4,设正四面体S ABC -的棱长为a ,内切球半径为r ,外接球的半径为R ,取AB 的中点为D ,E 为S 在底面的射影,连接,,CD SD SE 为正四面体的高.在截面三角形SDC ,作一个与边SD 和DC 相切,圆心在高SE 上的圆,即为内切球的截面.因为正四面体本身的对称性可知,外接球和内切球的球心同为O .此时,,CO OS R OE r ===,23,,33SE a CE a ==则有2222233a R r a R r CE +=-=,=,解得:66,.412R a r a ==这个解法是通过利用两心合一的思路,建立含有两个球的半径的等量关系进行求解.同时我们可以发现,球心O 为正四面体高的四等分点.如果我们牢记这些数量关系,可为解题带来极大的方便.2.2 球与三条侧棱互相垂直的三棱锥球与三条侧棱互相垂直的三棱锥组合问题,主要是体现在球为三棱锥的外接球.解决的基本方法是补形法,即把三棱锥补形成正方体或者长方体.常见两种形式:一是三棱锥的三条侧棱互相垂直并且相等,则可以补形为一个正方体,它的外接球的球心就是三棱锥的外接球的球心.如图5,三棱锥111A AB D -的外接球的球心和正方体1111ABCD A B C D -的外接球的球心重合.设1AA a =,则32R a =.二是如果三棱锥的三条侧棱互相垂直并且不相等,则可以补形为一个长方体,它的外接球的球心就是三棱锥的外接球的球心.2222244a b c l R ++==(l 为长方体的体对角线长). CB ADSOE 图4例5 在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且AM MN ⊥,若侧棱23SA =,则正三棱锥S ABC -外接球的表面积是 .【牛刀小试】一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为( )A .12πB .43πC .3πD .123π2.3 球与正棱锥球与正棱锥的组合,常见的有两类,一是球为三棱锥的外接球,此时三棱锥的各个顶点在球面上,根据截面图的特点,可以构造直角三角形进行求解.二是球为正棱锥的内切球,例如正三棱锥的内切球,球与正三棱锥四个面相切,球心到四个面的距离相等,都为球半径R .这样求球的半径可转化为球球心到三棱锥面的距离,故可采用等体积法解决,即四个小三棱锥的体积和为正三棱锥的体积.例6 在三棱锥P -ABC 中,PA =PB=PC=3,侧棱PA 与底面ABC 所成的角为60°,则该三棱锥外接球的体积为( ) A .π B.3π C. 4π D.43π【牛刀小试】已知正三棱锥P -ABC ,点P ,A ,B ,C 都在半径为3的球面上,若PA,PB,PC 两两互相垂直,则球心到截面ABC 的距离为____________.2.4 球与特殊的棱锥球与一些特殊的棱锥进行组合,一定要抓住棱锥的几何性质,可综合利用截面法、补形法等进行求解.例如,四个面都是直角三角形的三棱锥,可利用直角三角形斜边中点几何特征,巧定球心位置.如图8,三棱锥S ABC -,满足,,SA ABC AB BC ⊥⊥面取SC 的中点为O ,由直角三角形的性质可得:,OA OS OB OC ===所以O 点为三棱锥S ABC -的外接球的球心,则2SCR =. 例7 矩形ABCD 中,4,3,AB BC ==沿AC 将矩形ABCD 折成一个直二面角B ACD --,则四面体ABCD 的外接球的体积是( )A.π12125 B.π9125 C.π6125 D.π3125解:由题意分析可知,四面体ABCD 的外接球的球心落在AC 的中点,此时满足,OA OD OB OC ===522AC R ∴==,343V R π=1256π=. 五、与三视图相结合的组合体问题本类问题一般首先给出三视图,然后考查其直观图的相关的组合体问题.解答的一般思路是根据三视图还CBASO原几何体,根据几何体的特征选择以上介绍的方法进行求解.例9 【河北省唐山市2014-2015学年度高三年级摸底考试】某几何体的三视图如图所示,则该几何体的外 接球的球面面积为( ) A .5πB .12πC .20πD .8π【牛刀小试】若一个底面是正三角形的三棱柱的正视图如图所示,其顶点都在一个球面上,则该球的表面积为( )A.163 πB.193 πC.1912 πD.43π综合上面的五种类型,解决与球的外切问题主要是指球外切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果外切的是多面体,则作截面时主要抓住多面体过球心的对角面来作;把一个多面体的几个顶点放在球面上即为球的内接问题.解决这类问题的关键是抓住内接的特点,即球心到多面体的顶点的距离等于球的半径.发挥好空间想象力,借助于数形结合进行转化,问题即可得解.如果是一些特殊的几何体,如正方体、正四面体等可以借助结论直接求解,此时结论的记忆必须准确.问题二:立体几何中的折叠问题立体几何中的折叠问题主要包含两大问题:平面图形的折叠与几何体的表面展开。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何中折叠与展开问题(2)【知识与方法】折叠与展开问题是立体几何的两个重要问题,这两种方式的转变正是空间几何与平面几何问题转化的集中体现。

处理这类题型的关键是抓住两图的特征关系。

折叠问题是立体几何的一类典型问题是实践能力与创新能力考查的好素材。

解答折叠问题的关键在于画好折叠前后的平面图形与立体图形,并弄清折叠前后哪些发生了变化,哪些没有发生变化。

这些未变化的已知条件都是我们分析问题和解决问题的依据。

而表面展开问题是折叠问题的逆向思维、逆过程,一般地,涉及到多面体表面的问题,解题时不妨将它展开成平面图形试一试。

【认知训练】1.△ABC 的BC 边上的高线为AD ,BD=a ,CD=b ,将△ABC 沿AD 折成大小为θ的二面角B-AD-C ,若ba=θcos ,则三棱锥A-BCD 的侧面三角形ABC 是( ) A 、锐角三角形 B 、钝角三角形C 、直角三角形D 、形状与a 、b 的值有关的三角形2.如图为棱长是1的正方体的表面展开图,在原正方体中,给出下列三个命题:①点M 到AB 的距离为22 ②三棱锥C -DNE 的体积是61③AB 与EF 所成角是2π 其中正确命题的序号是3.将下面的平面图形(每个点都是正三角形的顶点或边的中点)沿虚线折成一个正四面体后,直线MN 与PQ 是异面直线的是 ……………………………………………( ) ① ② ③ ④A .①②B .②④C .①④D .①③4.正方形ABCD 中,M 为AD 的中点,N 为AB 中点,沿CM 、CN 分别将三角形CDM 和△CBN 折起,使CB 与CD 重合,设B 点与D 点重合于P ,设T 为PM 的中点,则异面直线CT 与PN 所MNP QMQN MN PQMNP Q成的角为( )A,300 B,450 C,600 D,90) AN MPC(B)(D)T 第11题图5.(06山东卷)如图,在等腰梯形ABCD 中,AB=2DC=2, ∠DAB =60°,E 为AB 的中点,将△ADE 与△BEC 分别沿ED 、 EC 向上折起,使A 、B 重合于点P ,则P -DCE 三棱锥的 外接球的体积为 (A)2734π(B)26π (C)86π (D)246π6.在直三棱柱ABC -A 1B 1C 1中,底面为直角三角形,∠ACB =90︒,AC =6,BC =CC 12,P 是BC 1上一动点,则CP +PA 1 的最小值是___________7.用一张正方形的包装纸把一个棱长为a 的立方体完全包住,不能将正方形纸撕开,所需包装纸的最小面积为A.29a B .28a C. 27a D. 26a【能力训练】例1.点O 是边长为4的正方形ABCD 的中心,点E ,F 分别是AD ,BC 的中点.沿对角线AC 把正方形ABCD 折成直二面角D -AC -B .(Ⅰ)求EOF ∠的大小; (Ⅱ)求二面角E OF A --的大小.例2.如图,在正三棱柱ABC-A 1B 1C 1中,AB=3,AA 1=4,M 为AA 1的中点,P 是BC 上一点,且由P 沿棱柱侧面经过棱CC 1到M 点的最短路线长为29,设这条最短路线与C 1C 的交点为N 。

求1) 该三棱柱的侧面展开图的对角线长;2) PC 和NC 的长;3) 平面NMP 和平面ABC 所成二面角(锐角)的大小(用反三角函数表示)例3.已知△ABC 的边长为3,D 、E 分别是边BC 上的三等分点,沿AD 、AE 把△ABC 折成A -DEF ,使B 、C 两点重合于点F ,且G 是DE 的中点(1)求证:DE ⊥平面AGF(2)求二面角A ―DE ―F 的大小;C 1CBA 1 A 1C 1CA MB 1A(3)求点F 到平面ADE 的距离.例4(江苏卷)在正三角形ABC 中,E 、F 、P 分别是AB 、AC 、BC 边上的点,满足AE:EB =CF:FA =CP:PB =1:2(如图1)。

将△AEF 沿EF 折起到EF A 1∆的位置,使二面角A 1-EF -B 成直二面角,连结A 1B 、A 1P (如图2)(Ⅰ)求证:A 1E ⊥平面BEP ;(Ⅱ)求直线A 1E 与平面A 1BP 所成角的大小;(Ⅲ)求二面角B -A 1P -F 的大小(用反三角函数表示)例5.(辽宁卷)已知正方形ABCD .E 、F 分别是AB 、CD 的中点,将ADE 沿DE 折起,如图所示,记二面角A DE C --的大小为(0)θθπ<<.(I) 证明//BF 平面ADE ;(II)若ACD 为正三角形,试判断点A 在平面BCDE 内的射影G 是否在直线EF 上,证明你的结论,并求角θ的余弦值.【达成测试】1.长方形中,AB=32BC,把它折成正三棱柱的侧面,使AD 与BC 重合,长方形的对角线AC 与折痕线EF 、GH 分别交于M 、N,则截面MNA 与棱柱的底面DFH 所成的角等于( )A .30oB .45oC .60oD .90o2.如图9—99是一个无盖的正方体盒子展开后的平面图,A 、B 、C 是展开图上的三点,则在正方体盒子中,∠ABC 的值为( )CDFCEAFECBA 1EFCP B图9—99A.180°B.120°C.45°D.60°3.如图,在正三角形ABC中,D,E,F分别为各边的中点,G,H,I,J分别为AF,AD,BE,DE的中点.将△ABC沿DE,EF,DF折成三棱锥以后,GH与IJ所成角的度数为()A.90°B.60°C.45°D.0°4.如图9—100表示一个正方体表面的一种展开图,图中的四条线段AB、CD、EF和GH在原正方体中相互异面的有_____对.图9—100 图9—101【分析】平面图形的翻折应注意翻折前后各元素相对位置的变化,AB、CD、EF和GH 在原正方体中如图9—101.有AB与CD、EF与GH、AB和GH三对异面直线.5.如下图,在下列六个图形中,每个小四边形皆为全等的正方形,那么沿其正方形相邻边折叠,能够围成正方体的是_____________(要求:把你认为正确图形的序号都填上)① ② ③④ ⑤ ⑥6.设角梯形AB CD 两腰的中点,D E ⊥A B 于E (如图)6.解:如左图,在平面AED 内作MQ ∥AE 交ED 于Q,则MQ ⊥ED,且Q 为ED 的中点,连结QN,则NQ ⊥ED 且QN ∥EB,QN=EB,∠MQN 为二面角A -DE -B 的平面角, ∴∠MQN=45°∵AB ⊥平面BCDE,又∠AEB=∠MQN=45°,MQ=12在平面MQN 内作MP ⊥BQ,得QP=MP=12EB,故PB=QP=12EB,故QMN 是以∠QMN 为直角的等腰三角形,即MN ⊥QM,也即MN 子AE 所成角大小等于90° 7.如图,已知正三棱柱111ABC A B C 的底面边长为1,高为8,一质点自A 点出发,沿着三棱柱的侧面绕行两周.. 到达1A 点的最短路线的长为 . 8.如图,已知ABCD 是上、下底边长分别为2和6,高为3的等腰梯形,将它沿对称轴OO 1折成直二面角, (Ⅰ)证明:AC ⊥BO 1;(Ⅱ)求二面角O -AC -O 1的大小。

C C O 19. 如图4,在正三棱锥A -BCD 中,底面边长为a ,侧棱长为2a ,E 、F 分别为AC 、AD 上的动点,求截面△BEF 的周长的最小值,以及此时E 、F 的位置。

10.如图:在直角三角形ABC 中,已知AB=a ,∠ACB=30o ,∠B=90o ,D 为AC 的中点,E 为BD 的中点,AE 的延长线交BC 于F ,将△ABD 沿BD 折起,二面角A'-BD-C 的大小记为θ。

⑴求证:平面A'EF ⊥平面BCD ; ⑵θ为何值时A'B ⊥CD ? ⑶在⑵的条件下,求点C 到平面A'BD 的距离。

折叠与展开问题参考答案【认知训练】1. 答案:C点评:将平面图形折成空间图形后线面位置关系理不清,易瞎猜。

2. 答案:①②③,把所给平面图复原成3.C4. 取AN 的中点S ,则PN 2+PT 2=TS 2+SN 2=TN 2∴PN ⊥PT ,又PN ⊥PC ∴PN ⊥平面CMP ,选DEE ABA ’“‘F D CB FCD N ACFE BDM5.解:易证所得三棱锥为正四面体,它的棱长为1,故外接球半径为6,外接球的体积为3466()348ππ=,选C 6.解:连A 1B ,沿BC 1将△CBC 1展开与△A 1BC 1在同一个平 面内,如图所示,连A 1C ,则A 1C 的长度就是所求的最小值。

通过计算可得∠A 1C 1C =90︒又∠BC 1C =45︒, ∴∠A 1C 1C =135︒ 由余弦定理可求得A 1C =527.试题背景:本题与以往把立体图简单地展开为平面图是不一样的,因为正方形的纸不能撕开来。

此题情境新颖,具有较高的探索价值,类似于2002年文史类最后一道高考附加题。

解析:将正方形纸如图划分, 其中BC=2AB=2CD ,用标III 的部分作下底面,标II 的部 分作四个侧面,标I 的部分 正好盖住立方体的上底面。

由题意知,标I 的部分正好盖住立方体的上底面。

由题意知,标II 的正方形的边长为a ,所以正方形纸的边长为a 22,面积为28a 。

故选B 。

评析:新世纪的高考试题的新颖性越来越明显,能力要求也越来越高,并且也越来越广泛。

要在“创新”的大环境下来面对高考,我们应把握好平时的一些新颖试题,充分挖掘其立意,举一反三,广泛联系,以适应新课程的理念及新时代的高考。

【能力训练】 例1.解法一:(Ⅰ)如图,过点E 作EG ⊥AC ,垂足为G ,过点F 作FH ⊥AC ,垂足为H ,则2EG FH ==,22GH =.因为二面角D -AC -B 为直二面角, 22222EF GH EG FH EG FH ∴=++-⋅222(22)(2)(2)012.=++-=CDMHGO FAB EGHM AB CDEFO又在EOF ∆中,2OE OF ==,222222221cos 22222OE OF EF EOF OE OF +-+-∴∠===-⋅⨯⨯.120EOF ∴∠=.(Ⅱ)过点G 作GM 垂直于FO 的延长线于点M ,连EM .∵二面角D -AC -B 为直二面角,∴平面DAC ⊥平面BAC ,交线为AC ,又∵EG ⊥AC ,∴EG ⊥平面BAC .∵GM ⊥OF ,由三垂线定理,得EM ⊥OF .∴EMG ∠就是二面角E OF A --的平面角.在Rt ∆EGM 中,90EGM ∠=,EG =,112GM OE ==,∴tan EGEMG GM∠==EMG ∠= 所以,二面角E OF A --的大小为arctan . 解法二:(Ⅰ)建立如图所示的直角坐标系O -xyz ,则(1,OE =-,(0,2,0)OF =.1cos ,2||||OE OF OE OF OE OF ⋅∴<>==-.120EOF ∴∠=.(Ⅱ)设平面OEF 的法向量为1(1,,)n y z =. 由110,0,n OE n OF ⋅=⋅=得10,20,y y ⎧-=⎪⎨=⎪⎩解得0,2y z ==-. 所以,1(1,0,2n =-. 又因为平面AOF 的法向量为2(0,0,1)n =,1212123cos ,||||n n n n n n ⋅∴<>==.∴12,arccos 3n n <>=.所以,二面角E OF A --的大小为 例2.正解:①正三棱柱ABC-A 1B 1C 1的侧面展开图是一个长为9,宽为4的矩形,其对角线长为974922=+②如图1,将侧面BC 1旋转120使其与侧面AC 1在同一平面上,点P 运动到点P 1的位置,连接MP 1,则MP 1就是由点P 沿棱柱侧面经过CC 1到点M 的最短路线。

相关文档
最新文档