立体几何中的折叠问题、最值问题和探索
立体几何中“折叠问题”解题策略(含详细解析)

立体几何中“折叠问题”的解题策略[例题]如图1,在直角梯形ABCD中,AD∥BC,AB∥BC,BD∥DC,点E是BC边的中点,将∥ABD沿BD折起,使平面ABD∥平面BCD,连接AE,AC,DE,得到如图2所示的几何体.(1)求证:AB∥平面ADC;(2)若AD=1,二面角CABD的平面角的正切值为6,求二面角BADE的余弦值.[解](1)证明:因为平面ABD∥平面BCD,平面ABD∩平面BCD=BD,BD∥DC,DC∥平面BCD,所以DC∥平面ABD.因为AB∥平面ABD,所以DC∥AB.又因为折叠前后均有AD∥AB,DC∩AD=D,所以AB∥平面ADC.(2)由(1)知AB∥平面ADC,所以二面角CABD的平面角为∥CAD.又DC∥平面ABD,AD∥平面ABD,所以DC∥AD.依题意tan∥CAD =CDAD = 6. 因为AD =1,所以CD = 6. 设AB =x (x >0),则BD =x 2+1. 依题意∥ABD ∥∥DCB ,所以AB AD =CDBD , 即x 1=6x 2+1,解得x =2,故AB =2,BD =3,BC =BD 2+CD 2=3.以D 为坐标原点,射线DB ,DC 分别为x 轴,y 轴的正半轴,建立如图所示的空间直角坐标系D xyz ,则D (0,0,0), B (3,0,0), C (0,6,0), E (23,26,0), A (33,0,36), 所以DE ―→=(23,26,0),DA ―→=(33,0,36).由(1)知平面BAD 的一个法向量n =(0,1,0). 设平面ADE 的法向量为m =(x ,y ,z ),由⎩⎨⎧m·DE ―→=0,m·DA ―→=0,得⎩⎨⎧32x +62y =0,33x +63z =0.令x =6,得y =-3,z =-3,所以m =(6,-3,-3)为平面ADE 的一个法向量. 所以cos<n ,m>=n ·m |n |·|m |=-12.由图可知二面角B AD E 的平面角为锐角, 所以二面角B AD E 的余弦值为12. 解题策略:1.确定翻折前后变与不变的关系画好翻折前后的平面图形与立体图形,分清翻折前后图形的位置和数量关系的变与不变.一般地,位于“折痕”同侧的点、线、面之间的位置和数量关系不变,而位于“折痕”两侧的点、线、面之间的位置关系会发生变化;对于不变的关系应在平面图形中处理,而对于变化的关系则要在立体图形中解决.2.确定翻折后关键点的位置所谓的关键点,是指翻折过程中运动变化的点.因为这些点的位置移动,会带动与其相关的其他的点、线、面的关系变化,以及其他点、线、面之间位置关系与数量关系的变化.只有分析清楚关键点的准确位置,才能以此为参照点,确定其他点、线、面的位置,进而进行有关的证明与计算.变式练习:1.如图1,在四边形ABCD 中,AD ∥BC ,∥BAD =90°, AB =23,BC =4,AD =6,E 是AD 上的点,AE =13AD , P 为BE 的中点,将∥ABE 沿BE 折起到∥A 1BE 的位置, 使得A 1C =4,如图2.(1)求证:平面A1CP∥平面A1BE;(2)求二面角BA1PD的余弦值.解:(1)证明:如图3,连接AP,PC.∥在四边形ABCD中,AD∥BC,∥BAD=90°,AB=23,BC=4,AD=6,E是AD上的点,AE=13AD,P为BE的中点,∥BE=4,∥ABE=30°,∥EBC=60°,BP=2,∥PC=23,∥BP2+PC2=BC2,∥BP∥PC.∥A1P=AP=2,A1C=4,∥A1P2+PC2=A1C2,∥PC∥A1P.∥BP∩A1P=P,∥PC∥平面A1BE.∥PC∥平面A1CP,∥平面A1CP∥平面A1BE.(2)如图4,以P 为坐标原点,PB 所在直线为x 轴,PC 所在直线为y 轴,过P 作平面BCDE 的垂线为z 轴,建立空间直角坐标系,则A 1(-1,0,3),P (0,0,0),D (-4,23,0), ∥P A 1―→=(-1,0,3), PD ―→=(-4,23,0), 设平面A 1PD 的法向量为m =(x ,y ,z ),则⎩⎨⎧m·P A 1―→=0,m·PD ―→=0,即⎩⎪⎨⎪⎧-x +3z =0,-4x +23y =0,取x =3,得m =(3,2,1).易知平面A 1PB 的一个法向量n =(0,1,0), 则cos 〈m ,n 〉=m ·n |m||n|=22. 由图可知二面角B A 1P D 是钝角, ∥二面角B A 1P D 的余弦值为-22.2.如图1,在高为2的梯形ABCD 中,AB ∥CD ,AB =2,CD =5,过A ,B 分别作AE ∥CD ,BF ∥CD ,垂足分别为E ,F .已知DE =1,将梯形ABCD 沿AE ,BF 同侧折起,得空间几何体ADE BCF ,如图2.(1)若AF ∥BD ,证明:DE ∥BE ;(2)若DE ∥CF ,CD =3,在线段AB 上是否存在点P ,使得CP 与平面ACD 所成角的正弦值为3535?并说明理由.解:(1)证明:由已知得四边形ABFE 是正方形,且边长为2, ∥AF ∥BE .∥AF ∥BD ,BE ∩BD =B ,∥AF ∥平面BDE . 又DE ∥平面BDE ,∥AF ∥DE .∥AE ∥DE ,AE ∩AF =A ,∥DE ∥平面ABFE . 又BE ∥平面ABFE ,∥DE ∥BE .(2)当P 为AB 的中点时满足条件.理由如下: ∥AE ∥DE ,AE ∥EF ,DE ∩EF =E ,∥AE ∥平面DEFC . 如图,过E 作EG ∥EF 交DC 于点G ,可知GE ,EA ,EF 两两垂直,以E 为坐标原点,以EA ―→,EF ―→,EG ―→分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,则A (2,0,0),B (2,2,0),C (0,1,3),D (0,21-,23), AC ―→=(-2,1,3),AD ―→=(-2,21-,23).设平面ACD 的法向量为n =(x ,y ,z ),则⎩⎨⎧ n ·AC ―→=0,n ·AD ―→=0,即⎩⎨⎧-2x +y +3z =0,-2x -12y +32z =0,令x =1,得n =(1,-1,3).设AP ―→=λPB ―→,则P (2,λλ+12,0),λ∥(0,+∞),可得CP ―→=(2,λλ+-11,-3).设CP 与平面ACD 所成的角为θ,则sin θ=|cos<CP ,n>|=52)11(7111⨯+-++---λλλλ=3535,解得λ=1或λ=-25(舍去),∥P 为AB 的中点时,满足条件.。
谈谈求解立体几何问题的思路

立体几何是高考数学的必考内容,且立体几何问题在高考试题中占有较大的比重.这类问题侧重于考查同学们的空间想象和运算能力.下面结合几道例题,来归纳总结一下三类立体几何问题的特点以及解题思路.一、立体几何中的存在性问题立体几何中的存在性问题一般较为复杂,通常要求判断某两条线段的比值、垂直关系、平行关系、点等是否存在.解答这类问题,需首先画出相应的立体几何图形;然后假设要判断的对象存在,并将其看作已知的条件,代入题设中进行推理运算.若得出与题意、相关结论、公式相矛盾的结论,则说明该假设不成立,否则,该假设成立.解题时,要确保推理合理,逻辑严密.例1.如图1,在三棱锥P -ABC 中,PA ⊥平面ABC ,PA =1,AB =1,AC =2,∠BAC =60°.那么在线段PC 上是否存在一点M ,使得BM ⊥AC ?若存在,求MCPM的值,若不存在,请说明理由.解:假设在线段PC 上存在点M ,使得BM ⊥AC ,此时MCPM=3.如图1,过点M 作MN //PA ,交AC 于点N ,连接BN ,BM ,因为PA ⊥平面ABC ,AC ⊂平面ABC ,故PA ⊥AC ,MN ⊥AC .由MN //PA 可知:AN NC =PM MC =13,则AN =12.在ΔABN 中,BN 2=AB 2+AN 2-2AB ⋅AN cos∠BAC =34,所以AN 2+BN 2=AB 2,即AC ⊥BN .由于BN ⋂MN =N 且BN ,MN ⊂面MBN ,故AC ⊥平面MBN ,因为BM ⊂面MBN ,所以AC ⊥BM .我们先假设在线段PC 上存在点M ,使得BM ⊥AC ,并据此得出相应的结论;然后根据题意和几何图形添加合适的辅助线,根据线面垂直的性质定理、相似三角形的性质、勾股定理证明AC ⊥BN ;再根据线面垂直的判定定理证明AC ⊥平面MBN ,得出AC ⊥BM ,即可说明该假设成立.需要注意的是,在假设要判断的对象存在后,需用相关的性质、定理验证该假设是否满足题意.二、立体几何图形折叠问题立体几何图形折叠问题对同学们的空间想象力有较高的要求.在解题时,需明确折叠前后几何图形中的点、线、面的位置及其关系,通过观察图形,根据折叠图形的性质找出其中不变的量,抓住这些不变的量的特征来建立关系式.也可以将折叠后的几何体投影到平面上,利用平面几何知识进行研究、分析.例2.如图2,在等腰直角三角形PAD 中,∠A =90°,AD =8,AB =3,B ,C 分别是PA ,PD 上的点,且AD //BC ,M ,N 分别为BP ,CD 的中点.现将ΔBCP 沿BC 折起,得到四棱锥P -ABCD ,连接MN ,如图3.(1)证明:MN //平面PAD(2)在翻折的过程中,当PA =4时,求二面角B -PC -D 的余弦值.图2图3解:(1)证明过程略;(2)由题意可知BC ⊥AB ,BC ⊥PB ,∴BC ⊥平面PAB .又BC //AD ,∴AD ⊥平面PAB ,∴AD ⊥PA .∵AD ⊥AB ,AB ⊥PA ,以点A 为坐标原点,分别以AB ,AD ,AP 为x 轴,y 轴,z 轴建立如图4所示的空间直角坐标系A -xyz .得A (0,0,0),B (3,0,0),C (3,5,0),P (0,0,4),D (0,8,0),所以 PB =(3,0,-4), PC =(3,5,-4),PD =(0,8,-4),图147设m =(x 1,y 1,z 1)为平面PBC 的一个法向量,则ìíî m ⋅ PC =0, m ⋅ PB =0,即ìíî3x 1-4z 1=0,3x 1+5y 1-4z 1=0,令x 1=4,则y 1=0,z 1=2,m =(4,0,3).设n=(x 2,y 2,z 2)为平面PCD 的一个法向量,则ìíîm ⋅PC =0, m ⋅PD =0,即ìíî8y 2-4z 2=0,3x 2+5y 2-4z 2=0,令y 2=1,则x 2=1,z 2=2,n =(1,1,2).设二面角B -PC -D 的大小为α,由向量的夹角公式可得:cos α=-|cos< m ,n >|=-|m ⋅n || m |⋅|n |=所以二面角B -PC -D 的余弦值为解答本题,需先明确ΔPAD 的特点、性质,以及其中各点、线段的位置关系,知晓折叠前后ΔBCP 以及梯形ABCP 中的改变量与不变量;然后根据直线与平面垂直的性质定理和判定定理证明AB 、AP 、AD 三条直线两两互相垂直,据此建立空间直角坐标系,利用向量法求得二面角B -PC -D 的余弦值.解答立体几何图形折叠问题,要熟悉折叠图形的性质:折叠前后图形的形状、面积、边长、角度均不改变.三、立体几何中的作图问题立体几何中的作图问题比较常见.解答此类题目,往往要先通过观察,明确题意,确定图形中的点、直线、平面之间的位置关系,灵活运用简单几何体的性质寻找一些垂直、平行的关系,据此发现一些特殊的点、位置,以确定要求作的点、直线、平面的位置,进而作出完整的图形.例3.如图5,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 为棱B 1C 1的中点,F ,G 分别是棱CC 1,BC上的动点(不与顶点重合),请作出平面A 1DG 与平面CBB 1C 1的交线,并说明理由.图5解:如图5,连接DG ,并延长交AB 的延长线于点P ,连接A 1P ,交BB 1于Q ,连接GQ ,则GQ 所在的直线即为作出的平面A 1DG 与平面CBB 1C 1的交线.理由如下:∵ABCD -A 1B 1C 1D 1为正方体,∴平面CBB 1C 1//平面ADD 1A 1,而平面CBB 1C 1⋂平面A 1DG =GQ ,平面ADD 1A 1⋂平面A 1DG =A 1D ,∴A 1D //GQ .要画出平面A 1DG 与平面CBB 1C 1的交线,需根据平面的延展性、正方体的性质,以及平行平面的性质:若两个平行平面被第三个平面所截,则其交线平行.在平面CBB 1C 1内寻找与A 1D平行的直线GQ 即可.例4.某几何体的正视图与侧视图均为边长为1的正方形,则下面四个图形中,可能是该几何体俯视图的个数为().A.1B.2C.3D.4解:俯视图从左到右依次记为:图6图7图8图9如果几何体为棱长为1的正方体,则俯视图如图6;如果几何体为圆柱,它的底面直径为1,高为1,则俯视图如图9;如果几何体为从棱长为1的正方体中挖去直径为2,高为1的圆柱的,则俯视图如图7;以图8为俯视图的几何体的正视图不是正方形.故选C.本题主要考查三视图的定义的应用以及画三视图的方法.画三视图要注意几个要点:(1)主视图和俯视图的长要相等;(2)主视图和左视图的高要相等;(3)左视图和俯视图的宽要相等;(4)看不到的线画虚线.虽然立体几何题目的命题形式较多,其解法也各不相同,但是同学们在解题时只要结合立体图形及其特征明确各个点、线、面的位置及其关系;然后将问题与相关的定理、性质、公式相关联,添加合适的辅助线,灵活利用相关的定理、性质、公式进行推理、运算,就能顺利求得问题的答案.(作者单位:江苏省启东市汇龙中学)图448。
向量法求立体几何中的折叠探索及最值问题 高三数学一轮复习

巩固训练2 [2024·河南郑州模拟]在底面ABCD为梯形的多面体中.AB∥CD,
BC⊥CD,AB=2CD=2 2,∠CBD=45°,BC=AE=DE,且四边 形BDEN为矩形.
(1)求证:BD⊥AE; (2)线段EN上是否存在点Q,使得直线BE与平面QAD所成的角为60°? 若不存在,请说明理由.若存在,确定点Q的位置并加以证明.
(1)求证:OP⊥平面ABED;
(2)求二面角B-PE-F的正弦值.
题型二 探索性问题
例2 [2024·河北石家庄模拟]如图,四棱锥S-ABCD中,底面ABCD为
矩形且垂直于侧面SAB,O为AB的中点,SA=SB=AB=2,AD= 2.
(1)证明:BD⊥平面SOC;
(2)侧棱SD上是否存在点E,使得平面ABE与平面SCD夹角的余弦值
为1,若存在,求SE的值;若不存在,说明理由.
5
SD
题后师说
(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当 作条件,据此列方程或方程组,把“是否存在”转化为“点的坐标的 方程是否有解,是否有规定范围内的解”等.
(2)对于位置探究型问题,通常借助向量,引进参数,综合已知条件 和结论列出等式,解出参数.
高考大题研究课七 向量法求立体几何中的折叠、探索及最值问题
会用向量法解决立体几何中的折叠、角的存在条件及最值问题,提 高学生空间想象能力、数学运算能力.
关键能力·题型剖析 题型一 折叠问题 例1 [2024·江西景德镇模拟]如图,等腰梯形ABCD中,AD∥BC,AB=BC =CD=12AD=2,现以AC为折痕把△ABC折起,使点B到达点P的位置,且 PA⊥CD.
题型三 最值问题
例3 [2020·新高考Ⅰ卷]如图,四棱锥P-ABCD的底面为正方形, PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.
2.立体几何中的折叠与最值问题(无解析)

立体几何中的折叠与最值问题-:折&申的垂直与距S?问题【例1】如图.△AC£>和ΔMBC都是直角三角形,ΛB=BC,ACAD30\把三角形八8C沿AC边折起,使AASC所在的平面与aACO所在的平面垂直.若A8=#⑴求证:平面八8。
_1.平面Ba);<2>求C点到平面A8。
的距离【拓1】设Af、N是直角梯形ABCD两腰的中点,DEJ.八8于E(如图).现将△八。
£沿DE折起,使二面角Λ-DE-B≠)45∖此时点Λ在平面8。
E内的射影恰为点B,求W、N的连线与八E所成角的值.【拓2】如图,在4A8C中.AD1BC.£0=24£,过£作FG//BC.且将AAfG沿FG折起,使ZA,ED=CM o,求证:4'£1平面A,BC a{拓3]如图.在平行四边形八8C。
中.八8=AC=I,ZΛCD9(Γ,将它沿对角线AC折起,使八8与CO成6(尸角,求8,。
之间的距离。
二:折叠中的角度问即【例2]:在长方形AA38中,Λβ=2∕M,=4.C.G 分别是A8,八四的中点(如图1).将此长方形沿CC 对折,使二面角A-CG-8为直二面角,。
.£分别是A4,CG的中点(如图2).⑴**求证:G 。
〃平面ABE ;(2:△求直线8G 与平面八声£所成角的正弦值【拓1】如图.巳知A8C/)是上.下底边长分别为2和6.轴"Q 折成直二面角⑴证明:ΛC±BO 1; (2)求二面角O-AC-Q 的正弦值【拓2】在正ZUSC 中,E 、F 、户分别是AB 、AG8C 边上的点.涧足A£:E8=CF:8=CT:P8=I:2.将AAEF 沿EF 折起到尸的位置,使二面角A-EF-H 成直二面角,连结八昆A 1P.(1)求证:A £,平面8£P;(2)求直线AE 与平面AB 尸所成向的大小;(3)求二面角B-AP-F 的余弦值大小,三:立体几何中的体积最值问题高为&的等禊梯形.将它沿对称 OO.C【例3】设四梭锥〃-A8C/)中,底面A8C/)是边长为1的正方形,且PAI面A8C?)⑴•♦求证PCkBD;⑵A过8。
几何图形的折叠问题

纸艺制作
产品设计
通过折叠纸张或其他材料,制作各种纸艺 作品,如纸飞机、千纸鹤等。
在产品设计中,折叠结构可以用于节省空 间、便于携带和运输,如折叠家具、折叠 雨伞等。
建筑模型
数学教育
通过折叠纸张或其他材料,制作建筑模型 ,展示建筑的三维形态。
折叠问题在数学教育中用于培养学生的空 间想象能力和几何思维能力,帮助学生理 解平面与立体几何之间的关系。
应用拓展
探索几何图形折叠问题在建 筑、航空航天、生物医学等 领域的应用,以推动相关领 域的技术进步和创新。
感谢您的观看
THANKS
1 2
正方体折叠成三棱锥
将一个正方体的一个面朝下,然后将其顶点与正 方体的中心相连,可以得到一个三棱锥。
长方体折叠成三棱柱
将一个长方体的一个面朝下,然后将其顶点与长 方体的中心相连,可以得到一个三棱柱。
3
球体折叠成椭球体
将一个球体的赤道线何图形折叠实例
01
02
需要开发更有效的算法和软件 工具,以模拟和优化几何图形
的折叠过程。
未来发展方向
新材料与技术应用
探索新型材料和加工技术, 以提高几何图形折叠的效率 和精度。
智能化与自动化
利用人工智能和机器学习技 术,实现几何图形折叠过程 的智能化和自动化。
多学科交叉研究
加强数学、物理学、工程学 等多个学科在几何图形折叠 问题上的交叉研究,以推动 理论和实践的深入发展。
02
几何图形的折叠问题解析
平面几何图形的折叠
定义
平面几何图形的折叠问题是指将 一个平面图形沿着一条或几条折 痕进行折叠,使其从一个平面状
态变为立体状态的过程。
常见类型
如正方形、三角形、圆形等平面图 形的折叠问题,以及由这些基本图 形组合形成的复杂图形的折叠问题。
立体几何中的折叠问题含解析

高考热点问题:立体几何中折叠问题一、考情分析立体几何中的折叠问题是历年高考命题的一大热点与难点,主要包括两个方面:一是平面图形的折叠问题,多涉及到空间中的线面关系、体积的求解以及空间角、距离的求解等问题;二是几何体的表面展开问题,主要涉及到几何体的表面积以及几何体表面上的最短距离等.二、经验分享(1)立体几何中的折叠问题主要包含两大问题:平面图形的折叠与几何体的表面展开.把一个平面图形按照某种要求折起,转化为空间图形,进而研究图形在位置关系和数量关系上的变化,这就是折叠问题.把一个几何体的表面伸展为一个平面图形从而研究几何体表面上的距离问题,这就是几何体的表面展开问题.折叠与展开问题是立体几何的两个重要问题,这两种方式的转变正是空间几何与平面几何问题转化的集中体现,展开与折叠问题就是一个由抽象到直观,由直观到抽象的过程.此类问题也是历年高考命题的一大热点. (2) 平面图形通过折叠变为立体图形,就在图形发生变化的过程中,折叠前后有些量(长度、角度等)没有发生变化,我们称其为“不变量”.求解立体几何中的折叠问题,抓住“不变量”是关键.(3)把曲面上的最短路线问题利用展开图转化为平面上两点间距离的问题,从而使问题得到解决,这是求曲面上最短路线的一种常用方法.三、题型分析(一) 平面图形的折叠解答折叠问题的关键在于画好折叠前后的平面图形与立体图形,抓住两个关键点:不变的线线关系、不变的数量关系.不变的线线关系,尤其是平面图形中的线线平行、线线垂直关系是证明空间平行、垂直关系的起点和重要依据;不变的数量关系是求解几何体的数字特征,如几何体的表面积、体积、空间中的角与距离等的重要依据.1. 折叠后的形状判断【例1】如下图,在下列六个图形中,每个小四边形皆为全等的正方形,那么沿其正方形相邻边折叠,能够围成正方体的是_____________(要求:把你认为正确图形的序号都填上)①②③④⑤⑥【分析】根据平面图形的特征,想象平面图形折叠后的图形进行判断.也可利用手中的纸片画出相应的图形进行折叠.【答案】①③⑥【解析】①③⑥可以.②把横着的小方形折起后,再折竖着的小方形,则最上方的小方形与正方体的一个侧面重合,导致正方体缺少一个侧面;④把下方的小方形折起后,则上方的小方形中的第1,2个重合,导致正方体的底面缺少,不能折成正方体;⑤把中间的小方形当成正方体的底面,则右下方的小方形折叠不起来,构不成正方体.【小试牛刀】下图代表未折叠正方体的展开图,将其折叠起来,变成正方体后的图形是()A. B. C. D.【例2】将图1中的等腰直角三角形ABC沿斜边BC的中线折起得到空间四边形ABCD(如图2),则在空间四边形ABCD中,AD与BC的位置关系是( )图1 图2A.相交且垂直B.相交但不垂直C.异面且垂直D.异面但不垂直【答案】C【解析】在图1中的等腰直角三角形ABC 中,斜边上的中线AD 就是斜边上的高,则AD ⊥BC ,折叠后如图2,AD 与BC 变成异面直线,而原线段BC 变成两条线段BD 、CD ,这两条线段与AD 垂直,即AD ⊥BD ,AD ⊥CD ,故AD ⊥平面BCD ,所以AD ⊥BC .【小试牛刀】如图,在正方形ABCD 中,点E,F 分别为边BC,AD 的中点,将沿BF 所在直线进行翻折,将沿DE 所在直线进行翻折,在翻折过程中( )A. 点A 与点C 在某一位置可能重合B. 点A 与点C 的最大距离为C. 直线AB 与直线CD 可能垂直D. 直线AF 与直线CE 可能垂直 3.折叠后几何体的数字特征折叠后几何体的数字特征包括线段长度、几何体的表面积与体积、空间角与距离等,设计问题综合、全面,也是高考命题的重点.解决此类问题的关键是准确确定折叠后几何体的结构特征以及平面图形折叠前后的数量关系之间的对应.【例3】(体积问题)如图所示,等腰ABC △的底边66AB =,高3CD =,点E 是线段BD 上异于点B D ,的动点,点F 在BC 边上,且EF AB ⊥,现沿EF 将BEF △折起到PEF △的位置,使PE AE ⊥,记BE x =,()V x 表示四棱锥P ACFE -的体积.(1)求()V x 的表达式;(2)当x 为何值时,()V x 取得最大值?PED F B CA【解析】(1)由折起的过程可知,PE ⊥平面ABC,96ABC S ∆=,V(x)= (036x <<)(2),所以(0,6)x ∈时,'()0v x > ,V(x)单调递增;636x <<时'()0v x < ,V(x)单调递减;因此x=6时,V(x)取得最大值126.【小试牛刀】【河北省五个一名校联盟2019届高三下学期一诊】在平面四边形 中,AB=BC=2,AC=AD=2,现沿对角线AC 折起,使得平面DAC平面ABC ,则此时得到的三棱锥D-ABC外接球的表面积为( ) A .B .C .D .【例4】(空间角问题)如左图,矩形ABCD 中,12AB =,6AD =,E 、F 分别为CD 、AB 边上的点,且3DE =,4BF =,将BCE ∆沿BE 折起至PBE ∆位置(如右图所示),连结AP 、EF 、PF ,其中25PF =.(Ⅰ)求证:PF ⊥平面ABED ; (Ⅱ)求直线AP 与平面PEF 所成角的正弦值.【解析】(Ⅰ)由翻折不变性可知, , ,在PBF ∆中, ,所以PF BF ⊥ 在图1中,易得,在PEF ∆中, ,所以PF EF ⊥又,BF ⊂平面ABED ,EF ⊂平面ABED ,所以PF ⊥平面ABED .. .ACDBEF图图ABCD PEF(Ⅱ)方法一:以D 为原点,建立空间直角坐标系D xyz -如图所示,则()6,0,0A ,,()0,3,0E ,()6,8,0F ,所以, ,,设平面PEF 的法向量为(),,x y z =n ,则0FP EF ⎧⋅=⎪⎨⋅=⎪⎩n n ,即,解得560x y z ⎧=-⎪⎨⎪=⎩令6y =-,得,设直线AP 与平面PEF 所成角为θ,则81281427. 所以直线AP 与平面PEF 所成角的正弦值为81281427. 方法二:过点A 作AH EF ⊥于H ,由(Ⅰ)知PF ⊥平面ABED ,而AH ⊂平面ABED 所以PF AH ⊥,又,EF ⊂平面PEF ,PF ⊂平面PEF ,所以AH ⊥平面PEF ,所以APH ∠为直线AP 与平面PEF 所成的角. 在Rt APF ∆中,在AEF ∆中,由等面积公式得4861在Rt APH ∆中,所以直线AP 与平面PEF 所成角的正弦值为81281427. 【点评】折叠问题分析求解两原则:解法二图ABCD PEFHxy z 解法一图A BC D PEF(1)折叠问题的探究须充分利用不变量和不变关系;(2)折叠前后始终位于折线的同侧的几何量和位置关系保持不变.【小试牛刀】【广东省汕头市2019届高三上学期期末】如图,已知是边长为6的等边三角形,点D、E分别是边AB、AC上的点,且满足,如图,将沿DE折成四棱锥,且有平面平面BCED.求证:平面BCED;记的中点为M,求二面角的余弦值.(二) 几何体的展开几何体表面展开问题是折叠问题的逆向思维、逆过程,一般地,涉及到多面体表面距离的问题,解题时不妨将它展开成平面图形试一试.1.展开后形状的判断【例5】把正方体的表面沿某些棱剪开展成一个平面图形(如右下图),请根据各面上的图案判断这个正方体是()解析:这是图③模型,在右图中,把中间的四个正方形围起来做“前后左右”四个面,有“空心圆”的正方形做“上面”,显然是正方体C的展形图,故选(C).【小试牛刀】水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如右图,是一个正方体的平面展开图,若图中的“似”表示正方体的前面, “锦”表示右面, “程”表示下面.则“祝”、“你”、“前”分别表示正方体的______________________.2.展开后的数字特征——表面上的最短距离问题【例6】如图,已知圆柱体底面圆的半径为2π,高为2,AB CD,分别是两底面的直径,AD BC,是母线.若一只小虫从A点出发,从侧面爬行到C点,求小虫爬行的最短路线的长度.【解析】如图,将圆柱的侧面展开,其中AB为底面周长的一半,即,2AD=.则小虫爬行的最短路线为线段AC.在矩形ABCD中,.所以小虫爬行的最短路线长度为22.【点评】几何体表面上的最短距离需要将几何体的表面展开,将其转化为平面内的最短距离,利用平面内两点之间的距离最短求解.但要注意棱柱的侧面展开图可能有多种展开图,如长方体的表面展开图等,要把不同展开图中的最短距离进行比较,找出其中的最小值.【小试牛刀】如图,在长方体中, ,求沿着长方体表面从A到1C的最短路线长.四、迁移运用1.【浙江省2019年高考模拟训练】已知四边形中,,,在将沿着翻折成三棱锥的过程中,直线与平面所成角的角均小于直线与平面所成的角,设二面角,的大小分别为,则()A. B. C.存在 D.的大小关系无法确定【答案】B【解析】如图,在三棱锥中,作平面于,连,则分别为与平面所成的角.∵直线与平面所成角的角均小于直线与平面所成的角,∴.过作,垂足分别为,连,则有,∴分别为二面角,的平面角,∴.在中,,设BD的中点为O,则为边上的中线,由可得点H在CO的左侧(如图所示),∴.又,∴.又为锐角, ∴.故选B .2.【四川省德阳市2018届高三二诊】以等腰直角三角形ABC 的斜边BC 上的中线AD 为折痕,将ABD ∆与ACD ∆折成互相垂直的两个平面,得到以下四个结论:①BD ⊥平面ACD ;②ABC ∆为等边三角形;③平面ADC ⊥平面ABC ;④点D 在平面ABC 内的射影为ABC ∆的外接圆圆心.其中正确的有( ) A. ①②③ B. ②③④ C. ①②④ D. ①③④ 【答案】C【解析】由于三角形ABC 为等腰直角三角形,故,所以BD ⊥平面ACD ,故①正确,排除B 选项.由于AD BD ⊥,且平面ABD ⊥平面ACD ,故AD ⊥平面BCD ,所以AD CD ⊥,由此可知,三角形为等比三角形,故②正确,排除D 选项.由于,且ABC ∆为等边三角形,故点D 在平面ABC 内的射影为ABC ∆的外接圆圆心, ④正确,故选C .3.已知梯形如下图所示,其中,,为线段的中点,四边形为正方形,现沿进行折叠,使得平面平面,得到如图所示的几何体.已知当点满足时,平面平面,则的值为( )A. B. C. D.【答案】C 【解析】因为四边形为正方形,且平面平面,所以两两垂直,且,所以建立空间直角坐标系(如图所示),又因为,,所以,则,,设平面的法向量为,则由得,取,平面的法向量为,则由得,取,因为平面平面,所以,解得.故选C.4.如图是棱长为1的正方体的平面展开图,则在这个正方体中,以下结论错误的是( )A .点M 到AB 的距离为22B .AB 与EF 所成角是90︒C .三棱锥C DNE -的体积是16D .EF 与MC 是异面直线 【答案】D【解析】根据正方体的平面展开图,画出它的立体图形如图所示,A 中M 到AB 的距离为222MC =,A 正确;AB 与EF 所成角是90︒,B 正确;三棱锥C DNE -的体积是,C 正确;//EF MC ,D 错误.5.把正方形ABCD 沿对角线AC 折起,当以四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成的角的大小为( )度A .90B .60C .45D .30 【答案】C【解析】折叠后所得的三棱锥中易知当平面ACD 垂直平面ABC 时三棱锥的体积最大.设AC 的中点为O ,则DBO ∠即为所求,而DOB ∆是等腰直角三角形,所以,故选C .6.【辽宁省辽阳市2018学届高三第一次模拟】如图,圆形纸片的圆心为O ,半径为6cm ,该纸片上的正方形ABCD 的中心为O , E , F , G , H 为圆O 上的点, ABE , BCF , CDG , ADH 分别以AB , BC , CD , DA 为底边的等腰三角形,沿虚线剪开后,分别以AB , BC , CD , DA 为折痕折起ABE , BCF , CDG , ADH ,使得E , F , G , H 重合,得到一个四棱锥,当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的体积为__________.【答案】500327π3cm【解析】如图:连接OE 交AB 于点I ,设E ,F ,G ,H 重合于点P ,正方形的边长为x ()0x >,则OI=2x , IE 62x =-. 因为该四棱锥的侧面积是底面积的2倍,所以,解得4x =,设该四棱锥的外接球的球心为Q ,半径为R ,则,,解得5R 3=,外接球的体积3cm7.【山东省济南市2019届高三上学期期末】在正方形中,点,分别为,的中点,将四边形沿翻折,使得平面平面,则异面直线与所成角的余弦值为__________.【答案】【解析】连接FC ,与DE 交于O 点,取BE 中点为N , 连接ON ,CN ,易得ON ∥BD ∴∠CON 就是异面直线与所成角设正方形的边长为2, OC=,ON=,CN=∴cos ∠CON==故答案为:8.如图所示,在四边形ABCD 中,,将四边形ABCD 沿对角线BD 折成四面体BCD A -',使平面⊥BD A /平面BCD ,则下列结论正确的是 .(1)BD C A ⊥'; (2);(3)A C '与平面BD A '所成的角为︒30; (4)四面体BCD A -'的体积为61. 【答案】(2)(4)【解析】平面⊥BD A /平面BCD CD ∴⊥平面'A BD ,/CA 与平面BD A /所成的角为'CA D ∠,四面体BCDA -/的体积为,,综上(2)(4)成立.9.如图,矩形ABCD 中,2AB AD =,E 为边AB 的中点,将ADE ∆沿直线DE 翻折成1A DE ∆,若M 为线段1AC 的中点,则在ADE ∆翻折过程中,下面四个选项中正确的是 (填写所有的正确选项)(1)||BM 是定值 (2)点M 在某个球面上运动(3)存在某个位置,使1DE A C ⊥ (4)存在某个位置,使//MB 平面1A DE 【答案】(1)(2)(4).【解析】取CD 中点F ,连接MF ,BF ,则1//MF DA ,//BF DE ,∴平面//MBF 平面1A DE , ∴//MB 平面1A DE ,故(4)正确;由,为定值,FB DE =为定值,由余弦定理可得,∴MB 是定值,故(1)正确;∵B 是定点,∴M 是在以B 为圆心,MB 为半径的圆上,故(2)正确;∵1AC 在平面ABCD 中的射影为AC ,AC 与DE 不垂直,∴存在某个位置,使1DE A C ⊥错误,故(3)错误.10.【四川省广元市高2018届第二次高考适应性统考】如图,在矩形ABCD 中, 4AB =, 2AD =, E 是CD 的中点,以AE 为折痕将DAE ∆向上折起, D 变为'D ,且平面'D AE ⊥平面ABCE .(Ⅰ)求证: 'AD EB ⊥; (Ⅱ)求二面角'A BD E --的大小. 【答案】(Ⅰ)证明见解析;(Ⅱ) 90. 【解析】(Ⅰ)证明:∵, AB 4=,∴,∴AE EB ⊥,取AE 的中点M ,连结MD ',则,∵ 平面D AE '⊥平面ABCE ,∴MD '⊥平面ABCE ,∴MD '⊥ BE , 从而EB ⊥平面AD E ',∴AD EB '⊥ (Ⅱ)如图建立空间直角坐标系,则()A 4,2,0、()C 0,0,0、()B 0,2,0、()D 3,1,2',()E 2,0,0,从而BA =(4,0,0),,.设为平面ABD '的法向量,则可以取设为平面BD E '的法向量,则可以取因此, 12n n 0⋅=,有12n n ⊥,即平面ABD ' ⊥平面BD E ', 故二面角的大小为90.11.【福建省龙岩市2019届高三下学期教学质量检查】如图1,已知菱形的对角线交于点,点为线段的中点,,,将三角形沿线段折起到的位置,,如图2所示.(Ⅰ)证明:平面平面;(Ⅱ)求三棱锥的体积.【解析】(Ⅰ)折叠前,因为四边形为菱形,所以;所以折叠后,,, 又,平面,所以平面因为四边形为菱形,所以.又点为线段的中点,所以.所以四边形为平行四边形.所以.又平面,所以平面.因为平面,所以平面平面.(Ⅱ)图1中,由已知得,,所以图2中,,又所以,所以又平面,所以又,平面,所以平面,所以.所以三棱锥的体积为.12.【湖南省长沙市长郡中学2019届高三上学期第一次适应性考试(一模】如图,在多边形中(图1),为长方形,为正三角形,现以为折痕将折起,使点在平面内的射影恰好在上(图2).(Ⅰ)证明:平面;(Ⅱ)若点在线段上,且,当点在线段上运动时,求三棱锥的体积. 【解析】(Ⅰ)过点作,垂足为.由于点在平面内的射影恰好在上,∴平面.∴.∵四边形为矩形,∴.又,∴平面,∴.又由,,可得,同理.又,∴,∴,且,∴平面.(Ⅱ)设点到底面的距离为,则.由,可知,∴.又,∴.13.【江西省上饶市重点中学2019届高三六校第一次联考】如图所示,在边长为2的菱形中,,现将沿边折到的位置.(1)求证:;(2)求三棱锥体积的最大值.【解析】(1)如图所示,取的中点为,连接,易得,,又面(2)由(1)知,= ,当时,的最大值为1.14.【云南师范大学附属中学2019届高三上学期第一次月考】如图所示甲,在四边形ABCD中,,,是边长为8的正三角形,把沿AC折起到的位置,使得平面平面ACD,如图所示乙所示,点O,M,N分别为棱AC,PA,AD的中点.求证:平面PON;求三棱锥的体积.【解析】如图所示,为正三角形,O为AC的中点,,平面平面ACD,平面平面,平面ACD,平面ACD,.,,,,即.,N分别为棱AC,AD的中点,,,又,平面PON;解:由,,,可得,点O、N分别是AC、AD的中点,,是边长为8的等边三角形,,又为PA的中点,点M到平面ANO的距离,.又,.15.【湖北省荆门市2019届高三元月调研】如图,梯形中,,过分别作,,垂足分别,,已知,将梯形沿同侧折起,得空间几何体,如图.1若,证明:平面;2若,,线段上存在一点,满足与平面所成角的正弦值为,求的长.【解析】1由已知得四边形ABFE是正方形,且边长为2,在图2中,,由已知得,,平面又平面BDE,,又,,平面2在图2中,,,,即面DEFC,在梯形DEFC中,过点D作交CF于点M,连接CE,由题意得,,由勾股定理可得,则,,过E作交DC于点G,可知GE,EA,EF两两垂直,以E为坐标原点,以分别为x轴,y轴,z轴的正方向建立空间直角坐标系,则,.设平面ACD的一个法向量为,由得,取得,设,则m,,,得设CP与平面ACD所成的角为,.所以16.【山西省吕梁市2019届高三上学期第一次模拟】已知如图(1)直角梯形,,,,,为的中点,沿将梯形折起(如图2),使.(1)证明:平面;(2)求点到平面的距离.【解析】(1)由已知可得为直角三角形,所以.又,所以,所以平面.(2)因为平面,平面,所以,又因为,平面,平面,,所以,平面,又因为,所以平面,又因为平面,所以.在直角中,,设点到平面的距离为,由,则,所以.16.正△ABC的边长为4,CD是AB边上的高,,E F分别是AC和BC边的中点,现将△ABC沿CD翻折--.成直二面角A DC B(1)试判断直线AB与平面DEF的位置关系,并说明理由;--的余弦值;(2)求二面角E DF C(3)在线段BC 上是否存在一点P ,使AP DE ⊥?证明你的结论.【分析】(1)问可利用翻折之后的几何体侧面ABC ∆的中位线得到//AB EF ,便可由线面平行的判定定理证得;(2)先根据直二面角A DC B --将条件转化为AD ⊥面BCD ,然后做出过点E 且与面BCD 垂直的直线EM ,再在平面BCD 内过M 作DF 的垂线即可得所求二面角的平面角;(3)把AP DE ⊥作为已知条件利用,利用ADC ∆中过A 与DE 垂直的直线确定点P 的位置.【解析】(1)如图:在△ABC 中,由E 、F 分别是AC 、BC 中点,得EF//AB,又AB ⊄平面DEF,EF ⊂平面DEF .∴AB ∥平面DEF .(2)∵AD ⊥CD,BD ⊥CD∴∠ADB 是二面角A —CD —B 的平面角∴AD ⊥BD ∴AD ⊥平面BCD取CD 的中点M,这时EM ∥AD ∴EM ⊥平面BCD过M 作MN ⊥DF 于点N,连结EN,则EN ⊥DF∴∠MNE 是二面角E —DF —C 的平面角,在Rt △EMN 中,EM=1,MN=23 ∴tan ∠MNE=233,cos ∠MNE=721(3)在线段BC 上存在点P,使AP ⊥DE. 证明如下:在线段BC 上取点P,使BC BP 31 ,过P 作PQ ⊥CD 与点Q, ∴PQ ⊥平面ACD∵, 在等边△ADE 中,∠DAQ=30°,∴AQ ⊥DE ∴AP ⊥DE.。
立体几何折叠问题

立体几何折叠问题
嘿,朋友们!今天咱们就来讲讲立体几何折叠问题那些事儿。
什么是立体几何折叠问题呢?比如说,咱们有张纸,把它折起来变成个立体形状,这中间就有好多有趣的问题啦!
那会有哪些问题呢?就像是纸折成了个三棱锥,那原来纸上的线折起来后长度变不变呀?这就好像你把一根橡皮筋拉长再缩短,它还是原来的长度吗?还有哦,折起来后角度会怎么变化呢?这就好比你搭积木,不同的角度搭起来样子可不一样呢!
再想想,折叠后这个立体图形的体积又会怎么变呢?哎呀呀,这就如同你吹气球,气吹进去多了体积就大了嘛。
而且啊,不同的折叠方法会得到不一样的立体图形,这多神奇呀!这不就跟变魔术一样,一张纸能变出好多花样来。
立体几何折叠问题真的很奇妙,大家可别小瞧它哟,自己也去好好琢磨琢磨吧!。
立体几何翻折问题解题技巧

立体几何翻折问题解题技巧
立体几何翻折问题是指将一个平面图形通过折叠变成一个立体
图形的问题。
这种问题在数学竞赛和考试中经常出现,需要掌握一些解题技巧。
1. 观察图形
首先需要认真观察给定的图形,理解其形状和结构。
可以通过画出各个面的展开图或者模型来加深对图形的理解。
2. 寻找对称性
考虑到翻折后的立体图形具有一定的对称性,可以通过寻找对称轴来简化问题。
对称轴可以是图形的中心线、对角线或者其他线段。
3. 利用平行四边形法则
平行四边形法则指如果一个图形经过翻折后,两个相邻的侧面是平行四边形,则它们的对边相等。
这个定理对解决立体几何翻折问题非常有用。
4. 利用角度关系
如果一个图形经过翻折后,两个相邻的侧面是由同一直线切割而成,则它们的夹角相等。
这个关系可以用于计算角度,解决一些复杂的立体几何问题。
5. 练习和实践
最后,需要进行大量的练习和实践,提高解题能力和技巧。
可以尝试解决不同形状和难度级别的立体几何翻折问题,不断挑战自己。
总之,掌握立体几何翻折问题的解题技巧需要综合运用几何知识
和逻辑思维能力。
通过多练习和实践,可以提高解题水平,取得更好的成绩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
普通高等学校招生全国统一考试新课程标准数学科考试大纲指出,通过考试,让学生提高多种能力,其中空间想象能力是对空间形式的观察、分析、抽象的能力.要在立体几何学习中形成.纵观近几年全国及各省高考试题,对立体几何中的折叠问题、最值问题和探索性问题的考查逐年加重,要求学生要有较强的空间想象力和准确的计算运算能力,才能顺利解答.从实际教学和考试来看,学生对这类题看到就头疼.分析原因,首先是学生的空间想象力较弱,其次是学生对这类问题没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理.本文就高中阶段学习和考试出现这类问题加以总结的探讨.
1 立体几何中的折叠问题
折叠与展开问题是立体几何的两个重要问题,这两种方式的转变正是空间几何与平面几何问题转化的
集中体现。
处理这类题型的关键是抓住两图的特征关系。
折叠问题是立体几何的一类典型问题是实践能力与创新能力考查的好素材。
解答折叠问题的关键在于画好折叠前后的平面图形与立体图形,并弄清折叠前后哪些发生了变化,哪些没有发生变化。
这些未变化的已知条件都是我们分析问题和解决问题的依据。
而表面展开问题是折叠问题的逆向思维、逆过程,一般地,涉及到多面体表面的问题,解题时不妨将它展开成平面图形试一试。
例1 【广东省广州市海珠区2014届高三上学期综合测试二】如图5,已知矩形ABCD 中,10AB =,6BC =,
将矩形沿对角线BD 把ABD ∆折起,使A 移到1A 点,且1A 在平面BCD 上的射影O 恰好在CD 上.
(1)求证:1BC A D ⊥;
(2)求证:平面1A BC ⊥平面1A BD ; (3)求二面角1A BD C --的余弦值
点评:折叠问题是考查学生空间想象能力的较好载体。
如本题,不仅要求学生象解常规立几综合题一样懂
2 立体几何中的最值问题
结合近年来全国各省市的高考中,考查与空间图形有关的线段、角、距离、面积、体积等最值问题常常在高考试题中出现.在解决此类问题时,通常应注意分析题目中所有的条件,首先应该在充分理解题意的基础上,分析是否能用公理与定义直接解决题中问题;如果不能,再看是否可将问题条件转化为函数,若能写出确定的表意函数,则可用建立函数法求解;再不能,则要考虑其中是否存在不等关系,看是否能运用解等不式法求解;还不行则应考虑是否可将其体图展开成平面,这样依次顺序思考,基本可以找到解题的途径
例2 正ABC ∆的边长为a ,沿BC 的平行线PQ 折叠,使平面⊥'PQ A 平面BCQP ,求四棱锥的棱B A '取得最小值时,四棱锥BCQP A -'的体积.
即当a x 43=
时,a B A 4
10min ='
3 立体几何中的探索性问题
探究性问题常常是条件不完备的情况下探讨某些结论能否成立,立体几何中的探究性问题既能够考查学生的空间想象能力,又可以考查学生的意志力及探究的能力.近几年高考中立体几何试题不断出现了一些具有探索性、开放性的试题.内容涉及异面直线所成的角,直线与平面所成的角,二面角,平行与垂直等方面,对于这类问题一般可用综合推理的方法、分析法、特殊化法和向量法来解决.一般此类立体几何问题描述的是动态的过程,结果具有不唯一性或者隐藏性,往往需要耐心尝试及等价转化,因此,对于常见的探究方法的总结和探究能力的锻炼是必不可少的.
3.1对命题条件的探索
探索条件,即探索能使结论成立的条件是什么.对命题条件的探索常采用以下三种方法: 1、先猜后证,即先观察与尝试给出条件再给出证明;
2、先通过命题成立的必要条件探索出命题成立的条件,再证明充分性;
3、把几何问题转化为代数问题,探索出命题成立的条件.
例3 【湖北省八校联考】如图,在直三棱柱111ABC A B C -中,底面△ABC 为等腰直角三角形,90ABC ∠= ,D 为棱1BB 上一点,且平面1DA C ⊥平面11AA C C .
(Ⅰ)求证:D 为棱1BB 的中点;
(Ⅱ)
AB
AA 1
为何值时,二面角1A A D C --的平面角为60 .
3.2对命题结论的探索
探索结论,即在给定的条件下命题的结论是什么.对命题结论的探索,常从条件出发,探索出要求的结论是什么,另外还有探索的结论是否存在.求解时,常假设结论存在,再寻找与条件相容还是矛盾的结论.
例4 【江西省2014届新课程高三第三次适应性测试】
(如图1)在平面四边形ACPE 中,D 为AC 中点,2AD DC PD ===,1AE =,且
,AE AC PD AC ⊥⊥,现沿PD 折起使090ADC ∠=,得到立体图形(如图2),又B 为平面ADC 内一点,并且ABCD 为正方形,设F ,G ,H 分别为PB ,EB ,PC 的中点 (1)求三棱锥P GHF -的体积;
60?若存在,求出线段的长;若不存(2)在线段PC上是否存在一点M,使直线FM与直线PA所成角为0
在,请说明理由.
如图,建立空间直角坐标系,因为22AD PD EA ===,
综合以上三类问题,折叠与展开问题、最大值和最小值问题和探究性问题都是高考中的热点问题,在高考试题的新颖性越来越明显,能力要求也越来越高,并且也越来越广泛.折叠与展开问题是立体几何的一对问题,这两种方式的转变正是空间几何与平面几何问题转化的集中体现,处理这类题型的关键是抓住两图的特征关系;求最值的途径很多,其中运用公理与定义法、利用代数知识建立函数法、由常用不等式解不等式法等都是常用的一些求最值的方法;对于立体几何的探索性问题一般都是条件开放性的探究问题,采用的方法一般是执果索因的方法,假设求解的结果存在,寻找使这个结论成立的充分条件,运用方程的思想或向量的方法转化为代数的问题解决.如果找到了符合题目结果要求的条件,则存在;如果找不到符合题目结果要求的条件,或出现了矛盾,则不存在.另外对于立体几何中的上述三种问题有时运用空间向量。