重难点突破:立体几何中最值问题全梳理
2020年高考数学冲刺复习知识点精讲:立体几何中的最值问题含解析

立体几何中的最值问题一、考情分析立体几何中的最值问题一般涉及到距离、面积、体积、角度等四个方面,此类问题多以规则几何体为载体,涉及到几何体的结构特征以及空间线面关系的逻辑推理、空间角与距离的求解等,题目较为综合,解决此类问题一般可从两个方面思考:一是函数法,即利用传统方法或空间向量的坐标运算,建立所求的目标函数,转化为函数的最值问题求解;二是直接法,即根据几何体的结构特征或平面几何中的相关结论,直接判断最值. 纵观近几年高考对于组合体的考查,重点放在与球相关的外接与内切问题上.要求学生有较强的空间想象能力和准确的计算能力,才能顺利解答.从实际教学来看,这部分知识是学生掌握最为模糊,看到就头疼的题目.分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理.二、经验分享1.解决立体几何中的最值问题常见方法有:(1)建立函数法是一种常用的最值方法,很多情况下,我们都是把这类动态问题转化成目标函数,最终利用代数方法求目标函数的最值.解题途径很多,在函数建成后,可用一次函数的端点法;二次数的配方法、公试法;有界函数界值法(如三角函数等)及高阶函数的拐点导数法等.(2)公理与定义法通常以公理与定义作依据,直接推理问题的最大值与最小值,一般的公理与定理有:两点之间以线段为最短,分居在两异面直线上的两点的连线段中,以它们的公垂线段为短.球面上任意两点间的连线中以过这两点与球心的平面所得圆的劣弧长为最短等.如果直接建立函数关系求之比较困难,而运用两异面直线公垂线段最短则是解决问题的捷径.(3)解不等式法是解最值问题的常用方法、在立体几何中同样可利用不等式的性质和一些变量的特殊不等关系求解:如最小角定理所建立的不等关系等等.(4)展开体图法是求立体几何最值的一种特殊方法,也是一种常用的方法,它可将几何题表面展开,也可将几何体内部的某些满足条件的部分面展开成平面,这样能使求解问题,变得十分直观,由难化易.(5)变量分析法是我们要透过现象看本质,在几何体中的点、线、面,哪些在动,哪些不动,要分析透彻,明白它们之间的相互关系,从而转化成求某些线段或角等一些量的求解最值总题的方法.除了上述5种常用方法外,还有一些使用并不普遍的特殊方法,可以让我们达到求解最值问题的目的,这就是:列方程法、极限思想法、向量计算法等等其各法的特点与普遍性,大家可以通过实例感受其精彩内涵与思想方法所在.2.决定棱锥体积的量有两个,即底面积和高,当研究其体积的最值问题时,若其中有一个量确定,则只需另一个量的最值;若两个量都不确定,可通过设变量法,将体积表示为变量的函数解析式,利用函数思想确定其最值;将空间问题转化为平面问题是转化思想的重要体现,通过旋转到一个平面内,利用两点之间距离最短求解3.解决几何体体积最值问题的方法(1) 根据条件建立两个变量的和或积为定值,利用基本不等式求体积的最值;通过建立相关函数式,将所求的最值问题转化为函数的最值问题求解,此法应用最为广泛;由图形的特殊位置确定最值,如垂直求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.4.解题时,通常应注意分析题目中所有的条件,首先应该在充分理解题意的基础上,分析是否能用公理与定义直接解决题中问题;如果不能,再看是否可将问题条件转化为函数,若能写出确定的表意函数,则可用建立函数法求解;再不能,则要考虑其中是否存在不等关系,看是否能运用解等不式法求解;还不行则应考虑是否可将其体图展开成平面,这样依次从本文所标定的方法顺序思考,必能找到解题的途径三、题型分析(一) 距离最值问题1.空间中两点间距离的最值问题A C与BD上,求MN的最小值. 【例1】正方体的棱长为1,M、N分别在线段11【分析】方法一,该题可以结合正方体的结构特征,将其转化为两异面直线的距离来求;方法二,可设出变量,构建相应的函数,利用函数的最值求解;方法三,建立空间直角坐标系,利用点的坐标以及距离公式表示出目标函数,然后利用函数方法求解最值.A C与BD是异面直线,所以当MN是两直线的共垂线段时,MN 【解析】方法一(定义转化法)因为直线11取得最小值.取11A C 的中点P ,BD 的中点Q .则线段PQ 就是两异面直线11A C 与BD 的共垂线段.下证明之.在矩形11BDD B 中,PQ 为中位线,所以1//PQ BB ,又因为1BB ⊥平面ABCD ,所以PQ ⊥平面ABCD又因为BD ⊆平面ABCD ,所以PQ BD ⊥.同理可证11PQ A C ⊥,而, ,所以线段PQ 就是两异面直线11A C 与BD 的共垂线段,且1PQ =.由异面直线公垂线段的定义可得,故MN 的最小值为1.方法二:(参数法)如图,取11A C 的中点P ,BD 的中点Q .则线段PQ 就是两异面直线11A C 与BD 的共垂线段.由正方体的棱长为1可得1PQ =.连结AC ,则11//AC A C ,所以BQC ∠为两异面直线11A C 与BD 所成角.在正方形ABCD 中,AC BD ⊥,所以.过点M 作MH AC ⊥,垂足为H ,连结NH ,则//MH PQ ,且. 设PM m =,QN t =,则QH m =.在Rt QNH ∆中,, 在Rt MHN ∆中,.显然,当0m n ==时,2MN 取得最小值1,即MN 的最小值为1.方法三:(向量法)如图,以D 为坐标原点,分别以射线DA 、DC 、1DD 为x 、y 、z 轴建立空间直角坐标系.设DN m =,1A M n =.则,即;,即.所以,故当2m n ==时,2MN 取得最小值1,即MN 的最小值为1.【点评】空间中两点距离的最值,最基本的方法就是利用距离公式建立目标函数,根据目标函数解析式的结构特征求解最值.对于分别在两个不同对象上的点之间距离的最值,可以根据这两个元素之间的关系,借助立体几何中相关的性质、定理等判断并求解相应的最值.如【典例1】中的两点分别在两条异面直线上,显然这两点之间距离的最小值即为两异面直线的公垂线段的长度.另外注意直线和平面的距离,两平面的距离等的灵活运用.【小试牛刀】【湖南省长沙市2019届上学期高三统一检测】设正方体的棱长为,为的中点,为直线上一点,为平面内一点,则,两点间距离的最小值为()A. B. C. D.【答案】B【解析】结合题意,绘制图形结合题意可知OE是三角形中位线,题目计算距离最短,即求OE与两平行线的距离,,所以距离d,结合三角形面积计算公式可得,解得,故选B。
2023届高考数学二轮复习提升微专题几何篇第36讲怎样解立体几何中的最值问题含解析

第36讲怎样解立体几何中的最值问题一、知识与方法解答立体几何中的有关最值或范围问题,通常用函数思想方法.通过设出适当的变量、建立函数关系,转化为求函数的最值(或值域)的问题,解题时要弄清哪些是定值,哪些是变量,变量的取值范围是什么,如何根据题意建立函数关系,如何求函数的最值等.要重视立体几何中通过构造函数模型或几何模型解题的训练,重视空间想象能力以及计算能力的培养.二、典型例题【例1】()1如图3106-,在正三棱柱111ABC A B C -中,各棱的长均为2,M 是1AA 的中点,N 是BC 的中点,点M 在棱柱表面上运动到点N ,应如何运动,才能使点M 运动的路程最短,并求出最短路程;(2) 在正三棱锥P ABC -中,,2AB a PA a ==,过A 作平面分别交平面PBC 于DE .当截面ADE 的周长最小时,ADES=_______,P 到截面ADE 的距离为_______.【分析】求解点在几何体表面上运动路程最短的问题,通常将几何体表面展开成平面图形,化归为平面图形内两点间的距离,有时侯对如何将几何体展开成平面图形可以有不同的展开角度,所以还要分类讨论获得正确的结果.第()2问又把问题引向深入,解决面积和点到截面的距离问题. 【解析】(1)观察图3106-,从点M 运动到点N 的路程最短可能情况有两种:(1)经面1A B 和面1BC 到N ,其最短路程是侧面展开图(图3107-)中的线段MN 的长,由已知条件可求得1,3,AM AN MN ===.(2)经面1A C 和下底面到点N ,其最短路程如展开图(图3-108)中的线段MN 的长.1,120MA NA MAN ∠===.2222cos1204MN AM AN AM AN ∴=+-⋅⋅=+即MN =4 310,+<∴点M 在棱柱表面上运动到点N (2) 将三棱锥的侧棱PA 剪开,当ADE 的周长最小时,其展开图如图3109-所示,ADE 的周长即是展开图中线段AA '的长,易证ABDO PAB .又22PA AB a ==,故2AD AB BD a ===.33,24PD PD PB BD a DE BC a PB =-==⋅=.在ADE 中,DE 上的高AH ==.于是21;2ADESAH DE a =⋅= 从P 向底面作高PO ,则PO ===.于是231312P ABC V a -==. 又22916PDE PBCSPD SPB ==得,3399 .1616A PDE A PBC V V --=== 则313A PDE P ADE ADEV V d S --==⋅=,解得d =. 【例2】(1)如图3110-所示,在圆锥中,母线长为2,底面半径为12.一只虫子从底面圆周上一点A 出发沿圆锥表面爬行一周后又回到A 点,则这只虫子爬行的最短路程是多少?(2) 如图3111-所示.圆台的上底面半径为2?cm ,下底面半径为4?cm ,母线长为6?cm .求轴截面相对顶点,A C 在圆台侧面上的最短距离.【分析】空间图形→平面图形,第(1)问,将圆锥侧面沿母线SA 展开得到扇形,弧所对的弦长即为所求的最短距离.第(2)问,展开圆台侧面,A ,C 两点所成线段长即为所求的最短距离。
立体几何中线段长度的最值问题

重点辅导Җ㊀北京㊀陶㊀军(特级教师)㊀㊀立体几何中的最值问题是高中数学的难点,这类问题包括求长度㊁角度㊁面积和体积等最值,而有关线段长度的最值问题是最基本的问题,求解这类问题的通法是几何法和向量法,本文进行例析.例1㊀如图1所示,在棱长为2的正方体A B C D GA 1B 1C 1D 1中,E ,F 分别为B C ,C C 1的中点,点P 是侧面B C C 1B 1上一点,A 1P ʊ平面A E F ,则线段A 1P 长度的最小值是.图1分析1㊀因为点A 1是定点,欲求线段A 1P 长度的最小值,所以需确定动点P 的位置.因为直线A 1P 绕点A 1转动时总和平面A E F 保持平行,所以动直线A 1P 形成的平面与侧面B C C 1B 1相交,点P 就在它们的交线l 上.因为交线l 平行于平面A E F ,侧面B C C 1B 1与平面A E F 的交线是E F ,所以l ʊE F .怎样找到交线l 的位置呢?只需先找到点P ,它是侧面B C C 1B 1上的一个点.考虑到E 为B C 的中点,取B 1C 1的中点P 1,可知A 1P 1ʊA E ,则A 1P 1ʊ平面A E F ,而过点P 1且与E F 平行的直线是唯一的,就是交线l ,显然l 过线段B 1B 的中点P 2,点P 的轨迹是线段P 1P 2,所以求线段A 1P 长度的最小值转化为求点A 1到P 1P 2的距离.解法1(几何法)㊀如图2所示,取B 1C 1的中点P 1,因为P 1E ʊA 1A ,且P 1E =A 1A ,所以四边形P 1E A A 1是平行四边形,所以A 1P 1ʊA E .取线段B 1B 的中点P 2,则P 1P 2ʊF E ,又因为A E 与E F 相交于点E ,所以平面A 1P 1P 2ʊ平面A E F ,由于点P 在平面A 1P 1P 2上,又在侧面B C C 1B 1上,故点P 的轨迹是线段P 1P 2.在等腰әA 1P 1P 2中,A 1P 1=A 1P 2=5,P 1P 2=2.取P 1P 2的中点M ,则A 1M ʅP 1P 2,于是A 1M =A 1P 21-P 1M 2=322,所以线段A 1P 长度的最小值是322.图2分析2㊀因为点A 1是定点,线段A 1P 的长度由动点P 的位置决定,确定点P 的位置可以引入坐标,为此考虑建立适当的空间直角坐标系,设出动点P 的坐标,列出长度的表达式,借助函数的思想求A 1P 的最小值.解法2(向量法)㊀如图3所示,以点D 为原点,D A ,D C ,D D 1分别为x ,y ,z 轴建立空间直角坐标系,则A 1(2,0,2),因为点P 是侧面B C C 1B 1上一点,可设点P 的坐标(x ,2,z )(0ɤx ɤ2,0ɤz ɤ2),故|A 1P ң|(x -2)2+4+(z -2)2.图3设平面A E F 的法向量n =(x 0,y 0,z 0),因为A (2,0,0),E (1,2,0),F (0,2,1),A E ң=(-1,2,0),E F ң=(-1,0,1),所以n A E ң=-x 0+2y 0=0,n E F ң=-x 0+z 0=0.{令y 0=1,则x 0=z 0=2,n =(2,1,2).因为A 1P ʊ平面A E F ,所以n 与A 1P ң=(x -2,2,z -2)垂直,故n A 1P ң=2(x -2)+2+2(z -2)=0,化简得x +z =3,因为0ɤz ɤ2,所以0ɤ3-x ɤ2,且0ɤx ɤ2,解得1ɤx ɤ2.把z =3-x 代入|A 1P ң|的表31重点辅导达式,整理得|A 1P ң|=2(x -32)2+92,x ɪ[1,2],故当x =32时,|A 1P ң|取得最小值322.例2㊀如图4所示,在棱长为2的正方体A B C D GA 1B 1C 1D 1中,E 为B C 的中点,点P 在线段D 1E 上,点P 到直线C C 1的距离的最小值为.图4分析1㊀求点P 到直线C C 1的距离的最小值,就是找点P 到直线C C 1的垂线段P Q 长度的最小值.求线段P Q 的长度涉及空间上两个动点长度的距离问题,不易处理.注意到C C 1ʅ平面A B C D ,P Q ʅC C 1,则P Q ʊ平面A B C D .因此,我们可以把P Q 正投影在平面A B C D 上,点P 在平面A B C D 上的正投影H 落在线段D E 上,点Q 在平面A B C D 上的正投影是点C ,于是P Q =H C ,求P Q 的最小值转化为在平面A B C D 上求定点C 与线段D E 上的动点H 之间距离的最小值,就是求定点C 到D E 的距离.解法1(几何法)㊀如图5所示,过点P 作P Q ʅC C 1,Q 为垂足,因为C C 1ʅ平面A B CD ,所以P Q ʊ平面A B C D ,过点P 作PH ʅDE ,H 为垂足,则PH ʅ平面A B C D ,所以PH ʊQ C ,且P Q ʊH C ,Q C ʅH C ,故四边形P Q C H 是矩形,P Q =H C ,在R t әC D E 中,当C H ʅD E 时,C H 长度最小,因为C E =1,C D =2,D E =5,所以C H =1ˑ25=255,故点P 到直线C C 1的距离的最小值为255.图5分析2㊀设点P 到直线C C 1的距离为P Q ,因为P ,Q 分别在线段D 1E 和C C 1上,故可以引入两个变量控制点P ,Q 的位置.设E P ң=λE D 1ң(0ɤλɤ1),C Q ң=μC C 1ң(0ɤμɤ1),根据正方体的特殊性建立适当的空间直角坐标系,利用向量的坐标运算推出点P ,Q 的坐标,进而用λ,μ表示P Q ң,利用P Q ң C C 1ң=0找出λ,μ的关系式,代入P Q 长度的表达式,转化为一元函数求最值.解法2(向量法)㊀如图6所示,以D 为原点,D A ,D C ,D D 1分别为x ,y ,z 轴建立空间直角坐标系,则D 1(0,0,2),E (1,2,0),C 1(0,2,2),C (0,2,0),E D 1ң=(-1,-2,2),由于点P 在线段D 1E 上,可设E P ң=λE D 1ң(0ɤλɤ1),即E P ң=(-λ,-2λ,2λ),由此得点P 的坐标为(,,).图6过点P 作P Q 垂直于C C 1,Q 为垂足,设点Q 的坐标(0,2,m ),P Q ң=(λ-1,2λ,m -2λ),C C 1ң=(0,0,2),因为P Q ңʅC C 1ң,所以P Q ң C C 1ң=0,即2(m -2λ)=0,m =2λ,P Q ң=(λ-1,2λ,0),|P Q ң|=(λ-1)2+(2λ)2+02=5(λ-15)2+45,λɪ[0,1].当λ=15,P Q 取得最小值255.综上所述,利用几何法求线段长度的最值,要点是先用立体几何知识确定动点的轨迹,再用平面几何知识求最值;利用向量法求线段长度的最值,要点是建立适当的坐标系,设出动点坐标,建立线段长度的表达式,借助向量知识把题目中的几何条件合理转化为代数条件,找到动点坐标的关系,把线段长度的表达式转化为一元函数,用函数的思想求最值.(作者单位:北京市怀柔区第一中学)41。
高中数学立体几何中的最值问题

高中数学立体几何中的最值问题在高中数学的学习中,立体几何一直是一个重点和难点,而其中的最值问题更是让许多同学感到头疼。
这类问题往往需要我们综合运用空间想象力、几何知识以及数学方法来求解。
接下来,让我们一起深入探讨立体几何中的最值问题。
一、常见类型及解法1、距离最值问题(1)两点间距离最值在立体几何中,求两点间距离的最值,常常需要我们将空间中的两点转化到同一平面内。
例如,在长方体中,求异面直线上两点的最短距离,就需要通过平移将其转化为共面直线,然后利用平面几何中的知识求解。
(2)点到直线距离最值求点到直线的距离最值时,通常要找到点在直线上的投影。
如果直线是某一平面的斜线,那么可以通过作垂线找到投影,再利用勾股定理计算距离。
(3)点到平面距离最值对于点到平面的距离最值,一般可以利用空间向量法。
先求出平面的法向量,然后通过向量的数量积来计算点到平面的距离。
2、面积最值问题(1)三角形面积最值在立体几何中,涉及三角形面积的最值问题,可能需要考虑三角形的边长关系或者角度大小。
例如,已知三角形的两边及其夹角,当夹角为直角时,面积最大。
(2)四边形面积最值对于四边形,如平行四边形,其面积可以表示为底边乘以高。
当底边长度固定时,高取得最大值时面积最大;或者当四边形的对角线相互垂直时,面积等于对角线乘积的一半。
3、体积最值问题(1)柱体体积最值对于柱体,如圆柱、棱柱,其体积等于底面积乘以高。
当底面积不变时,高最大则体积最大;反之,高最小时体积最小。
(2)锥体体积最值锥体体积为三分之一底面积乘以高。
在求解锥体体积最值时,需要关注底面积和高的变化。
二、例题分析例 1:在棱长为 2 的正方体 ABCD A1B1C1D1 中,E、F 分别是棱AB、BC 的中点,求点 A1 到直线 EF 的距离。
解:连接 A1C1、C1F、EF,因为 A1C1 平行于 EF,所以点 A1 到直线 EF 的距离等于点 A1 到直线 C1F 的距离。
立体几何的最值问题

立体几何最值问题立体几何是数学中的一个重要分支,它研究的是空间图形的性质和数量关系。
在立体几何中,我们经常遇到最值问题,即寻找某个量的最大值或最小值。
本文将介绍立体几何中最值问题的几个方面:1.立体几何位置关系立体几何中的位置关系是指空间中点、线、面之间的相对位置。
解决位置关系问题需要运用空间想象和逻辑推理。
在立体几何中最值问题中,位置关系往往与距离、角度等问题交织在一起,需要综合考虑多种因素。
2.立体几何中的距离立体几何中的距离是指空间中两点之间的直线距离,或者是点与线、线与面之间的距离。
在解决最值问题时,我们需要考虑如何利用距离公式来计算最短路径、最大距离等。
3.立体几何中的体积立体几何中的体积是指空间中封闭图形的体积,或者是两个平面图形之间的距离。
计算体积需要运用体积公式,而解决最大或最小面积问题则需要考虑如何调整图形的形状和大小。
4.立体几何中的最短路径立体几何中的最短路径问题是指寻找空间中两点之间的最短距离。
解决这类问题需要运用距离公式和几何定理,有时还需要借助对称、旋转等技巧。
5.立体几何中的最大/最小面积立体几何中的最大/最小面积问题通常涉及到平面图形在空间中的展开和折叠。
解决这类问题需要运用面积公式和平面几何定理,同时要注意图形的对称性和边长之间的关系。
6.立体几何中的角度问题立体几何中的角度问题是指空间中两条直线或两个平面之间的夹角。
解决这类问题需要运用角度公式和空间向量,同时要注意图形的对称性和边长之间的关系。
7.立体几何中的轨迹问题立体几何中的轨迹问题是指一个点或一条线在空间中按照一定规律移动所形成的轨迹。
解决这类问题需要运用轨迹方程和运动学原理,同时要注意轨迹的形状和大小随时间的变化情况。
中学考试压轴题突破几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)一、基本图形最值问题在几何图形中分两大类:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。
由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。
举例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。
已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。
证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r ≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。
即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。
(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。
上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。
二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。
类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。
(一)直接包含基本图形例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。
简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。
(二)动点路径待确定例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。
难点06 立体几何中的折叠问题、最值问题和探索性问题(教学案)(解析版)

难点六 立体几何中的折叠问题、最值问题和探索性问题对立体几何中的折叠问题、最值问题和探索性问题,要求学生要有较强的空间想象力和准确的计算运算能力,才能顺利解答.从实际教学和考试来看,学生对这类题看到就头疼.分析原因,首先是学生的空间想象力较弱,其次是学生对这类问题没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理.本文就高中阶段学习和考试出现这类问题加以总结的探讨.1 立体几何中的折叠问题折叠问题是立体几何的两个重要问题,这两种方式的转变正是空间几何与平面几何问题转化的集中体现.处理这类题型的关键是抓住两图的特征关系.折叠问题是立体几何的一类典型问题是实践能力与创新能力考查的好素材.解答折叠问题的关键在于画好折叠前后的平面图形与立体图形,并弄清折叠前后哪些发生了变化,哪些没有发生变化.这些未变化的已知条件都是我们分析问题和解决问题的依据.而表面展开问题是折叠问题的逆向思维、逆过程,一般地,涉及到多面体表面的问题,解题时不妨将它展开成平面图形试一试.例1(2020·安徽高三(理))在直角梯形ABCD (如图1),90ABC ︒∠=,//BC AD ,8AD =,4AB BC ==,M 为线段AD 中点.将ABC 沿AC 折起,使平面ABC ⊥平面ACD ,得到几何体B ACD -(如图2).(1)求证:CD ⊥平面ABC ;(2)求AB 与平面BCM 所成角θ的正弦值.思路分析:(1)通过计算结合勾股定理的逆定理可以证明CD AC ⊥,再根据面面垂直的性质定理进行证明即可;(2)法一、取AC 的中点O 连接OB ,根据B ACM A BCM V V --=,结合三棱锥的体积公式进行求解即可;法二、取AC 的中点O 连接OB ,由题设可知ABC 为等腰直角三角形,所以OB ⊥面ACM ,连接OM ,因为M O 、分别为AB 和AC 的中点,所以//OM CD ,由(1)可知OM AC ⊥,故以OM OC OB 、、所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示.运用向量法求解即可.【详解】(1)由题设可知AC =CD =,8AD =∴222AD CD AC =+∴CD AC ⊥又∵平面ABC ⊥平面ACD ,平面ABC平面ACD AC = ∴CD ⊥面ABC .(2)法一、等体积法取AC 的中点O 连接OB ,由题设可知ABC 为等腰直角三角形,所以OB ⊥面ACM∵B ACM A BCM V V --=且133B ACM ACM V S BO -=⋅=而BCM S ∆=∴A 到面BCM 的距离h =所以sin 3h AB θ==.法二、向量法取AC 的中点O 连接OB ,由题设可知ABC 为等腰直角三角形,所以OB ⊥面ACM ,连接OM ,因为M O 、分别为AB 和AC 的中点,所以//OM CD ,由(1)可知OM AC ⊥,故以OM OC OB 、、所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示.则(0,A -,B ,(0,C ,M∴(0,CB =-(2CM =-(0,BA =--∴面BCM 的一个法向量(1,1,1)n =∴||6sin ||||BA n BA n θ⋅== 点评:本小题主要考查空间直线与直线、直线与平面的位置关系及平面所成的角等基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查化归与转化思想等.以折叠问题为载体,折叠问题是考查学生空间想象能力的较好载体.如本题,不仅要求学生象解常规立几综合题一样懂得线线,线面和面面垂直的判定方法及相互转化,还要正确识别出折叠而成的空间图形,更要识得折前折后有关线线、线面位置的变化情况以及有关量(边长与角)的变化情况,否则无法正确解题.这正是折叠问题的价值之所在.在求二面角时,如果根据定义要作出二面角的平面角,并证明,然后计算,要求较高,一般是寻找图形中的两两垂直的三条直线,建立空间直角坐标系,用空间向量法来求这个角.设分别是平面的法向量,设二面角的大小为,则.用这种方法求解时要注意判断二面角的大小,即判断二面角是锐角不是钝角.2 立体几何中的最值问题解决空间图形有关的线段、角、距离、面积、体积等最值问题,通常应注意分析题目中所有的条件,首先应该在充分理解题意的基础上,分析是否能用公理与定义直接解决题中问题;如果不能,再看是否可将问题条件转化为函数,若能写出确定的表意函数,则可用建立函数法求解;再不能,则要考虑其中是否存在不等关系,看是否能运用解等不式法求解;还不行则应考虑是否可将其体图展开成平面,这样依次顺序思考,基本可以找到解题的途径.例2 在四棱锥中,设底面是边长为1的正方形,面.(1)求证:;(2)过且与直线垂直的平面与交于点,当三棱锥的体积最大时,求二面角的大小.思路分析:(1)要证线线垂直,可利用线面垂直的性质定理,即先证线面垂直,题中由正方形有,由已知线面垂直有,从而可证与平面垂直,从而得证题设结论;(2)求二面角,一般建立空间直角坐标系,用空间向量法求解,题中有两两垂直,以他们为坐标轴建立空间直角坐12,n n ,αβl αβ--θ121212cos ,cosn n n n n n θ⋅<>==P ABCD -ABCD PA ⊥ABCD PC BD ⊥BD PC PC E E BCD -E BD C --BD AC ⊥BD PA ⊥BD PAC ,,AB AD AP标系,由三棱锥体积最大时,求得的长,然后写出各点坐标,同时计算出点坐标,求得平面和平面的法向量,求出法向量夹角,可观察出此二面角为锐角,从而得二面角.解析:(1)∵四边形是正方形,∴,平面,由此推出,又,∴平面,而平面,所以推出.(2)设,三棱锥的底面积为定值,求得它的高,当,即时,,三棱锥的体积达到最大值为.以点为坐标原点,为轴,为轴,为轴建立空间直角坐标系,则,令,,,得,∴,设是平面的一个法向量,,,则,得.又是平面的一个法向量,∴,∴二面角为. 点评:立体几何中经常碰到求最值问题,不少学生害怕这类问题,主要原因是难以将立体几何问题转化为平面几何问题或代数问题去求解,对立体几何的最值问题,一般可以从两方面着手:一是从问题的几何特征入手,充分利用其几何性质去解决;二是找出问题中的代数关系,建立目标函数,利用代数方法求目标函数的最值.解题途径很多,在函数建成后,可用一次函数的端点法、二次数的配方法、公式法、有界函数界值法(如三角函数等)及高阶函数的拐点导数法等.3立体几何中的探索性问题探究性问题常常是条件不完备的情况下探讨某些结论能否成立,立体几何中的探究性问题既能够考查学生的空间想象能力,又可以考查学生的意志力及探究的能力.近几年高考中立体几何试题不断出现了一些具有探索性、开放性的试题.内容涉及异面直线所成的角,直线与平面所成的角,二面角,平行与垂直等方面,对于这类问题一般可用综合推理的方法、分析法、特殊化法和向量法来解决.一般此类立体几何问题描述的是动态的过程,结果具有不唯一性或者隐藏性,往往需要耐心尝试及等价转化,因此,对于常见的探究方法的总结和探究能力的锻炼是必不可少的.例3.(2020·天津静海一中高三月考)如图所示,直角梯形ABCD 中,AD BC ∥,AD AB ⊥,22AE AB BC AD ====,四边形EDCF 为矩形,CF =E BDC -PA E EBD CBD ABCD BD AC ⊥PA ⊥ABCD PA BD ⊥AC PA A =BD ⊥PAC PC⊂PAC PC BD ⊥PA x =E BCD -22x h x =+2x x =x =h E BCD-111132⨯⨯⨯=A AB x AD y PA z (1,0,0),(1,1,0),(0,1,0),B C D P (,,)E x y z PE PC λ=BE PC ⊥34λ=33(,,444E -'''(,,)n x y z =EBD (1,1,0)BD =-13(,,444BE =--00n BD n BE ⎧•=⎪⎨•=⎪⎩(1,1,2)n =AP =BCD 2cos ,2n AP <>=E BD C --4π(1)求证:平面ECF ⊥平面ABCD ;(2)在线段DF 上是否存在点P ,使得直线BP 与平面ABE 若存在,求出线段BP 的长,若不存在,请说明理由.思路分析:(1)先证CF ⊥面ABCD ,又因为CF ⊂面BCF ,所以平面ECF ⊥平面ABCD .(2)根据题意建立空间直角坐标系. 列出各点的坐标表示,设DP DF λ=,则可得出向量()1,2BP λλ=---,求出平面ABE 的法向量为(),,n x y z =,利用直线与平面所成角的正弦公式sin cos ,BP nBP n BP n θ⋅==⨯列方程求出0λ=或34λ=,从而求出线段BP 的长. 【详解】(1)证明:因为四边形EDCF 为矩形,∴DE CF ==∵222AD DE AE +=∴DE AD ⊥∴DE CD ⊥∴DE ⊥面ABCD∴CF ⊥面ABCD又∵CF ⊂面BCF∴平面ECF ⊥平面ABCD(2)取D 为原点,DA 所在直线为x 轴,DE 所在直线为z 轴建立空间直角坐标系.如图所示:则()1,0,0A ,()1,2,0B ,()1,2,0C -,(E ,(F -,设(DP DF λλ==-(),2λλ=-,[]0,1λ∈;∴(),2P λλ-,()1,2BP λλ=---, 设平面ABE 的法向量为(),,n x y z =,∴2020x y y ⎧--+=⎪⎨=⎪⎩,不防设()3,0,1n =. ∴sin cos ,BP n θ==BP nBP n ⋅=⨯10=, 化简得2860λλ-=,解得0λ=或34λ=; 当0λ=时,()1,2,0BP =--,∴5BP =;当34λ=时,71,,424BP ⎛=-- ⎝⎭,∴5BP = 综上存在这样的P 点,线段BP点评:本题考查直线与平面所成角的求法,空间向量的数量积的应用,直线与平面平行的判断定理的应用,考查空间想象能力以及逻辑推理能力.训练了存在性问题的求解方法,建系利用空间向量求解降低了问题的难度,属中档题.把线面的关系转化为向量之间的关系,直线与平面所成的角的正弦值即直线的方向向量与平面的法向量所成角的余弦值的绝对值;线平行于面即线的方向向量与面的法向量垂直,等价于其数量积为.探索性题型通常是找命题成立的一个充分条件,所以解这类题采用下列二种方法:⑴通过各种探索尝试给出条件;⑵找出命题成立的必要条件,也证明了充分性.综合以上三类问题,折叠与展开问题、最大值和最小值问题和探究性问题都是高考中的热点问题,在高考试题的新颖性越来越明显,能力要求也越来越高,并且也越来越广泛.折叠与展开问题是立体几何的一对问题,这两种方式的转变正是空间几何与平面几何问题转化的集中体现,处理这类题型的关键是抓住两图的特征关系;求最值的途径很多,其中运用公理与定义法、利用代数知识建立函数法、由常用不等式解不等式法等都是常用的一些求最值的方法;对于立体几何的探索性问题一般都是条件开放性的探究问题,采用的方法一般是执果索因的方法,假设求解的结果存在,寻找使这个结论成立的充分条件,运用方程的思想或向量的方法转化为代数的问题解决.如果找到了符合题目结果要求的条件,则存在;如果找不到符合题目结果要求的条件,或出现了矛盾,则不存在.另外对于立体几何中的上述三种问题有时运用空间向量的方法也是一种行之有效的方法,能使问题简单、有效地解决.解答这些问题,需要主观的意志力,不要见到此类问题先发怵,进行消极的自我暗示,要通过一些必要的练习,加强解题信心的培养,确定解题的一般规律,积极的深入分析问题的特征,进而实现顺利解答.。
高三数学选择填空难题突破 立体几何中最值问题

高三数学选择填空难题突破立体几何中最值问题高三数学选择填空难题突破——立体几何中的最值问题一、方法综述高考试题将趋于关注那些考查学生运用运动变化观点处理问题的题目,而几何问题中的最值与范围类问题,既可以考查学生的空间想象能力,又考查运用运动变化观点处理问题的能力,因此,将是有中等难度的考题。
此类问题,可以充分考查图形推理与代数推理,同时往往也需要将问题进行等价转化,比如求一些最值时,向平面几何问题转化,这些常规的降维操作需要备考时加强关注与训练。
立体几何中的最值问题一般涉及到距离、面积、体积、角度等四个方面,此类问题多以规则几何体为载体,涉及到几何体的结构特征以及空间线面关系的逻辑推理、空间角与距离的求解等,题目较为综合。
解决此类问题一般可从三个方面思考:一是函数法,即利用传统方法或空间向量的坐标运算,建立所求的目标函数,转化为函数的最值问题求解;二是根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;三是将几何体平面化,如利用展开图,在平面几何图中直观求解。
二、解题策略类型一:距离最值问题例1:如图,矩形ADFE,矩形CDFG,正方形ABCD两两垂直,且AB=2,若线段DE上存在点P使得GP⊥BP,则边CG长度的最小值为()解:建立空间直角坐标系,设CG长度为a及点P的坐标,求BP与GP的坐标,得到函数关系式,利用函数求其最值。
举一反三:如图,在棱长为1的正方体ABCD-A中,点E、F分别是棱BC、CC'的中点,P是侧面BCC'B内一点,若A'P⊥平面AEF,则线段A'P长度的取值范围是_____。
二、改写后的文章高三数学选择填空难题突破——立体几何中的最值问题一、方法综述高考试题将趋于关注那些考查学生运用运动变化观点处理问题的题目。
而几何问题中的最值与范围类问题,不仅可以考查学生的空间想象能力,还可以考查运用运动变化观点处理问题的能力,因此这类问题将是有中等难度的考题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重难点突破:立体几何中最值问题全梳理模块一、题型梳理题型一 空间角的最值问题例题1: 如图,四边形和均为正方形,它们所在的平面互相垂直,动点在线段上,分别为的中点.设异面直线与所成的角为,则的最大值为_________.【解析】AB 为x 轴,AD 为y 轴,AQ 为z 轴建立坐标系,设正方形边长为2.cos θ=令[]()0,2)f m m =∈,()f m '=[]0,2,()0m f m '∈∴<,max 2()(0)5f m f ==,即max 2cos 5θ=ABCD ADPQ M PQ ,E F ,AB BC EM AF θθcos例题2: 正四棱柱1111ABCD A B C D -中,4AB =,1AA =.若M 是侧面11BCC B 内的动点,且AM MC ⊥,则1A M 与平面11BCC B 所成角的正切值的最大值为___________.【分析】如图,以D 为原点建立空间直角坐标系,设点(),4,M m n ,由AM MC ⊥得()2224m n -+=,证明11A MB 为1A M 与平面11BCC B 所成角,令22cos ,2sin m n θθ=+=,用三角函数表示出11tan A MB ∠,求解三角函数的最大值得到结果.【解析】如图,以D 为原点建立空间直角坐标系,设点(),4,M m n ,则()()(14,0,0,0,4,0,4,4,A C B ()(),0,,4,4,CM m n AM m n ∴==-,又AM MC ⊥,得2240,AM CM m m n ⋅=-+=即()2224m n -+=;又11A B ⊥平面11BCC B ,11A MB ∴∠为1A M 与平面11BCC B 所成角,令[]22cos ,2sin ,0,m n θθθπ=+=∈,11111tan ∴∠==A B A MB B M==,∴当3πθ=时,11tan A MB ∠最大,即1A M 与平面11BCCB 所成角的正切值的最大值为2.故答案为:2【小结】本题主要考查了立体几何中的动点问题,考查了直线与平面所成角的计算.对于这类题,一般是建立空间直角坐标,在动点坐标内引入参数,将最值问题转化为函数的最值问题求解,考查了学生的运算求解能力和直观想象能力.题型二 空间距离的最值问题例题3: 的正三棱柱111ABC A B C -中,ABC ∆的边长为2,D 为棱11B C 的中点,若一只蚂蚁从点A 沿表面爬向点D ,则蚂蚁爬行的最短距离为( )A .3B .C .D .2【分析】将正三棱柱展开,化平面图形中的距离最短的问题.有三种选择,第一种是从A 点出发,经过BC 再到达点D .第二种是从A 点出发,经过11A B 再到达点D .第三种是从A 点出发,经过1BB ,最后到达点D .分别求出三种情况的距离,选其中较小的值,即为所求最短距离.【解析】如图1,将矩形11BCB C 翻折到与平面ABC 共面的位置11BCC B '',此时,爬行的最短距离为AD '=2,将111A B C △翻折到与平面11ABB A 共面的位置111A B C ',易知11A D AA '=1120D A A '∠=︒,此时爬行的最短距离3AD '=;如图3,将矩形11BCB C 翻折到与平面11ABB A 共面的位置11BC C B '',此时,爬行的最短距离AD '=综上,小蚂蚁爬行的最短距离为3.故选:A.【小结】本题考查了空间想象能力,和平面几何的计算能力,解决本题的关键是依据“在平面内,两点之间线段最短”.属于中档题.例题4: 点D 是直角ABC ∆斜边AB 上一动点,3,4AC BC ==,将直角ABC ∆沿着CD 翻折,使'B DC ∆与ADC ∆构成直二面角,则翻折后'AB 的最小值是( )A B C .D【分析】过点B ′作B E CD '⊥于点E ,连接,BE AE ,根据折叠性质设BCD B CD α∠=∠'=,用α表示出,,2B E CE ACE πα'∠=-,在AEC ∆中由余弦定理表示出2AE ,再在Rt AEB ∆'中,由勾股定理即可求得'AB 的最小值.【解析】过点B ′作B E CD '⊥于点E ,连接,BE AE ,如下图所示:设BCD B CD α∠=∠'=,则有4sin 4cos 2B E CE ACE πααα'==∠=-,,,在AEC ∆中,由余弦定理得,2222cos 2AE AC CE AC CE πα⎛⎫=+-⋅⋅- ⎪⎝⎭2916cos 24cos sin ααα=+-,在Rt AEB ∆'中,由勾股定理得,22222916cos 24cos sin 16sin AB AE B E αααα'+'+-+==2512sin 2α=-,∴当4πα=时,AB 'B . 【小结】本题考查了立体几何中折叠问题的综合应用,余弦定理表示出边长,并由三角函数值域的有界性确定最值,属于中档题.题型三 球体的最值问题例题5: 将半径为r 的5个球放入由一个半径不小于3r 的球面和这个球的内接正四面体的四个面分割成的五个空间内,若此正四面体的棱长为r 的最大值为________.【分析】计算正四面体的外接球半径3R =,内切圆半径为11r =,设1OO 与球面相交于点Q ,如图所示,画出剖面图,33R r =≥,1r r ≤,122O Q r =≥,解得答案.【解析】正四面体的棱长为根据对称性知,A 的投影为三角形BCD 的中心1O ,则123O D DM ==高14AO ==,设外接球半径为R ,故()22211R AO R DO =-+,解得3R =,设正四面体内切球半径为1r ,根据等体积法得到:((2211111sin 604sin 6043232r ⋅︒⨯=⨯︒⨯,故11r =, 根据题意33R r =≥,1r r ≤,1r ≤.设1OO 与球面相交于点Q ,如图所示,画出剖面图,1122O Q R OO r =-=≥,故1r ≤.综上所述:1r ≤,故r 的最大值为1.故答案为:1.【小结】本题考查了四面体的外接球内切球问题,意在考查学生的计算能力和空间想象能力.例题6: 已知点,,A B C 在半径为2的球面上,满足1AB AC ==,BC =S 是球面上任意一点,则三棱锥S ABC -体积的最大值为( )A B .36+ C .212+ D .312+ 【分析】要使S ABC -体积的最大,需S 到平面ABC 距离最大,当S 为ABC 外接圆圆心与球心的延长线与球面的交点时取最大值,求出ABC 外接圆的半径,进而求出球心与ABC 外接圆圆心的距离,即可求解.【解析】设ABC 外接圆圆心为O ',三棱锥S ABC -外接球的球心为O ,1AB AC ==,设D 为BC 中点,连AD ,则AD BC ⊥,且O '在AD 上,12AD ==,设ABC 外接圆半径为r ,222231()()()242BC r AD r r =+-=+-,解得1,||r OO '=∴=要使S ABC -体积的最大,需S 到平面ABC 距离, 即S 为O O '2,所以三棱锥S ABC -体积的最大值为11112)2)3322ABC S ⨯=⨯⨯⨯=【小结】本题考查三棱锥体积的最值、多面体与球的“接”“切”问题,注意应用球的截面性质,属于中档题例题7: 已知四棱锥S ABCD -的所有顶点都在同一球面上,底面ABCD 是正方形且和球心O 在同一平面内,当此四棱锥体积取得最大值时,其表面积等于2+,则球O 的体积等于( )A .43πB .83πC .163πD .223π 【分析】由条件可得球心O 为正方形ABCD 的中心,当此四棱锥的高为球的半径时,此四棱锥体积取得最大值. 设球O 的半径为R ,则AB ==,可得SBC ∆为等边三角形,根据条件可得1R =,从而得出答案.【解析】四棱锥S ABCD -的所有顶点都在同一球面上,底面ABCD 是正方形且和球心O 在同一平面内, 所以球心O 为正方形ABCD 的中心,当此四棱锥的高为球的半径时,此四棱锥体积取得最大值.此时四棱锥为正四棱锥.设球O 的半径为R ,则AB ==,SB ==,SBC ∆为等边三角形,则2213sin 6022SBC S SB R ∆==,所以此四棱锥的表面积为22422SBC ABCD S S R ∆+=+=+ 所以1R =.球O 的体积34433V R ππ== ,故选:A【小结】本题考查四棱锥的表面积和外接球的体积问题,属于中档题.例题8: 的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为43π的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋(球体)离蛋巢底面的最短距离为( )A .12B .12C D 【解析】因为蛋巢的底面是边长为1的正方形,所以过四个顶点截鸡蛋所得的截面圆的直径为1,又因为鸡蛋的体积为4π3,所以球的半径为1,所以球心到截面的距离2d ==为1,而蛋巢的高度为12,故球体到蛋巢底面的最短距离为112⎛--= ⎝⎭. 【小结】本题主要考查折叠问题,考查球体有关的知识.在解答过程中,如果遇到球体或者圆锥等几何体的内接或外接几何体的问题时,可以采用轴截面的方法来处理.也就是画出题目通过球心和最低点的截面,然后利用弦长和勾股定理来解决.球的表面积公式和体积公式是需要熟记的.题型四 棱锥的最值问题例题9: 如图,三棱锥P ABC -的四个顶点恰是长、宽、高分别是m ,2,n 的长方体的顶点,此三棱锥的体积为2,则该三棱锥外接球体积的最小值为__________.【分析】由题知,由三棱锥的体积得6mn =, 又三棱锥P ABC -的外接球直径是长方体的体对角线2R . 【解析】P ABC -的外接球直径是长方体的体对角线,∴R =,3334411=3386V R πππ==⨯ 1212=233P ABC ABC mn V S h -∆⋅=⨯⨯= ,6mn ∴=,222=12m n mn ∴+≥,当且仅当=m n =时,等号成立,3311=32463=6V πππ≥⨯,三棱锥外接球体积的最小值为323π,故答案为323π. 【小结】本题考查与球有关外接问题. 与球有关外接问题的解题规律:(1)直棱柱外接球的球心到直棱柱底面的距离恰为棱柱高的12. (2)正方体外接球的直径为正方体的体对角线的长.此结论也适合长方体,或由同一顶点出发的两两互相垂直的三条棱构成的三棱柱或三棱锥.(3)求多面体外接球半径的关键是找到由球的半径构成的三角形,解三角形即可.例题10: 有一个长方形木块,三个侧面积分别为8,12,24,现将其削成一个正四面体模型,则该正四面体模型棱长的最大值为( )A .2 B.C .4 D.【分析】先求长方体从同一顶点出发的三条棱的长度,从而可得正四面体模型棱长的最大值.【解析】设长方体从同一顶点出发的三条棱的长分别为,,a b c ,则81224ab ac bc =⎧⎪=⎨⎪=⎩,故246a b c =⎧⎪=⎨⎪=⎩,若能从该长方体削得一个棱长最长的正四面体模型,则该四面体的顶点必在长方体的面内,过正四面体的顶点作垂直于长方体的棱的垂面切割长方体,含正四面体的几何体必为正方体, 故正四面体的棱长为正方体的面对角线的长,而从长方体切割出一个正方体,使得面对角线的长最大,需以最小棱长2为切割后的正方体的棱长切割才可,故所求的正四面体模型棱长的最大值.故选:B.【小结】本题考查正四面体的外接,注意根据外接的要求确定出顶点在长方体的侧面内,从而得到正四面体的各顶点为某个正方体的顶点,从而得到切割的方法,本题属于中档题.例题11: 某三棱锥的三视图如图,且图中的三个三角形均为直角三角形,则x y +的最大值为________.【分析】根据三视图,利用勾股定理列出等式,再结合基本不等式求最值.【解析】由三视图之间的关系可知2210802x y =--,整理得22128x y +=,故22222()2()2562x x y x y x y y =++=++≤, 解得16x y +,当且仅当8x y ==时等号成立,故答案为:16【小结】本题考查三视图之间的关系应用,考查基本不等式,难度不大.例题12:如图,在三棱锥P ABC -中PA PB PC 、、两两垂直,且3,2,1PA PB PC ===,设M 是底面三角形ABC 内一动点,定义:()(,,)f M m n p =,其中m n p 、、分别是三棱锥M PAB -、三棱锥M PBC -、三棱锥M PAC -的体积。