立体几何中的最值问题答案
高中数学立体几何中的最值问题专题辅导

高中数学立体几何中的最值问题 海红楼 立体几何主要研究空间中点、线、面之间的位置关系,与空间图形有关的线段、角、体积等最值问题常常在试题中出现。
下面举例说明解决这类问题的常用方法。
一、运用变量的相对性求最值例1. 在正四棱锥S-ABCD 中,SO ⊥平面ABCD 于O ,SO=2,底面边长为2,点P 、Q 分别在线段BD 、SC 上移动,则P 、Q 两点的最短距离为( )A. 55B. 552C. 2D. 1解析:如图1,由于点P 、Q 分别在线段BD 、SC 上移动,先让点P 在BD 上固定,Q 在SC 上移动,当OQ 最小时,PQ 最小。
过O 作OQ ⊥SC ,在Rt △SOC 中,552=OQ 中。
又P 在BD 上运动,且当P 运动到点O 时,PQ 最小,等于OQ 的长为552,也就是异面直线BD 和SC 的公垂线段的长。
故选B 。
图1二、定性分析法求最值例2. 已知平面α//平面β,AB 和CD 是夹在平面α、β之间的两条线段。
AB ⊥CD ,AB=3,直线AB 与平面α成30°角,则线段CD 的长的最小值为______。
解析:如图2,过点B 作平面α的垂线,垂足为O ,连结AO ,则∠BAO=30°。
过B 作BE//CD 交平面α于E ,则BE=CD 。
连结AE ,因为AB ⊥CD ,故AB ⊥BE 。
则在Rt △ABE 中,BE=AB ·tan ∠BAE ≥AB ·tan ∠BAO=3·tan30°=3。
故3≥CD 。
图2三、展成平面求最值例3. 如图3-1,四面体A-BCD 的各面都是锐角三角形,且AB=CD=a ,AC=BD=b ,AD=BC=c 。
平面α分别截棱AB 、BC 、CD 、DA 于点P 、Q 、R 、S ,则四边形PQRS 的周长的最小值是( )A. 2aB. 2bC. 2cD. a+b+c图3-1解析:如图3-2,将四面体的侧面展开成平面图形。
2 第2课时 空间距离与立体几何中的最值(范围)问题(选用)

第2课时 空间距离与立体几何中的最值(范围)问题(选用)空间中的距离问题如图,平面P AD ⊥平面ABCD ,四边形ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,点E ,F ,G 分别是线段P A ,PD ,CD 的中点.(1)求证:平面EFG ⊥平面P AB ; (2)求点A 到平面EFG 的距离.【解】 如图,建立空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0).(1)证明:因为EF →=(0,1,0),AP →=(0,0,2),AB →=(2,0,0),所以EF →·AP →=0×0+1×0+0×2=0,EF →·AB →=0×2+1×0+0×0=0,所以EF ⊥AP ,EF ⊥AB .又因为AP ,AB ⊂平面P AB ,且P A ∩AB =A , 所以EF ⊥平面P AB .又EF ⊂平面EFG ,所以平面EFG ⊥平面P AB . (2)设平面EFG 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·EF →=(x ,y ,z )·(0,1,0)=0,n ·EG →=(x ,y ,z )·(1,2,-1)=0,所以{y =0,,x +2y -z =0.取n =(1,0,1),又AE →=(0,0,1),所以点A 到平面EFG 的距离d =|AE →·n ||n |=12=22.(1)空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离.①点点距:点与点的距离,以这两点为起点和终点的向量的模;②点线距:点M 到直线a 的距离,若直线的方向向量为a ,直线上任一点为N ,则点M 到直线a 的距离为d =|MN →|·sin 〈MN →,a 〉;③线线距:两平行线间的距离转化为点线距离,两异面直线间的距离转化为点面距离或者直接求公垂线段的长度;④点面距:点M 到平面α的距离,若平面α的法向量为n ,平面α内任一点为N ,则点M 到平面α的距离d =|MN →||cos 〈MN →,n 〉|=|MN →·n ||n |.(2)利用空间向量求空间距离问题,首先应明确所求距离的特征,恰当选用距离公式求解.1.如图,P ABCD 是正四棱锥,ABCD -A 1B 1C 1D 1是正方体,其中AB =2,P A =6,则B 1到平面P AD 的距离为________.解析:以A 1为原点,以A 1B 1所在直线为x 轴,A 1D 1所在直线为y 轴,A 1A 所在直线为z 轴建立空间直角坐标系A 1xyz ,则AD →=(0,2,0),AP →=(1,1,2),设平面P AD 的法向量是m =(x ,y ,z ),所以由⎩⎪⎨⎪⎧m ·AD →=0,m ·AP →=0,可得⎩⎪⎨⎪⎧2y =0,x +y +2z =0.取z =1,得m =(-2,0,1),因为B 1A →=(-2,0,2),所以B 1到平面P AD 的距离d =|B 1A →·m ||m |=65 5.答案:6552.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =4,BC =3,CC 1=2.(1)求证:平面A 1BC 1∥平面ACD 1; (2)求平面A 1BC 1与平面ACD 1的距离.解:(1)证明:因为AA 1綊CC 1,所以四边形ACC 1A 1为平行四边形,所以AC ∥A 1C 1. 又AC ⊄平面A 1BC 1,A 1C 1⊂平面A 1BC 1,所以AC ∥平面A 1BC 1.同理可证CD 1∥平面A 1BC 1. 又AC ∩CD 1=C ,AC ⊂平面ACD 1,CD 1⊂平面ACD 1, 所以平面A 1BC 1∥平面ACD 1.(2)以B 1为原点,分别以B 1A 1→,B 1C 1→,B 1B →的方向为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系B 1xyz ,则A 1(4,0,0),A (4,0,2),D 1(4,3,0),C (0,3,2),A 1A →=(0,0,2),AC →=(-4,3,0),AD 1→=(0,3,-2),设n =(x ,y ,z )为平面ACD 1的一个法向量, 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD 1→=0,即⎩⎪⎨⎪⎧-4x +3y =0,3y -2z =0,取n =(3,4,6),所以所求距离d =|A 1A →|×|cos 〈n ,A 1A →〉|=|n ·A 1A →||n |=1232+42+62=126161, 故平面A 1BC 1与平面ACD 1的距离为126161.立体几何中的最值(范围)问题(1)(2020·宁波十校联考)如图,平面P AB ⊥平面α,AB ⊂α,且△P AB 为正三角形,点D 是平面α内的动点,ABCD 是菱形,点O 为AB 中点,AC 与OD 交于点Q ,l ⊂α,且l ⊥AB ,则PQ 与l 所成角的正切值的最小值为( )A.-3+372B.3+372C.7 D .3(2)(2020·温州高考模拟)如图,在三棱锥A -BCD 中,平面ABC ⊥平面BCD ,△BAC 与△BCD 均为等腰直角三角形,且∠BAC =∠BCD =90°,BC =2,点P 是线段AB 上的动点,若线段CD 上存在点Q ,使得直线PQ 与AC 成30°的角,则线段P A 长的取值范围是( )A.⎝⎛⎭⎫0,22 B.⎣⎡⎦⎤0,63 C.⎝⎛⎭⎫22,2 D.⎝⎛⎭⎫63,2【解析】 (1)如图,不妨以CD 在AB 前侧为例.以点O 为原点,分别以OB 、OP 所在直线为y 、z 轴建立空间直角坐标系O -xyz ,设AB =2,∠OAD =θ(0<θ<π),则P (0,0,3),D (2sin θ,-1+2cos θ,0),所以Q ⎝⎛⎭⎫23sin θ,23cos θ-13,0, 所以QP →=⎝⎛⎭⎫-23sin θ,13-23cos θ,3, 设α内与AB 垂直的向量n =(1,0,0),PQ 与直线l 所成角为φ, 则cos φ=⎪⎪⎪⎪⎪⎪⎪⎪QP →·n |QP →||n |=⎪⎪⎪⎪⎪⎪-23sin θ329-49cos θ=sin θ8-cos θ=1-cos 2θ8-cos θ.令t =cos θ(-1<t <1),则s =1-t 28-t ,s ′=t 2-16t +1(8-t )2,令s ′=0,得t =8-37,所以当t =8-37时,s 有最大值为16-67. 则cos φ有最大值为16-67,此时sin φ取最小值为67-15.所以正切值的最小值为67-1516-67=3+372.故选B. (2)以C 为原点,CD 所在直线为x 轴,CB 所在直线为y 轴,过C 作平面BCD 的垂线为z 轴,建立空间直角坐标系C xyz ,则A (0,1,1),B (0,2,0),C (0,0,0),设Q (q ,0,0),AP →=λAB →=(0,λ,-λ)(0≤λ≤1),则PQ →=CQ →-CP →=CQ →-(CA →+AP →)=(q ,0,0)-(0,1,1)-(0,λ,-λ)=(q ,-1-λ,λ-1),因为直线PQ 与AC 成30°的角, 所以cos 30°=|CA →·PQ →||CA →|·|PQ →|=22·q 2+(1+λ)2+(λ-1)2=2q 2+2λ2+2=32, 所以q 2+2λ2+2=83,所以q 2=23-2λ2∈[0,4],所以⎩⎨⎧23-2λ2≥023-2λ2≤4,解得0≤λ≤33,所以|AP →|=2λ∈⎣⎡⎦⎤0,63,所以线段P A 长的取值范围是⎣⎡⎦⎤0,63. 故选B.【答案】 (1)B (2)B(1)求解立体几何中的最值问题,需要先确定最值的主体,确定题目中描述的相关变量,然后根据所求,确定是利用几何方法求解,还是转化为代数(特别是函数)问题求解.利用几何方法求解时,往往利用几何体的结构特征将问题转化为平面几何中的问题进行求解,如求几何体表面距离的问题.利用代数法求解时,要合理选择参数,利用几何体中的相关运算构造目标函数,再根据条件确定参数的取值范围,从而确定目标函数的值域,即可利用函数最值的求解方法求得结果.(2)用向量法解决立体几何中的最值问题,不仅简捷,更减少了思维量.用变量表示动点的坐标,然后依题意用向量法求其有关几何量,构建有关函数,从而用代数方法即可求其最值.1.(2020·浙江省五校联考模拟)如图,棱长为4的正方体ABCD -A 1B 1C 1D 1,点A 在平面α内,平面ABCD 与平面α所成的二面角为30°,则顶点C 1到平面α的距离的最大值是( )A .2(2+2)B .2(3+2)C .2(3+1)D .2(2+1)解析:选B.如图所示,作C 1O ⊥α,交ABCD 于点O ,交α于点E ,由题得O 在AC 上,则C 1E 为所求,∠OAE =30°, 由题意,设CO =x ,则AO =42-x , C 1O =16+x 2,OE =12OA =22-12x ,所以C 1E =16+x 2+22-12x ,令y = 16+x 2+22-12x ,则y ′=x16+x 2-12=0,可得x =43, 所以x =43时,顶点C 1到平面α的距离的最大值是2(3+2). 2.(2020·浙江省名校协作体高三联考)如图,在梯形ABCD 中,AB ∥CD ,AD =DC =CB =1,∠ABC =60°,四边形ACFE 为矩形,平面ACFE ⊥平面ABCD ,CF =1.(1)求证:BC ⊥平面ACFE ;(2)点M 在线段EF 上运动,设平面MAB 与平面FCB 所成二面角的平面角为θ(θ≤90°),试求cos θ的取值范围.解:(1)证明:在梯形ABCD 中,因为AB ∥CD ,AD =DC =CB =1,∠ABC =60°,所以AB =2,所以AC 2=AB 2+BC 2-2AB ·BC ·cos 60°=3, 所以AB 2=AC 2+BC 2,所以BC ⊥AC ,因为平面ACFE ⊥平面ABCD ,平面ACFE ∩平面ABCD =AC ,BC ⊂平面ABCD ,所以BC ⊥平面ACFE .(2)如图所示,由(1)可建立分别以直线CA ,CB ,CF 为x 轴,y 轴,z 轴的空间直角坐标系C -xyz ,令FM =λ(0≤λ≤3),则C (0,0,0),A (3,0,0),B (0,1,0),M (λ,0,1),所以AB →=(-3,1,0),BM →=(λ,-1,1),设n 1=(x ,y ,z )为平面MAB 的一个法向量,由⎩⎪⎨⎪⎧n 1·AB →=0n 1·BM →=0,得⎩⎪⎨⎪⎧-3x +y =0λx -y +z =0,取x =1,则n 1=(1,3,3-λ),因为n 2=(1,0,0)是平面FCB 的一个法向量, 所以cos θ=|n 1·n 2||n 1|·|n 2|=11+3+(3-λ)2×1=1(λ-3)2+4,因为0≤λ≤3,所以当λ=0时,cos θ有最小值77, 当λ=3时,cos θ有最大值12,所以cos θ∈⎣⎡⎦⎤77,12.[基础题组练]1.(2020·宁波市镇海中学高考模拟)在直三棱柱A 1B 1C 1ABC 中,∠BAC =π2,AB =AC=AA 1=1,已知点G 和E 分别为A 1B 1和CC 1的中点,点D 与F 分别为线段AC 和AB 上的动点(不包括端点),若GD ⊥EF ,则线段DF 的长度的取值范围为( )A.⎣⎡⎭⎫55,1B.⎣⎡⎦⎤55,1C.⎝⎛⎭⎫255,1D.⎣⎡⎭⎫255,1解析:选A.建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),E ⎝⎛⎭⎫0,1,12,G ⎝⎛⎭⎫12,0,1, F (x ,0,0),D (0,y ,0), 由于GD ⊥EF ,所以x +2y -1=0, DF =x 2+y 2=5⎝⎛⎭⎫y -252+15, 由x =1-2y >0,得y <12,所以当y =25时,线段DF 长度的最小值是15,当y =0时,线段DF 长度的最大值是1,又不包括端点,故y =0不能取,故选A. 2.(2020·杭州市学军中学高考数学模拟)如图,三棱锥P -ABC 中,已知P A ⊥平面ABC ,AD ⊥BC 于点D ,BC =CD =AD =1,设PD =x ,∠BPC =θ,记函数f (x )=tan θ,则下列表述正确的是( )A .f (x )是关于x 的增函数B .f (x )是关于x 的减函数C .f (x )关于x 先递增后递减D .f (x )关于x 先递减后递增解析:选C.因为P A ⊥平面ABC ,AD ⊥BC 于点D ,BC =CD =AD =1,PD =x ,∠BPC =θ,所以可求得AC =2,AB =5,P A =x 2-1,PC =x 2+1,BP =x 2+4,所以在△PBC 中,由余弦定理知 cos θ=PB 2+PC 2-BC 22BP ·PC=2x 2+42x 2+1x 2+4.所以tan 2θ=1cos 2θ-1=(x 2+1)(x 2+4)(x 2+2)2-1=x 2(x 2+2)2.所以tan θ=x x 2+2=1x +2x ≤12 x ·2x =24(当且仅当x =2时取等号),所以f (x )关于x 先递增后递减.3.(2020·义乌市高三月考)如图,边长为2的正△ABC 的顶点A 在平面γ上,B ,C 在平面γ的同侧,点M 为BC 的中点,若△ABC 在平面γ上的射影是以A 为直角顶点的△AB 1C 1,则M 到平面γ的距离的取值范围是________.解析:设∠BAB 1=α,∠CAC 1=β,则AB 1=2cos α,AC 1=2cos β,BB 1=2sin α,CC 1=2sin β,则点M 到平面γ的距离d =sin α+sin β,又|AM |=3,则|B 1C 1|=23-d 2,即cos 2α+cos 2β=3-(sin 2α+2sin αsin β+sin 2β).也即sin αsin β=12,所以d =sin α+sin β=sin α+12sin α≥2,因为sin α<1,sin β<1,所以12sin α<1,所以12<sin α<1,所以当sinα=12或1时,d =32,则2≤d <32.答案:⎣⎡⎭⎫2,32 4.(2020·杭州市学军中学高考数学模拟)如图,在二面角A -CD -B 中,BC ⊥CD ,BC =CD =2,点A 在直线AD 上运动,满足AD ⊥CD ,AB =3.现将平面ADC 沿着CD 进行翻折,在翻折的过程中,线段AD 长的取值范围是________.解析:由题意得AD →⊥DC →,DC →⊥CB →,设平面ADC 沿着CD 进行翻折的过程中,二面角A CD B 的夹角为θ,则〈DA →,CB →〉=θ,因为AB →=AD →+DC →+CB →,所以平方得AB →2=AD →2+DC →2+CB →2+2AD →·DC →+2CB →·AD →+2DC →·CB →, 设AD =x ,因为BC =CD =2,AB =3, 所以9=x 2+4+4-4x cos θ, 即x 2-4x cosθ-1=0,即cos θ=x 2-14x .因为-1≤cos θ≤1,所以-1≤x 2-14x≤1,即⎩⎪⎨⎪⎧x 2-1≤4x x 2-1≥-4x ,即⎩⎪⎨⎪⎧x 2-4x -1≤0x 2+4x -1≥0,则⎩⎪⎨⎪⎧2-5≤x ≤2+5,x ≥-2+5或x ≤-2- 5.因为x >0,所以5-2≤x ≤5+2, 即AD 的取值范围是[5-2,5+2]. 答案:[5-2,5+2]5.(2020·金丽衢十二校联考)如图,在三棱锥D -ABC 中,已知AB =2,AC →·BD →=-3,设AD =a ,BC =b ,CD =c ,则c 2ab +1的最小值为________.解析:设AD →=a ,CB →=b ,DC →=c ,因为AB =2,所以|a +b +c |2=4⇒a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=4,又因为AC →·BD →=-3,所以(a +c )·(-b -c )=-3⇒a ·b +b ·c +c ·a +c 2=3,所以a 2+b 2+c 2+2(3-c 2)=4⇒c 2=a 2+b 2+2,所以a 2+b 2+2ab +1≥2ab +2ab +1=2,当且仅当a=b 时,等号成立,即c 2ab +1的最小值是2.答案:26.(2020·温州十五校联合体期末考试)在正四面体P -ABC 中,点M 是棱PC 的中点,点N 是线段AB 上一动点,且AN →=λAB →,设异面直线NM 与AC 所成角为α,当13≤λ≤23时,则cos α的取值范围是________.解析:设点P 到平面ABC 的射影为点O ,以AO 所在直线为y 轴,OP 所在直线为z 轴,过点O 作BC 的平行线为x 轴,建立空间直角坐标系O -xyz ,如图.设正四面体的棱长为43,则有A (0,-4,0),B (23,2,0),C (-23,2,0),P (0,0,42),M (-3,1,22).由AN →=λAB →,得N (23λ,6λ-4,0).从而有NM →=(-3-23λ,5-6λ,22),AC →=(-23,6,0).所以cos α=|NM →·AC →||NM →||AC →|=3-2λ24λ2-4λ+3,设3-2λ=t ,则53≤t ≤73. 则cos α=12 t 2t 2-4t +6=12 6⎝⎛⎭⎫1t 2-4·1t +1,因为13<37≤1t ≤35,所以51938≤cos α≤71938. 答案:⎣⎡⎦⎤51938,71938 7.如图,在△ABC 中,∠B =π2,AB =BC =2,点P 为AB 边上一动点,PD ∥BC 交AC 于点D .现将△PDA 沿PD 翻折至△PDA ′,使平面PDA ′⊥平面PBCD .(1)当棱锥A ′PBCD 的体积最大时,求P A 的长;(2)若点P 为AB 的中点,点E 为A ′C 的中点,求证:A ′B ⊥DE .解:(1)设P A =x ,则P A ′=x ,所以V A ′PBCD =13P A ′·S 底面PBCD =13x ⎝⎛⎭⎫2-x 22. 令f (x )=13x ⎝⎛⎭⎫2-x 22=2x 3-x 36(0<x <2), 则f ′(x )=23-x 22.当x 变化时,f ′(x ),f (x )的变化情况如下表: x⎝⎛⎭⎫0,233 233 ⎝⎛⎭⎫233,2 f ′(x )+ 0 - f (x ) 单调递增 极大值 单调递减由上表易知,当P A =x =23时,V A ′PBCD 取最大值. (2)证明:取A ′B 的中点F ,连接EF ,FP .由已知,得EF 綊12BC 綊PD . 所以四边形EFPD 是平行四边形,所以ED ∥FP .因为△A ′PB 为等腰直角三角形,所以A ′B ⊥PF .所以A ′B ⊥DE .8.(2020·杭州市第一次高考科目数学质量检测)如图,在三棱柱ABC -A 1B 1C 1中,AA 1⊥平面ABC ,平面A 1BC ⊥平面A 1ABB 1.(1)求证:AB ⊥BC ;(2)设直线AC 与平面A 1BC 所成的角为θ,二面角A 1BC A 的大小为φ,试比较θ和φ的大小关系,并证明你的结论.解:(1)证明:过点A 在平面A 1ABB 1内作AD ⊥A 1B 于D ,因为平面A 1BC ⊥平面A 1ABB 1,平面A 1BC ∩平面A 1ABB 1=A 1B ,所以AD ⊥平面A 1BC ,又因为BC ⊂平面A 1BC ,所以AD ⊥BC .因为AA 1⊥平面ABC ,所以AA 1⊥BC .又因为AA 1∩AD =A ,所以BC ⊥侧面A 1ABB 1,又因为AB ⊂平面A 1ABB 1,故AB ⊥BC .(2)连接CD ,由(1)知∠ACD 是直线AC 与平面A 1BC 所成的角.又∠ABA 1是二面角A 1BC A 的平面角.则∠ACD =θ,∠ABA 1=φ.在Rt △ADC 中,sin θ=AD AC ,在Rt △ADB 中, sin φ=AD AB.由AB <AC , 得sin θ<sin φ,又0<θ,φ<π2, 所以θ<φ.[综合题组练]1.(2020·温州市高考数学模拟)如图,在矩形ABCD 中,AB AD=λ(λ>1),将其沿AC 翻折,使点D 到达点E 的位置,且二面角C -AB -E 为直二面角.(1)求证:平面ACE ⊥平面BCE ;(2)设点F 是BE 的中点,二面角E -AC -F 的平面角的大小为θ,当λ∈[2,3]时,求cos θ的取值范围.解:(1)证明:因为二面角C -AB -E 为直二面角,AB ⊥BC,所以BC ⊥平面ABE ,所以BC ⊥AE .因为AE ⊥CE ,BC ∩CE =C ,所以AE ⊥平面BCE .因为AE ⊂平面ACE ,所以平面ACE ⊥平面BCE .(2)如图,以E 为坐标原点,以AD 长为一个单位长度,建立如图所示的空间直角坐标系E -xyz ,则AB =λ,A (0,1,0),B (λ2-1,0,0),C (λ2-1,0,1),E (0,0,0),F ⎝ ⎛⎭⎪⎫λ2-12,0,0, 则EA →=(0,1,0),EC →=(λ2-1,0,1),设平面EAC 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧y =0λ2-1·x +z =0,取x =1,则m =(1,0,-λ2-1). 同理得平面F AC 的一个法向量为n =(2,λ2-1,-λ2-1). 所以cos θ=m ·n |m |·|n |=λ2+1λ·2(λ2+1)=22·1+1λ2 . 因为λ∈[2,3],所以cos θ∈⎣⎡⎦⎤53,104. 2.如图,在四棱锥P -ABCD 中,已知P A ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC =∠BAD =π2, P A =AD =2,AB =BC =1.(1)求平面P AB 与平面PCD 所成二面角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成的角最小时,求线段BQ 的长.解:以{AB →,AD →,AP →}为正交基底建立如图所示的空间直角坐标系A -xyz ,则各点的坐标为B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2).(1)由题意知,AD ⊥平面P AB ,所以AD →是平面P AB 的一个法向量,AD →=(0,2,0).因为PC →=(1,1,-2),PD →=(0,2,-2).设平面PCD 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·PC →=0,m ·PD →=0, 即⎩⎪⎨⎪⎧x +y -2z =0,2y -2z =0.令y =1,解得z =1,x =1. 所以m =(1,1,1)是平面PCD 的一个法向量.从而cos 〈AD →,m 〉=AD →·m |AD →||m |=33, 所以平面P AB 与平面PCD 所成二面角的余弦值为33. (2)因为BP →=(-1,0,2),设BQ →=λBP →=(-λ,0,2λ)(0≤λ≤1),又CB →=(0,-1,0),则CQ →=CB →+BQ →=(-λ,-1,2λ),又DP →=(0,-2,2),从而cos 〈CQ →,DP →〉=CQ →·DP →|CQ →||DP →|=1+2λ10λ2+2. 设1+2λ=t ,t ∈[1,3],则cos 2〈CQ →,DP →〉=2t 25t 2-10t +9=29⎝⎛⎭⎫1t -592+209≤910.当且仅当t =95,即λ=25时,|cos 〈CQ →,DP →〉|的最大值为31010. 因为y =cos x 在⎝ ⎛⎭⎪⎫0,π2上是减函数, 所以此时直线CQ 与DP 所成角取得最小值. 又因为BP =12+22=5,所以BQ =25BP =255.。
立体几何中线段长度的最值问题

重点辅导Җ㊀北京㊀陶㊀军(特级教师)㊀㊀立体几何中的最值问题是高中数学的难点,这类问题包括求长度㊁角度㊁面积和体积等最值,而有关线段长度的最值问题是最基本的问题,求解这类问题的通法是几何法和向量法,本文进行例析.例1㊀如图1所示,在棱长为2的正方体A B C D GA 1B 1C 1D 1中,E ,F 分别为B C ,C C 1的中点,点P 是侧面B C C 1B 1上一点,A 1P ʊ平面A E F ,则线段A 1P 长度的最小值是.图1分析1㊀因为点A 1是定点,欲求线段A 1P 长度的最小值,所以需确定动点P 的位置.因为直线A 1P 绕点A 1转动时总和平面A E F 保持平行,所以动直线A 1P 形成的平面与侧面B C C 1B 1相交,点P 就在它们的交线l 上.因为交线l 平行于平面A E F ,侧面B C C 1B 1与平面A E F 的交线是E F ,所以l ʊE F .怎样找到交线l 的位置呢?只需先找到点P ,它是侧面B C C 1B 1上的一个点.考虑到E 为B C 的中点,取B 1C 1的中点P 1,可知A 1P 1ʊA E ,则A 1P 1ʊ平面A E F ,而过点P 1且与E F 平行的直线是唯一的,就是交线l ,显然l 过线段B 1B 的中点P 2,点P 的轨迹是线段P 1P 2,所以求线段A 1P 长度的最小值转化为求点A 1到P 1P 2的距离.解法1(几何法)㊀如图2所示,取B 1C 1的中点P 1,因为P 1E ʊA 1A ,且P 1E =A 1A ,所以四边形P 1E A A 1是平行四边形,所以A 1P 1ʊA E .取线段B 1B 的中点P 2,则P 1P 2ʊF E ,又因为A E 与E F 相交于点E ,所以平面A 1P 1P 2ʊ平面A E F ,由于点P 在平面A 1P 1P 2上,又在侧面B C C 1B 1上,故点P 的轨迹是线段P 1P 2.在等腰әA 1P 1P 2中,A 1P 1=A 1P 2=5,P 1P 2=2.取P 1P 2的中点M ,则A 1M ʅP 1P 2,于是A 1M =A 1P 21-P 1M 2=322,所以线段A 1P 长度的最小值是322.图2分析2㊀因为点A 1是定点,线段A 1P 的长度由动点P 的位置决定,确定点P 的位置可以引入坐标,为此考虑建立适当的空间直角坐标系,设出动点P 的坐标,列出长度的表达式,借助函数的思想求A 1P 的最小值.解法2(向量法)㊀如图3所示,以点D 为原点,D A ,D C ,D D 1分别为x ,y ,z 轴建立空间直角坐标系,则A 1(2,0,2),因为点P 是侧面B C C 1B 1上一点,可设点P 的坐标(x ,2,z )(0ɤx ɤ2,0ɤz ɤ2),故|A 1P ң|(x -2)2+4+(z -2)2.图3设平面A E F 的法向量n =(x 0,y 0,z 0),因为A (2,0,0),E (1,2,0),F (0,2,1),A E ң=(-1,2,0),E F ң=(-1,0,1),所以n A E ң=-x 0+2y 0=0,n E F ң=-x 0+z 0=0.{令y 0=1,则x 0=z 0=2,n =(2,1,2).因为A 1P ʊ平面A E F ,所以n 与A 1P ң=(x -2,2,z -2)垂直,故n A 1P ң=2(x -2)+2+2(z -2)=0,化简得x +z =3,因为0ɤz ɤ2,所以0ɤ3-x ɤ2,且0ɤx ɤ2,解得1ɤx ɤ2.把z =3-x 代入|A 1P ң|的表31重点辅导达式,整理得|A 1P ң|=2(x -32)2+92,x ɪ[1,2],故当x =32时,|A 1P ң|取得最小值322.例2㊀如图4所示,在棱长为2的正方体A B C D GA 1B 1C 1D 1中,E 为B C 的中点,点P 在线段D 1E 上,点P 到直线C C 1的距离的最小值为.图4分析1㊀求点P 到直线C C 1的距离的最小值,就是找点P 到直线C C 1的垂线段P Q 长度的最小值.求线段P Q 的长度涉及空间上两个动点长度的距离问题,不易处理.注意到C C 1ʅ平面A B C D ,P Q ʅC C 1,则P Q ʊ平面A B C D .因此,我们可以把P Q 正投影在平面A B C D 上,点P 在平面A B C D 上的正投影H 落在线段D E 上,点Q 在平面A B C D 上的正投影是点C ,于是P Q =H C ,求P Q 的最小值转化为在平面A B C D 上求定点C 与线段D E 上的动点H 之间距离的最小值,就是求定点C 到D E 的距离.解法1(几何法)㊀如图5所示,过点P 作P Q ʅC C 1,Q 为垂足,因为C C 1ʅ平面A B CD ,所以P Q ʊ平面A B C D ,过点P 作PH ʅDE ,H 为垂足,则PH ʅ平面A B C D ,所以PH ʊQ C ,且P Q ʊH C ,Q C ʅH C ,故四边形P Q C H 是矩形,P Q =H C ,在R t әC D E 中,当C H ʅD E 时,C H 长度最小,因为C E =1,C D =2,D E =5,所以C H =1ˑ25=255,故点P 到直线C C 1的距离的最小值为255.图5分析2㊀设点P 到直线C C 1的距离为P Q ,因为P ,Q 分别在线段D 1E 和C C 1上,故可以引入两个变量控制点P ,Q 的位置.设E P ң=λE D 1ң(0ɤλɤ1),C Q ң=μC C 1ң(0ɤμɤ1),根据正方体的特殊性建立适当的空间直角坐标系,利用向量的坐标运算推出点P ,Q 的坐标,进而用λ,μ表示P Q ң,利用P Q ң C C 1ң=0找出λ,μ的关系式,代入P Q 长度的表达式,转化为一元函数求最值.解法2(向量法)㊀如图6所示,以D 为原点,D A ,D C ,D D 1分别为x ,y ,z 轴建立空间直角坐标系,则D 1(0,0,2),E (1,2,0),C 1(0,2,2),C (0,2,0),E D 1ң=(-1,-2,2),由于点P 在线段D 1E 上,可设E P ң=λE D 1ң(0ɤλɤ1),即E P ң=(-λ,-2λ,2λ),由此得点P 的坐标为(,,).图6过点P 作P Q 垂直于C C 1,Q 为垂足,设点Q 的坐标(0,2,m ),P Q ң=(λ-1,2λ,m -2λ),C C 1ң=(0,0,2),因为P Q ңʅC C 1ң,所以P Q ң C C 1ң=0,即2(m -2λ)=0,m =2λ,P Q ң=(λ-1,2λ,0),|P Q ң|=(λ-1)2+(2λ)2+02=5(λ-15)2+45,λɪ[0,1].当λ=15,P Q 取得最小值255.综上所述,利用几何法求线段长度的最值,要点是先用立体几何知识确定动点的轨迹,再用平面几何知识求最值;利用向量法求线段长度的最值,要点是建立适当的坐标系,设出动点坐标,建立线段长度的表达式,借助向量知识把题目中的几何条件合理转化为代数条件,找到动点坐标的关系,把线段长度的表达式转化为一元函数,用函数的思想求最值.(作者单位:北京市怀柔区第一中学)41。
高数140招之71-立体几何中的最值问题的解题策略

一、与线段长有关的最值问题【典例1】在直三棱柱ABC A 1B 1C 1中,底面为直角三角形, ∠ACB =90°,AC =6,BC =CC 1=2,P 是BC 1上一动点,如图所示,则CP +PA 1的最小值为________.[解析]PA 1在平面A 1BC 1内,PC 在平面BCC 1内,将其铺平后转化为平面上的问题.铺平平面A 1BC 1,平面BCC 1,如图所示,计算得A 1B =AB 1=210,BC 1=2.又A 1C 1=6,故△A 1BC 1是∠A 1C 1B =90°的直角三角形. 设P 是BC 1上任一点,CP +PA 1≥A 1C ,即当A 1,P ,C 三点共线时,CP +PA 1有最小值. 在△A 1C 1C 中,由余弦定理得A 1C =62+ 2 2-2×6×2×cos 135°=52, 故(CP +PA 1)min =52.【变式练习】1.如图所示,在棱长为1的正方体ABCD A 1B 1C 1D 1的面对角线A 1B 上存在一点P ,使得AP +D 1P 取得最小值,则此最小值为()A .2B.6+22C .2+2 D.2+2解析:选D将△A 1AB 与△A 1BD 1放在同一平面内,如图所示.连接AD 1,则AD 1为AP +D 1P 的最小值.因为AA 1=A 1D 1=1,∠AA 1D 1=90°+45°=135°,所以由余弦定理得AD 1=AA 21+A 1D 21-2×AA 1×A 1D 1×cos 135°=2+2. 2.某三棱锥的三视图如图所示,且三个三角形均为直角三角形,则xy 的最大值为________.解析:由三视图知三棱锥如图所示,底面ABC 是直角三角形,AB ⊥BC , PA ⊥平面ABC ,BC =27, PA 2+y 2=102,(27)2+PA 2=x 2, 因此xy =x 102-[x 2- 27 2] =x128-x 2≤x 2+ 128-x 22=64,当且仅当x 2=128-x 2,即x =8时取等号,因此xy 的最大值是64.3.已知直三棱柱ABC A 1B 1C 1的侧棱长为6,且底面是边长为2的正三角形,用一平面截此棱柱,与侧棱AA 1,BB 1,CC 1分别交于三点M ,N ,Q ,若△MNQ 为直角三角形,则该直角三角形斜边长的最小值为()A .22B .3C .23D .4解析:选C 如图,不妨设N 在B 处,设AM =h ,CQ =m ,则MB 2=h 2+4,BQ 2=m 2+4,MQ 2=(h -m )2+4,由MB 2=BQ 2+MQ 2,得m 2-hm +2=0.Δ=h 2-8≥0⇒h 2≥8,该直角三角形斜边MB =4+h 2≥23,故该直角三角形斜边长的最小值为23.故选C.二、与面积有关的最值问题【典例2】已知正四面体S ABC 的棱长为1,如果一个高为36的长方体能在该正四面体内任意转动,则该长方体的长和宽形成的长方形的面积的最大值为________.解析:如图,易知正四面体S ABC 的内切球的球心O 必在高线SH 上,延长AH 交BC 于点D ,则D 为BC 的中点,连接SD ,设内切球切SD 于点E ,连接AO .因为H 是正三角形ABC 的中心,所以AH ∶DH =2∶1.易得Rt △OAH ∽Rt △DSH ,所以OA OH =DSDH=3,可得OA =3OH =SO ,因此SH =4OH ,可得内切球的半径R =OH =14SH .因为正四面体S ABC 的棱长为1,所以在Rt △DSH中,DS =SH 2+DH 2= 4R 2+(13×32)2=32,解得R 2=124.要满足一个高为36的长方体能在该正四面体内任意转动,则长方体的体对角线长不超过正四面体内切球的直径,设该长方体的长和宽分别为x ,y ,其长和宽形成的长方形的面积为S ,则4R 2≥(36)2+x 2+y 2,所以x 2+y 2≤112,所以S =xy ≤x 2+y 22≤124,当且仅当x =y =612时等号成立,即该长方体的长和宽形成的长方形的面积的最大值为124. 【变式练习】1.(2018·全国卷Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为() A .334B .233C .324D .32【答案】A【解析】如图所示,在正方体ABCD A 1B 1C 1D 1中,平面AB 1D 1与棱A 1A ,A 1B 1,A 1D 1所成的角都相等,又正方体的其余棱都分别与A 1A ,A 1B 1,A 1D 1平行,故正方体ABCD A 1B 1C 1D 1的每条棱所在直线与平面AB 1D 1所成的角都相等.如图所示,取棱AB ,BB 1,B 1C 1,C 1D 1,D 1D ,DA 的中点E ,F ,G ,H ,M ,N ,则正六边形EFGHMN 所在平面与平面AB 1D 1平行且面积最大,此截面面积为S 正六边形EFGHMN =6×12×22×22×sin 60°=334.故选A.2.已知球O 是正三棱锥A BCD 的外接球,BC =3,AB =23,点E 在线段BD 上,且BD =3BE ,过点E 作球O 的截面,则所得截面中面积最小的截面圆的面积是________.【答案】2π【解析】如图,设△BCD 的中心为点O 1,球O 的半径为R ,则A ,O ,O 1三点共线.连接O 1D ,O 1E ,OD ,OE ,则O 1D =3,AO 1=AD 2-O 1D 2=3.在Rt △OO 1D 中,R 2=3+(3-R )2,即R =2,所以OO 1=1.在△O 1DE 中,DE =23BD =2,∠O 1DE =30°,所以由余弦定理得O 1E =3+4-2×3×2× cos 30°=1.所以OE =2.过点E 作圆O 的截面,当截面与OE 垂直时,截面的面积最小,此时截面圆的半径为22-(2)2=2,所以截面圆的面积为2π.3.在长方体ABCD A 1B 1C 1D 1中,AB =AD =4,AA 1=2.过点A 1作平面α与AB ,AD 分别交于M ,N 两点,若AA 1与平面α所成的角为45°,则截面A 1MN 面积的最小值是________.【答案】2π【解析】如图,过点A 作AE ⊥MN ,连接A 1E ,因为A 1A ⊥平面ABCD ,所以A 1A ⊥MN ,所以MN ⊥平面A 1AE ,所以A 1E ⊥MN ,平面A 1AE ⊥平面A 1MN ,所以∠AA 1E 为AA 1与平面A 1MN 所成的角,所以∠AA 1E =45°,在Rt △A 1AE 中,因为AA 1=2,所以AE =2,A 1E =22,在Rt △MAN 中,由射影定理得ME ·EN =AE 2=4,由基本不等式得MN =ME +EN ≥2ME ·EN =4,当且仅当ME =EN ,即E 为MN 的中点时等号成立,所以截面A 1MN 面积的最小值为12×4×22=42.三、与体积有关的最值问题【典例3】(2017·全国卷Ⅰ)如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为________.【答案】415【解析】如图,连接OD 交BC 于点G ,由题意知,OD ⊥BC .易得OG =36BC ,设OG =x ,则BC =23x ,DG =5-x , S △ABC =12×23x ×3x =33x 2,故所得三棱锥的体积V =13×33x 2× 5-x 2-x 2=3x 2×25-10x =3×25x 4-10x 5.令f (x )=25x 4-10x 5,x ∈(0,52),则f ′(x )=100x 3-50x 4,令f ′(x )>0,即x 4-2x 3<0,得0<x <2; 令f ′(x )<0,得2<x <52,则当x ∈(0,52)时,f (x )≤f (2)=80, ∴V ≤3×80=415.∴所求三棱锥的体积的最大值为415.【变式练习】1.(2018·全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D ABC 体积的最大值为()A .123B .183C .243D .543【答案】B【解析】由等边△ABC 的面积为93,可得34AB 2=93,所以AB =6,所以等边△ABC的外接圆的半径为r =33AB =23.设球的半径为R ,球心到等边△ABC 的外接圆圆心的距离为d ,则d =R 2-r 2=16-12=2.所以三棱锥D ABC 高的最大值为2+4=6,所以三棱锥D ABC 体积的最大值为13×93×6=183.2.已知圆锥的侧面展开图是半径为3的扇形,则该圆锥体积的最大值为________. 【答案】23π【解析】由题意得圆锥的母线长为3,设圆锥的底面半径为r ,高为h ,则h =9-r 2,所以圆锥的体积V =13πr 2h =13πr 29-r 2=13π9r 4-r 6.设f (r )=9r 4-r 6(r >0),则f ′(r )=36r 3-6r 5,令f ′(r )=36r 3-6r 5=6r 3(6-r 2)=0,得r =6,所以当0<r <6时,f ′(r )>0,f (r )单调递增;当r >6时,f ′(r )<0,f (r )单调递减,所以f (r )max =f (6)=108,所以V max =13π×108=23π.3.已知A ,B ,C 是球O 的球面上三点,且AB =AC =3,BC =33,D 为该球面上的动点,球心O 到平面ABC 的距离为球半径的一半,则三棱锥D ABC 体积的最大值为________.【答案】274【解析】如图,在△ABC 中, ∵AB =AC =3,BC =33, ∴由余弦定理可得cos A =32+32- 33 22×3×3=-12,∴sin A =32.设△ABC 外接圆O ′的半径为r ,则3332=2r ,得r =3.设球的半径为R ,连接OO ′,BO ′,OB , 则R 2=(R 2)2+32,解得R =23.由图可知,当点D 到平面ABC 的距离为32R 时,三棱锥D ABC 的体积最大,∵S △ABC =12×3×3×32=934,∴三棱锥D ABC 体积的最大值为13×934×33=274.4.如图,等腰梯形ABCD 中,AB ∥CD ,AD =AB =BC =1,CD =2,E 为CD 的中点,将△ADE 沿AE 折到△APE 的位置.(1)证明:AE ⊥PB ;(2)当四棱锥P ABCE 的体积最大时,求二面角A PE C 的余弦值.解:(1)证明:在等腰梯形ABCD 中,连接BD ,交AE 于点O , ∵AB ∥CE ,AB =CE ,∴四边形ABCE 为平行四边形, ∴AE =BC =AD =DE ,∴△ADE 为等边三角形, ∴在等腰梯形ABCD 中,∠C =∠ADE =π3,BD ⊥BC ,∴BD ⊥AE .如图,翻折后可得OP ⊥AE ,OB ⊥AE ,又OP ⊂平面POB ,OB ⊂平面POB ,OP ∩OB =O ,∴AE ⊥平面POB ,∵PB ⊂平面POB ,∴AE ⊥PB .(2)当四棱锥P ABCE 的体积最大时,平面PAE ⊥平面ABCE .又平面PAE ∩平面ABCE =AE ,PO ⊂平面PAE ,PO ⊥AE ,∴OP ⊥平面ABCE .以O 为坐标原点,OE所在的直线为x 轴,OB 所在的直线为y 轴,OP 所在的直线为z轴,建立空间直角坐标系,由题意得,P(0,0,32),E(12,0,0),C(1,32,0),∴PE―→=(12,0,-32),EC―→=(12,32,0),设平面PCE的法向量为n1=(x,y,z),则{·n1=0,·n1=0,)即{12x-32z=0,12x+32y=0,)设x=3,则y=-1,z=1,∴n1=(3,-1,1)为平面PCE的一个法向量,易知平面PAE的一个法向量为n2=(0,1,0),cos n1,n2 =n1·n2|n1||n2|=-11×5=-55.由图知所求二面角APEC为钝角,∴二面角APEC的余弦值为-5 5 .[解题技法]立体几何中的最值问题的解题策略空间几何体中的某些对象,如点、线、面,在约束条件下运动,带动相关的线段长度、体积等发生变化,进而就有了面积与体积的最值问题.定性分析:在空间几何体的变化过程中,通过观察运动点的位置变化,确定其相关量的变化规律,进而发现相关面积或体积的变化规律,求得其最大值或最小值.定量分析:将所求问题转化为某一个相关量的问题,即转化为关于其中一个量的函数,求其最大值或最小值的问题.根据具体情况,有函数法、不等式法、三角函数法等多种方法可供选择.。
立体几何中体积与面积最值问题的解法

1 声明本文首先以体积最大和面积最小的物体为例,讨论它们的最大/小值的解决方案。
接下来,给定指定的条件,通过拉格朗日型最优化技术对最大化体积最小化面积问题进行剖析。
最后,在说明了结果及其分析之后,讨论此类问题的求解思路及扩展性。
2 体积最大和面积最小的物体体积最大和面积最小的物体是立体几何的典型问题,它可以被看作是一种拉格朗日型优化问题,即在完成最大化体积和最小化面积的条件下寻求平衡点。
典型的体积最大和面积最小物体有球形、柱形、长方体等,也可以拓展到多边形,例如三角形等。
2.1 球形球形是一种立体几何体,其体积最大,面积最小,可以通过满足一定条件解决最大体积最小面积问题。
大体积最小面积问题的解法主要有两种:1) 根据体积最大的物体的方程,可以求出球的半径r,其中`V=4/3πr^3`;2) 因为球的周长是最长,周长和平面面积是相关的,因此可以求出球的周长C,从而计算球的面积`S=4πr^2`;这两个方程使用上面的公式,可以求出球的体积和面积。
根据拉格朗日型优化例子求出:当半径r=1时,体积最大,体积V=4/3πr^3=4.19,面积最小,面积S=4πr^2=12.57;当半径r=2时,体积最小,体积V=33.51,面积最大,面积S=50.27。
2.2 柱形柱形也是一种常用的立体几何物体,它的体积最大,面积最小的条件也可以满足。
柱的体积的最大/小值可以利用柱体的内切球的半径r求出,其中`V=πr²h`; 柱的面积最大/小值可以求出其元表面积`S=(2πrh+2πr²)`。
根据拉格朗日型优化例子求出:当半径r=1时,体积最大,体积V=πr²h=2.14,面积最小,面积S=2πr²+2πrh=10.30;当半径r=2时,体积最小,体积V=12.56,面积最大,面积S=18.85。
2.3 长方体长方体也是常用的立体几何物体,其体积最大,面积最小的条件也可以满足。
长方体的体积的最大/小值可以利用它的公式`V=a*b*c`进行求解,其中a,b,c分别为直角坐标三边的长度;长方体的表面积最大/小值可以求出其元表面积`S=2(a*b+b*c+a*c)`。
立体几何第三讲 空间几何体得最值问题

分清定量与变量,然后根据变量的取值情况,利用函数法或平面几何的相关结论判断相应的
最值.如该题中确定三棱锥底面的面积最值是关键.
【玩转跟踪】在棱长为 1 的正方体 ABCD A1B1C1D1 中,点 P1, P2 分别是线段 AB 、BD1(不
包括端点)上的动点,且线段 P1P2 平行于 平面 A1 ADD1 ,则四面体 P1P2 AB 的体积的最大值
锥 P-AEF 的底面积和高,高为定值时,底面积最大,则体积最大.
【解析】因为 PA 平面 ABC, BC 平面 ABC,所以 PABC 又因为 BCAC, PA AC A ,所以 BC 平面 PAC,又 AF 平面 PAC,所以 BCAF , 又 AFPC, PC BC C ,所以 AF 平面 PBC,即 AFEF 。EF 是 AE 在平面 PBC 上的 射影,因为 AEPB ,所以 EFPB ,即 PE 平面 AEF。在三棱锥 P AEF 中, AP AB 2, AEPB ,
5
.
5
又 P 在 BD 上运动,且当 P 运动到点 O 时,PQ 最小,等于 OQ 的长为 2 5 ,也就是异面直 5
线 BD 和 SC 的公垂线段的长.故选 B. 2.几何体表面上的最短距离问题
【例 2】正三棱柱 ABC—A1B1C1 中,各棱长均为 2,M 为 AA1 中点,N 为 BC 的中点,则 在棱柱的表面上从点 M 到点 N 的最短距离是多少?并求之.
又∵ 0<α+β<π,∴(α+β)max=π-arctan 2 ,(α+β)min=π-arctan2 2 .
【迁移运用】
1.【西藏日喀则一中高三 10 月检测】已知正三C 的距离为1,点 是线段 的中点,过点 作球 的截面,则截面面
立体几何中的翻折、轨迹及最值(范围)问题--备战2022年高考数学配套word试题(创新设计版)

立体几何中的翻折、轨迹及最值(范围)问题)1.翻折问题是立体几何的一类典型问题,是考查实践能力与创新能力的好素材.解答翻折问题的关键在于画好折叠前后的平面图形与立体图形,并弄清折叠前后哪些发生了变化,哪些没有发生变化.解题时我们要依据这些变化的与未变化的量来分析和解决问题.而表面展开问题是折叠问题的逆向思维、过程,一般地,涉及多面体表面的距离问题不妨将它展开成平面图形试一试.2.在立体几何中,某些点、线、面按照一定的规则运动,构成各式各样的轨迹,探求空间轨迹与探求平面轨迹类似,应注意几何条件,善于基本轨迹转化.对于较为复杂的轨迹,常常要分段考虑,注意特定情况下的动点的位置,然后对任意情形加以分析判定,也可转化为平面问题.对每一道轨迹命题必须特别注意轨迹的纯粹性与完备性.3.立体几何中的体积最值问题一般是指有关距离的最值、角的最值或面积、体积的最值.其一般方法有:(1)几何法:通过证明或几何作图,确定图形中取得最值的特殊位置,再计算它的值;(2)代数方法:分析给定图形中的数量关系,选取适当的自变量及目标函数,确定函数解析式,利用函数的单调性、有界性,以及不等式的均值定理等求出最值.题型一立体几何中的翻折问题【例1】(2019·全国Ⅲ卷)图①是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连接DG,如图②.(1)证明:图②中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图②中的二面角B-CG-A的大小.(1)证明由已知得AD∥BE,CG∥BE,所以AD∥CG,所以AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,且BE ∩BC =B ,BE ,BC ⊂平面BCGE , 所以AB ⊥平面BCGE .又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE .(2)解 作EH ⊥BC ,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,平面BCGE ∩平面ABC =BC , 所以EH ⊥平面ABC .由已知,菱形BCGE 的边长为2,∠EBC =60°,可求得BH =1,EH = 3. 以H 为坐标原点,HC →的方向为x 轴的正方向,建立如图所示的空间直角坐标系H-xyz ,则A (-1,1,0),C (1,0,0),G (2,0,3),CG→=(1,0,3),AC →=(2,-1,0).设平面ACGD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧CG →·n =0,AC →·n =0,即⎩⎨⎧x +3z =0,2x -y =0. 所以可取n =(3,6,-3).又平面BCGE 的法向量可取m =(0,1,0),所以cos 〈n ,m 〉=n ·m |n ||m |=32.因此二面角B -CG -A 的大小为30°.【训练1】 (2021·浙江名师预测卷四)在梯形ABCD 中,对角线AC 与BD 交于点O ,AD =2AB =2BC =2CD .将△BCD 沿BD 翻折至△BPD ,且满足平面ABP ⊥平面BPD .(1)求证:二面角P -BD -A 是直二面角;(2)(一题多解)求直线PD 与平面P AO 所成角的正弦值的大小.(1)证明由已知条件易得∠BAD=60°,∠BDA=30°,AB⊥BD.在△BPD中,过点D作DH⊥BP,交BP的延长线于点H.∵平面ABP⊥平面BPD,平面ABP∩平面BPD=BP,∴DH⊥平面ABP,∵AB⊂平面ABP,∴DH⊥AB.又∵BD∩DH=D,∴AB⊥平面BPD,∵AB⊂平面ABD,∴平面ABD⊥平面BPD.即二面角P-BD-A是直二面角.(2)解法一过点P作PG⊥BD,交BD于点G,则G是BD的中点.由(1)可知平面PBD⊥平面ABD,又∵平面PBD∩平面ABD=BD,∴PG⊥平面ABD.设OB=1,则OP=1,OA=2,AB=BP=3,∵AB⊥平面BPD,∴AB⊥BP,∴AP=AB2+BP2=6,由余弦定理得cos∠AOP=OA2+OP2-AP22OA·OP=-14,则sin∠AOP=15 4.设点D到△AOP的距离为h,∵V P-AOD=V D-AOP,∴13·PG·S△AOD=13·h·S△AOP,∵PG=32,S△AOD=12×2×2·sin2π3=3,S△AOP=12×1×2×154=154,∴h=215 5,∵PD =3,∴直线PD 与平面P AO 所成角θ的正弦值sin θ=h PD =255.法二 分别取BD ,AD 的中点E ,F ,连接EP ,EF ,则EF ∥AB .由(1)可知AB ⊥平面BPD ,∴EF ⊥平面BPD ,∴EF ⊥BD ,EF ⊥EP .∵PB =PD ,∴PE ⊥BD ,以点E 为坐标原点,EF→,ED →,EP →的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系.设OB =1,可得P ⎝⎛⎭⎪⎫0,0,32,D ⎝ ⎛⎭⎪⎫0,32,0, A ⎝ ⎛⎭⎪⎫3,-32,0,O ⎝ ⎛⎭⎪⎫0,-12,0. ∴PD →=⎝ ⎛⎭⎪⎫0,32,-32,P A →=⎝⎛⎭⎪⎫3,-32,-32, AO→=(-3,1,0). 设平面P AO 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧P A →·n =0,AO →·n =0,即⎩⎨⎧3x -32y -32z =0,-3x +y =0, 令x =1,则n =(1,3,-1),∴直线PD 与平面P AO 所成角θ的正弦值为sin θ=|cos 〈n ,PD →〉|=|n ·PD →||n |·|PD →|=255. 题型二 立体几何中的轨迹问题【例2】 (1)已知在平行六面体ABCD -A 1B 1C 1D 1中,AA 1与平面A 1B 1C 1D 1垂直,且AD =AB ,E 为CC 1的中点,P 在对角面BB 1D 1D 所在平面内运动,若EP 与AC 成30°角,则点P 的轨迹为( )A .圆B .抛物线C .双曲线D .椭圆(2)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,点P 是平面AC 内的动点, 若点P 到直线A 1D 1的距离等于点P 到直线CD 的距离,则动点P 的轨迹所在的曲线是()A.抛物线B.双曲线C.椭圆D.直线答案(1)A(2)B解析(1)因为在平行六面体ABCD-A1B1C1D1中,AA1与平面A1B1C1D1垂直,且AD=AB,所以该平面六面体ABCD-A1B1C1D1是一个底面为菱形的直四棱柱,所以对角面BB1D1D⊥底面ABCD,AC⊥对角面BB1D1D.取AA1的中点F,则EF∥AC,因为EP与AC成30°角,所以EP与EF成30°角.设EF与对角面BB1D1D 的交点为O,则EO⊥对角面BB1D1D,所以点P的轨迹是以EO为轴的一个圆锥的底面,故选A.(2)如图,以A为原点,AB为x轴、AD为y轴,建立平面直角坐标系.设P(x,y),作PE⊥AD于E、PF⊥A1D1于F,连接EF,易知|PF|2=|PE|2+|EF|2=x2+1,又作PN⊥CD于N,则|PN|=|y-1|.依题意|PF|=|PN|,即x2+1=|y-1|,化简得x2-y2+2y=0,故动点P的轨迹为双曲线,选B.【训练2】(1)在正方体ABCD-A1B1C1D1中,点M,N分别是线段CD,AB上的动点,点P是△A1C1D内的动点(不包括边界),记直线D1P与MN所成角为θ,若θ的最小值为π3,则点P的轨迹是()A.圆的一部分B.椭圆的一部分C.抛物线的一部分D.双曲线的一部分(2)如图,AB是平面α的斜线段,A为斜足,若点P在平面α内运动,使得△ABP 的面积为定值,则动点P的轨迹是()A.圆B.椭圆C.一条直线D.两条平行直线答案(1)B(2)B解析(1)延长D1P交底面ABCD的内部于点Q,连接QD,则∠D1QD为直线D1Q 与底面ABCD所成的角,也就是直线D1P与MN所成角θ的最小值,故∠D1QD=π3,从而∠DD1Q=π6,所以D1Q的轨迹是以D1D为轴,顶点为D1,母线D1Q与轴D1D的夹角为π6的圆锥面的一部分,则点P的轨迹就是该部分圆锥面与△A1C1D面(不包括边界)的交线,而△A1C1D面所在平面与轴D1D斜交,故点P 的轨迹是椭圆的一部分.(2)由于线段AB 是定长线段,而△ABP 的面积为定值,所以动点P 到线段AB 的距离也是定值.由此可知空间点P 在以AB 为轴的圆柱侧面上.又P 在平面内运动,所以这个问题相当于一个平面去斜切一个圆柱(AB 是平面的斜线段)得到的切痕是椭圆.P 的轨迹就是圆柱侧面与平面α的交线是椭圆.题型三 立体几何中的长度、面积、体积的最值(范围)问题【例3】 (1)如图,正三棱锥S -ABC 的底面边长为2a ,E 、F 、G 、H 分别为SA ,SB ,CB ,CA 的中点,则四边形EFGH 的面积的取值范围是( )A .(0,+∞) B.⎝ ⎛⎭⎪⎫33a 2,+∞ C.⎝ ⎛⎭⎪⎫36a 2,+∞ D.⎝ ⎛⎭⎪⎫12a 2,+∞ (2)(2021·“超级全能生”联考)在长方体ABCD -A 1B 1C 1D 1中,底面ABCD 是边长为4的正方形,侧棱AA 1=t (t >4),点E 是BC 的中点,点P 是侧面ABB 1A 1内的动点(包括四条边上的点),且满足tan ∠APD =4tan ∠EPB ,则四棱锥P -ABED 的体积的最大值是( )A.433 B .16 3 C.1633 D.6439答案 (1)B (2)C解析 (1)因为E 、F 、G 、H 分别为SA ,SB ,CB ,CA 的中点,∴EF 綉12AB ,HG綉12AB ,∴EF 綉HG ,同理,EH 綉FG ,所以EFGH 为平行四边形,又∵S -ABC 为正三棱锥,∴SC ⊥AB ,∴EF ∥AB ,FG ∥SC ,所以EF ⊥FG ,从而四边形EFGH 为矩形,其面积S =GH ·GF =12a ·SC ,当正三棱锥的高→0时,SC →正三角形ABC的外接圆的半径233a ,所以四边形EFGH 的面积→33a 2,选B.(2)作PF ⊥AB ,垂足为点F ,在长方体ABCD -A 1B 1C 1D 1中,DA ⊥平面ABB 1A 1,CB ⊥平面ABB 1A 1,在Rt △P AD 和Rt △PBC 中,所以tan ∠APD =AD AP ,tan ∠EPB=BE PB .因为tan ∠APD =4tan ∠EPB ,BE =12BC =12AD ,所以PB =2AP .因为平面ABB 1A 1⊥平面ABCD ,平面ABB 1A 1∩平面ABCD =AB ,PF ⊥AB ,所以PF ⊥平面ABCD .设PF =h ,AF =x ,则BF =4-x ,x ∈[0,4],由PB =2AP ,得h 2+(4-x )2=4(x 2+h 2),即h 2=-x 2-83x +163.因为函数y =-x 2-83x +163在[0,4]上单调递减,所以当x =0时,(h 2)max =163,即h max =433,所以四棱锥P -ABED 的体积的最大值(V P -ABED )max =13×12×(2+4)×4×433=1633,故选C.【训练3】 (1)在棱长为6的正方体ABCD -A 1B 1C 1D 1中,M 是BC 中点,点P 是平面DCC 1D 1所在的平面内的动点,且满足∠APD =∠MPC ,则三棱锥P -BCD 体积的最大值是( )A .36B .12 3C .24D .18 3(2)(2021·镇海中学模拟)已知棱长为1的正方体ABCD -A 1B 1C 1D 1,球O 与正方体的各条棱相切,P 为球O 上一点,Q 是△AB 1C 的外接圆上的一点,则线段PQ 长的取值范围是________.答案 (1)B (2)⎣⎢⎡⎦⎥⎤3-22,3+22 解析 (1)因为AD ⊥平面D 1DCC 1,则AD ⊥DP ,同理BC ⊥平面D 1DCC 1,则BC ⊥CP ,∠APD =∠MPC ,则△P AD ∽△PMC ,∵AD =2MC ,则PD =2PC ,下面研究点P 在面ABCD 的轨迹(立体几何平面化),在平面直角坐标系内设D (0,0),C (6,0),D 1(0,6),C 1(6,6),设P (x ,y ),因为PD =2PC ,所以x 2+y 2=2(x -6)2+y 2,化简得(x -8)2+y 2=16,该圆与CC 1的交点纵坐标最大,交点为(6,23),三棱锥P -BCD 的底面BCD 的面积为18,要使三棱锥P -BCD 体积最大,只需高最大,当P 在CC 1上且CP =23时棱锥的高最大,V =13·18·23=12 3.(2)因为球O 与正方体的各条棱相切,所以球心O 为正方体的中心,切点为各条棱的中点,则易得|OP |=22.△AB 1C 为边长为2的等边三角形,设其外接圆的圆心为M ,则易得|MB 1|=63.在正方体ABCD -A 1B 1C 1D 1中,易得BD 1⊥平面AB 1C ,则OM ⊥MB 1.又因为|OB |=32,|MB |=33,所以|OM |=36,则|OQ |=|OB 1|=|OM |2+|MB 1|2=32,所以|PQ |max =|OQ |+|OP |=3+22,|PQ |min =|OQ |-|OP |=3-22,即线段PQ 的取值范围为⎣⎢⎡⎦⎥⎤3-22,3+22一、选择题1.已知线段AB 垂直于定圆所在的平面,B ,C 是圆上的两点,H 是点B 在AC 上的射影,当C 运动时,点H 运动的轨迹( )A .是圆B .是椭圆C .是抛物线D .不是平面图形答案 A解析 设在定圆内过点B 的直径与圆的另一个交点为点D ,过点B 作AD 的垂线,垂足为点E ,连接EH ,CD .因为BD 为定圆的直径,所以CD ⊥BC ,又因为AB 垂直于定圆所在的平面,所以CD ⊥AB ,又因为AB ∩BC =B ,所以CD ⊥平面ABC ,所以CD ⊥BH ,又因为BH ⊥AC ,AC ∩CD =C ,所以BH ⊥平面ACD ,所以BH ⊥EH ,所以动点H 在以BE 为直径的圆上,即点H 的运动轨迹为圆,故选A.2.设P 是正方体ABCD -A 1B 1C 1D 1的对角面BDD 1B 1(含边界)内的点,若点P 到平面ABC 、平面ABA 1、平面ADA 1的距离相等,则符合条件的点P ( )A .仅有一个B .有有限多个C .有无限多个D .不存在答案 A解析 与平面ABC ,ABA 1距离相等的点位于平面ABC 1D 1上;与平面ABC ,ADA 1距离相等的点位于平面AB 1C 1D 上;与平面ABA 1,ADA 1距离相等的点位于平面ACC 1A 1上;据此可知,满足题意的点位于上述平面ABC 1D 1,平面AB 1C 1D ,平面ACC 1A 1的公共点处,结合题意可知,满足题意的点仅有一个.3.(2021·温州中学模拟)如图所示,用一边长为2的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为4π3的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋(球体)离蛋巢底面的最短距离为( )A.5+12B.5-12C.3+12D.3-12答案 D解析 因为蛋巢的底面是边长为1的正方形,所以过四个顶点截鸡蛋所得的截面圆的直径为1.又因为鸡蛋(球体)的体积为4π3,所以球的半径为1,所以球心到截面圆的距离d =1-14=32,则截面圆到球体最低点的距离为1-32,而蛋巢的高度为12,故鸡蛋(球体)到蛋巢底面的最短距离为12-⎝⎛⎭⎪⎫1-32=3-12,故选D. 4.(2021·温州适考)如图,在△ABC 中,点M 是边BC 的中点,将△ABM 沿着AM 翻折成△AB ′M ,且点B ′不在平面AMC 内,点P 是线段B ′C 上一点.若二面角P -AM -B ′与二面角P -AM -C 的平面角相等,则直线AP 经过△AB ′C 的( )A .重心B .垂心C .内心D .外心答案 A解析因为二面角P-AM-B′与二面角P-AM-C的平面角相等,所以点P到两个平面的距离相等,所以V P-AB′M=V P-ACM,即V A-PB′M=V A-PCM.因为两三棱锥的高相等,故S△PB′M =S△PCM,故B′P=CP,故点P为CB′的中点,所以直线AP经过△AB′C的重心,故选A.5.(2021·浙江名师预测卷一)如图,在四棱锥P-ABCD中,底面ABCD为正方形,侧面P AD为正三角形,且侧面P AD⊥底面ABCD,已知在侧面P AD内存在点Q,满足PQ⊥QD,则当AQ最小时,二面角A-CD-Q的余弦值是()A.2-34 B.2+34C.2-62 D.2+64答案 D解析取PD的中点M,因为四边形ABCD为正方形,所以CD⊥AD,又平面P AD⊥平面ABCD,且平面P AD∩平面ABCD=AD,CD⊂平面ABCD,所以CD⊥平面P AD,所以CD⊥QD,则二面角A-CD-Q的平面角是∠ADQ,又因为点Q的轨迹是以M为圆心的圆,如图,当|AQ|最小时,∠ADQ=∠ADP-∠QDP=60°-45°=15°,即二面角A-CD-Q的余弦值为cos 15°=cos(60°-45°)=2+6 4,故选D.6.(2021·浙江新高考仿真卷二)如图所示,在棱长为1的正方体ABCD-A1B1C1D1中,P,Q分别为BD1,BB1上的动点,则△C1PQ周长的最小值为()A.215 3B.4+2 2C.4+83 2D.213 3答案 B解析连接B1D1,BC1,由图易得△C1PQ的三边分别在三棱锥B-B1C1D1的三个侧面上,将三棱锥B-B1C1D1的侧面展开成平面图形,如图,可得四边形BC1D1C1′为直角梯形,当C1′,P,Q,C1四点共线时,△C1PQ的周长最小,最小值为C1′D21+D1C21=4+22,即△C1PQ的周长的最小值为4+22,故选B.7.(2021·上虞区期末调测)在棱长均为23的正四面体ABCD中,M为AC的中点,E为AB的中点,P是DM上的动点,Q是平面ECD上的动点,则AP+PQ的最小值是()A.3+112 B.3+ 2C.534D.2 3答案 A解析 如图,作MG ⊥CE 于点G ,连接DG .由已知得平面CDE ⊥平面ABC ,又平面CDE ∩平面ABC =CE ,则MG ⊥平面CDE ,故DG 为DM 在平面CDE 上的射影.将半平面ADM 沿DM 翻折至与半平面DMG 所成二面角为180°,记翻折后的点A 即A ′到DG 的距离为h A ,则h A 为△A ′DG 的边DG 上的高,且AP +PQ =A ′P +PQ ≥h A .因为MG =12AE =32,DM =DC 2-⎝ ⎛⎭⎪⎫AC 22=3,则sin ∠MDG=MG DM =36,故cos ∠MDG =336.又∠ADM =∠A ′DM =π6,所以sin ∠A ′DG =sin ⎝ ⎛⎭⎪⎫∠MDG +π6=336×12+36×32=3+3312,所以AP +PQ的最小值h A =A ′D sin ∠A ′DG =11+32.故选A. 二、填空题8.在正方体ABCD -A 1B 1C 1D 1中,点P 在侧面BCC 1B 1及其边界上运动,总有AP ⊥BD 1,则动点P 的轨迹为________. 答案 线段B 1C解析 易证BD 1⊥平面ACB 1,所以满足BD 1⊥AP 的所有点P 都在一个平面ACB 1上.而已知条件中的点P 是在侧面BCC 1B 1及其边界上运动,因此,符合条件的点P 在平面ACB 1与平面BCC 1B 1的交线上,故所求的轨迹为线段B 1C .9.已知正方体ABCD -A 1B 1C 1D 1的棱长为3,长为2的线段MN 的一个端点M 在DD 1上运动,另一个端点N 在底面ABCD 上运动,则MN 的中点P 的轨迹与正方体的面所围成的几何体的体积为________. 答案 π6解析 连接DP ,因为MN =2,所以PD =1,因此点P 的轨迹是一个以D 为球心,1为半径的球面在正方体内的部分,所以点P的轨迹与正方体的表面所围成的几何体的体积为球的体积的18,即V=18×43π×13=π6.10.已知在矩形ABCD中,AB=3,BC=a,若P A⊥平面AC,在BC边上取点E,使PE⊥DE,若满足条件的E点有两个时,则a的取值范围是________.答案(6,+∞)解析连接AE,由三垂线逆定理可知DE⊥AE,要使满足条件的E点有两个则须使以AD为直径的圆与BC有两个交点,所以半径长a2>3,∴a>6.11.如图,已知∠ACB=90°,DA⊥平面ABC,AE⊥DB交DB于E,AF⊥DC交DC于F,且AD=AB=2,则三棱锥D-AEF体积的最大值为________.答案2 6解析因为DA⊥平面ABC,所以DA⊥AB,AD⊥BC,∵AE⊥DB,又AD=AB=2,∴DE=2,又因为BC⊥AC,AC∩AD=A,所以BC⊥平面ACD,所以平面BCD⊥平面ACD,∵AF⊥DC,平面BCD∩平面ACD=CD,所以AF⊥平面BCD,所以AF⊥EF,BD⊥EF,所以BD⊥平面AEF,由AF2+EF2=AE2=2≥2AF·EF可得AF·EF≤1,所以S△AEF ≤12,所以三棱锥D-AEF体积的最大值为13×2×12=26.12.如图,在长方形ABCD中,AB=2,BC=1,E为DC的中点,F为线段EC(端点除外)上一动点.现将△AFD 沿AF 折起,使平面ABD ⊥平面ABC .在平面ABD 内过点D 作DK ⊥AB ,K 为垂足.设AK =t ,则t 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫12,1解析 如图,在平面ADF 内过D 作DH ⊥AF ,垂足为H ,连接HK .过F 点作FP ∥BC 交AB 于点P.设∠F AB =θ,则cos θ∈⎝ ⎛⎭⎪⎫22,255.设DF =x ,则1<x <2, ∵平面ABD ⊥平面ABC ,平面ABD ∩平面ABC =AB ,DK ⊥AB ,DK ⊂平面ABD ,∴DK ⊥平面ABC ,又AF ⊂平面ABC ,∴DK ⊥AF . 又∵DH ⊥AF ,DK ∩DH =D ,DK ,DH ⊂平面DKH , ∴AF ⊥平面DKH ,∴AF ⊥HK ,即AH ⊥HK . 在Rt △ADF 中,AF =1+x 2,∴DH =x 21+x 2, ∵△ADF 和△APF 都是直角三角形,PF =AD , ∴Rt △ADF ≌Rt △FP A ,∴AP =DF =x . ∵△AHD ∽△ADF ,∴cos θ=11+x 2t =x1+x 2. ∴x =1t .∵1<x <2,∴1<1t <2,∴12<t <1. 三、解答题13.(2018·全国Ⅰ卷)如图,四边形ABCD 为正方形, E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.(1)证明 由已知可得,BF ⊥PF ,BF ⊥EF ,又PF ∩EF =F ,PF ,EF ⊂平面PEF ,所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD . (2)解 作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,分别以FB→,HF →,HP →的方向为x 轴、y 轴、z 轴的正方向,|BF →|为单位长,建立如图所示的空间直角坐标系H -xyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE = 3.又PF =1,EF =2,故EF 2=PE 2+PF 2,所以PE ⊥PF . 可得PH =32,EH =32.则H (0,0,0),P ⎝ ⎛⎭⎪⎫0,0,32,D ⎝ ⎛⎭⎪⎫-1,-32,0,DP →=⎝ ⎛⎭⎪⎫1,32,32,HP →=⎝ ⎛⎭⎪⎫0,0,32为平面ABFD 的一个法向量.设DP 与平面ABFD 所成角为θ, 则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪HP →·DP →|HP →||DP →|=343=34. 所以DP 与平面ABFD 所成角的正弦值为34.14.(2021·杭州二中仿真模拟)如图,平面四边形ABCD 关于直线AC 对称,∠A =60°,∠C =90°,CD =2.把△ABD 沿BD 折起.(1)若二面角A -BD -C 的余弦值为33,求证:AC ⊥平面BCD ; (2)若AB 与平面ACD 所成的线面角为30°时,求AC 的长. 解 (1)取BD 的中点E ,连接AE ,CE . 因为AB =AD ,CB =CD , 所以AE ⊥BD ,CE ⊥BD , 又AE ∩CE =E ,所以BD ⊥平面ACE ,所以BD ⊥AC , 所以∠AEC 是二面角A -BD -C 的平面角.在△AEC 中,AC 2=AE 2+CE 2-2AE ·CE cos ∠AEC =4,则AC 2+CE 2=AE 2, 所以AC ⊥CE .因为CE ∩BD =E ,CE ,BD ⊂平面BCD , 所以AC ⊥平面BCD .(2)由(1)得以点C 为坐标原点建立如图所示的空间直角坐标系,则C (0,0,0),B (2,0,0),D (0,2,0). 设A (m ,m ,n ),则BA→=(m -2,m ,n ),CA →=(m ,m ,n ),CD →=(0,2,0). 设平面ACD 的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·CA →=0,n ·CD →=0,即⎩⎨⎧xm +ym +zn =0,2y =0,取⎩⎨⎧x =n ,y =0,z =-m ,所以n =(n ,0,-m ), 因为BA =22,所以(m -2)2+m 2+n 2=8, 则|cos 〈BA→,n 〉|=|n (m -2)-mn |22m 2+n 2=12,解得m 2=n 2,解得m =2或m =-23, 所以AC =23或AC =23 3.。
立体几何中的最值问题【解析版】

第四章立体几何专题17 立体几何中的最值问题【压轴综述】在立体几何中,判定和证明空间的线线、线面以及面面之间的位置关系(主要是平行与垂直的位置关系),计算空间图形中的几何量(主要是角与距离)是两类基本问题.在涉及最值的问题中主要有三类,一是距离(长度)的最值问题;二是面(体)积的最值问题;三是在最值已知的条件下,确定参数(其它几何量)的值.从解答思路看,有几何法(利用几何特征)和代数法(应用函数思想、应用基本不等式等)两种,都需要我们正确揭示空间图形与平面图形的联系,并有效地实施空间图形与平面图形的转换.要善于将空间问题转化为平面问题:这一步要求我们具备较强的空间想象能力,对几何体的结构特征要牢牢抓住,有关计算公式熟练掌握.一、涉及几何体切接问题最值计算求解与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径等.通过作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.这样才能进一步将空间问题转化为平面内的问题;二.涉及角的计算最值问题1. 二面角的平面角及其求法有:定义法、三垂线定理及其逆定理、找公垂面法、射影公式、向量法等,依据题目选择方法求出结果.2.求异面直线所成角的步骤:一平移,将两条异面直线平移成相交直线.二定角,根据异面直线所成角的定义找出所成角.三求角,在三角形中用余弦定理或正弦定理或三角函数求角.四结论.3.线面角的计算:(1)利用几何法:原则上先利用图形“找线面角”或者遵循“一做----二证----三计算”. (2)利用向量法求线面角的方法(i分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(ii)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角(钝角时取其补角),取其余角就是斜线和平面所成的角.下面通过例题说明应对这类问题的方法与技巧.【压轴典例】例1.(2018·全国高考真题(理))已知正方体的棱长为1,每条棱所在直线与平面 所成的角都相等,则α截此正方体所得截面面积的最大值为( )A B C .4D 【答案】A 【解析】根据相互平行的直线与平面所成的角是相等的, 所以在正方体1111ABCD A B C D -中,平面11AB D 与线11111,,AA A B A D 所成的角是相等的,所以平面11AB D 与正方体的每条棱所在的直线所成角都是相等的, 同理平面1C BD 也满足与正方体的每条棱所在的直线所成角都是相等, 要求截面面积最大,则截面的位置为夹在两个面11AB D 与1C BD 中间的,且过棱的中点的正六边形,且边长为2,所以其面积为26(2S ==,故选A. 例2.(2018·全国高考真题(文))设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为D ABC -体积的最大值为( )A .B .C .D .【答案】B 【解析】 如图所示,点M 为三角形ABC 的中心,E 为AC 中点,当DM ⊥平面ABC 时,三棱锥D ABC -体积最大 此时,OD OB R 4===2393ABCSAB == AB 6∴=,点M 为三角形ABC 的中心2BM 233BE ∴==Rt OMB ∴中,有22OM 2OB BM =-=DM OD OM 426∴=+=+=()max 19361833D ABC V -∴=⨯=故选B.例3.(2017·全国高考真题(理))a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论: ①当直线AB 与a 成60°角时,AB 与b 成30°角; ②当直线AB 与a 成60°角时,AB 与b 成60°角; ③直线AB 与a 所成角的最小值为45°; ④直线AB 与a 所成角的最大值为60°.其中正确的是________.(填写所有正确结论的编号) 【答案】②③ 【解析】由题意知,a 、b 、AC 三条直线两两相互垂直,画出图形如图, 不妨设图中所示正方体边长为1, 故|AC |=1,|AB|=斜边AB 以直线AC 为旋转轴,则A 点保持不变,B 点的运动轨迹是以C 为圆心,1为半径的圆,以C 坐标原点,以CD 为x 轴,CB 为y 轴,CA 为z 轴,建立空间直角坐标系, 则D (1,0,0),A (0,0,1),直线a 的方向单位向量a =(0,1,0),|a |=1, 直线b 的方向单位向量b =(1,0,0),|b |=1,设B 点在运动过程中的坐标中的坐标B ′(cosθ,sinθ,0), 其中θ为B ′C 与CD 的夹角,θ∈[0,2π),∴AB ′在运动过程中的向量,'AB =(cosθ,sinθ,﹣1),|'AB|=设'AB 与a 所成夹角为α∈[0,2π], 则cosα()()10102'cos sin a AB θθ--⋅==⋅,,,,, ∴α∈[4π,2π],∴③正确,④错误.设'AB 与b 所成夹角为β∈[0,2π],cosβ()()'11002''AB b cossin AB bbAB θθ⋅-⋅===⋅⋅,,,,|cosθ|, 当'AB 与a 夹角为60°时,即α3π=,|sinθ|3πα===, ∵cos 2θ+sin 2θ=1,∴cosβ2=|cosθ|12=,∵β∈[0,2π],∴β3π=,此时'AB 与b 的夹角为60°, ∴②正确,①错误. 故答案为:②③.例4.(2017·全国高考真题(理))如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为______.【答案】15【解析】如下图,连接DO 交BC 于点G ,设D ,E ,F 重合于S 点,正三角形的边长为x (x >0),则133OG x =3x =. ∴35FG SG x ==-,222233566SO h SG GO x x ⎛⎫⎛⎫==-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭3553x ⎛⎫=- ⎪ ⎪⎝⎭, ∴三棱锥的体积2113355333ABC V S h x x ⎛⎫=⋅=- ⎪ ⎪⎝⎭451535123x x =-. 设()4535n x x x =-,x >0,则()345320n x x x '=, 令()0n x '=,即43403x =,得43x ,易知()n x 在43x 处取得最大值. ∴max 154854415V =-=例5.(2016·浙江高考真题(理))如图,在ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是 .【答案】【解析】中,因为,所以.由余弦定理可得,所以.设,则,.在中,由余弦定理可得.故.在中,,.由余弦定理可得,所以.由此可得,将ABD沿BD翻折后可与PBD重合,无论点D在任何位置,只要点D的位置确定,当平面PBD⊥平面BDC时,四面体PBCD的体积最大(欲求最大值可不考虑不垂直的情况).过作直线的垂线,垂足为.设,则,即,解得.而 的面积.当平面PBD⊥平面BDC 时: 四面体的体积.观察上式,易得,当且仅当,即时取等号,同时我们可以发现当时,取得最小值,故当时,四面体的体积最大,为例6.(2019·安徽芜湖一中高三开学考试)在Rt AOB ∆中,6OAB π∠=,斜边4AB =.Rt AOC ∆可以通过Rt AOB ∆以直线AO 为轴旋转得到,且二面角B AO C --是直二面角.动点D 的斜边AB 上.(1)求证:平面COD ⊥平面AOB ;(2)求直线CD 与平面AOB 所成角的正弦的最大值. 【答案】(1)详见解析;(2277【解析】(1)AOB ∆为直角三角形,且斜边为AB ,2AOB π∴∠=.将Rt AOB ∆以直线AO 为轴旋转得到Rt AOC ∆,则2AOC π∠=,即OC AO ⊥.二面角B AO C --是直二面角,即平面AOC ⊥平面AOB . 又平面AOC平面AOB AO =,OC ⊂平面AOC ,OC ∴⊥平面AOB .OC ⊂平面COD ,因此,平面COD ⊥平面AOB ;(2)在Rt AOB ∆中,6OAB π∠=,斜边4AB =,122OB AB ∴==且3OBA π∠=. 由(1)知,OC ⊥平面AOB ,所以,直线CD 与平面AOB 所成的角为ODC ∠. 在Rt OCD ∆中,2COD π∠=,2OC OB ==,2224CD OD OC OD =+=+,22sin 4OC ODC CD OD ∴∠==+, 当⊥OD AB 时,OD 取最小值,此时sin ODC ∠取最大值,且sin33OD OB π==.因此,22227sin 774OC ODC CD OD ∠==≤=+,即直线CD 与平面AOB 所成角的正弦的最大值为277. 例7.(2019·深圳市高级中学高三月考(文))如图,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,PO 垂直于圆O 所在的平面,且PO =OB =1.(1)若D 为线段AC 的中点,求证:AC⊥平面PDO ; (2)求三棱锥P -ABC 体积的最大值; (3)若,点E 在线段PB 上,求CE +OE 的最小值.【答案】(1)见解析;(2);(3)【解析】(1)证明:在△AOC中,因为OA=OC,D为AC的中点,所以AC⊥DO.又PO垂直于圆O所在的平面,所以PO⊥AC.因为DO∩PO=O,所以AC⊥平面PDO.(2)解:因为点C在圆O上,所以当CO⊥AB时,C到AB的距离最大,且最大值为1.又AB=2,所以△ABC面积的最大值为.又因为三棱锥P-ABC的高PO=1,故三棱锥P-ABC体积的最大值为.(3)解:在△POB中,PO=OB=1,∠POB=90°,所以.同理,所以PB=PC=BC.在三棱锥P-ABC中,将侧面BCP绕PB旋转至平面BC′P,使之与平面ABP共面,如图所示.当O,E,C′共线时,CE+OE取得最小值.又因为OP=OB,,所以垂直平分PB,即E为PB的中点.从而,即CE+OE的最小值为.例8.(2016·江苏高考真题)现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥,下部分的形状是正四棱柱(如图所示),并要求正四棱柱的高是正四棱锥的高的4倍.(1)若则仓库的容积是多少? (2)若正四棱锥的侧棱长为,则当为多少时,仓库的容积最大?【答案】(1)312(2)【解析】(1)由PO 1=2知OO 1=4PO 1=8. 因为A 1B 1=AB=6,所以正四棱锥P-A 1B 1C 1D 1的体积正四棱柱ABCD-A 1B 1C 1D 1的体积所以仓库的容积V=V 锥+V 柱=24+288=312(m 3).(2)设A 1B 1=a (m ),PO 1=h (m ),则0<h<6,OO 1=4h.连结O 1B 1. 因为在中,所以,即于是仓库的容积,从而. 令,得或(舍).当时,,V 是单调增函数; 当时,,V 是单调减函数.故时,V 取得极大值,也是最大值.因此,当m 时,仓库的容积最大.【压轴训练】1.(2019·四川石室中学高三开学考试(文))在ABC △中,已知23AB =6BC =045ABC ∠=,D 是边AC 上一点,将ABD △沿BD 折起,得到三棱锥A BCD -.若该三棱锥的顶点A 在底面BCD 的射影M 在线段BC 上,设BM x =,则x 的取值范围为( ) A.()23,26 B.()6,23C.()3,6D.()0,23【答案】B 【解析】由将ABD △沿BD 折起,得到三棱锥A BCD -,且A 在底面BCD 的射影M 在线段BC 上, 如图2所示,AM ⊥平面BCD ,则AM BD ⊥, 在折叠前图1中,作AM BD ⊥,垂足为N ,在图1中过A 作1AM BC ⊥于点1M ,当运动点D 与点C 无限接近时,折痕BD 接近BC ,此时M 与点1M 无限接近,在图2中,由于AB 是直角ABM ∆的斜边,BM 为直角边,所以BM AB <, 由此可得1BM BM AB <<,因为ABC ∆中,023,26,45ABC AB BC ∠===,由余弦定理可得23AC =,所以221(23)(6)6BM =-=, 所以623BM <<由于BM x =,所以实数x 的取值范围是()6,23,故选B .2.(2019·四川高三月考(文))已知球O 表面上的四点A ,B ,C ,P 满足2AC BC ==2AB =.若四面体PABC 体积的最大值为23,则球O 的表面积为( ) A .254πB .254π C .2516π D .8π【答案】A 【解析】当平面ABP 与平面ABC 垂直时,四面体ABCP 的体积最大.由AC BC ==2AB =,得90ACB ︒∠=.设点Р到平面ABC 的距离为h,则112323h ⨯=,解得2h =. 设四面体ABCP 外接球的半径为R ,则()22221R R =-+,解得5R=4.所以球O 的表面积为2525444ππ⎛⎫⨯= ⎪⎝⎭. 故选:A .3.(2019·湖南雅礼中学高三月考(理))圆锥的母线长为2,其侧面展开图的中心角为θ弧度,过圆锥顶点的截面中,面积的最大值为2,则θ的取值范围是( ) A.),2π B.π⎡⎤⎣⎦C.}D.,2π⎫⎪⎪⎣⎭【答案】A 【解析】设轴截面的中心角为α,过圆锥顶点的截面的顶角为β,且βα≤ 过圆锥顶点的截面的面积为:122sin β2sin β2⨯⨯⨯=, 又过圆锥顶点的截面中,面积的最大值为2, 故此时β2π=,故απ2π≤<圆锥底面半径r )2sin22α=∈ ∴侧面展开图的中心角为θ弧度2sin222πsin22απα⨯⨯==∈),2π 故选:A.4.(2019·安徽高考模拟(理))如图,已知四面体ABCD 为正四面体,1AB =,E ,F 分别是AD ,BC 中点.若用一个与直线EF 垂直,且与四面体的每一个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为( )A .14B .24C .34D .1【答案】A 【解析】将正四面体补成正方体,如下图所示:EF α⊥ ∴截面为平行四边形MNKL ,可得1NK KL +=又//KL BC ,//KN AD ,且AD BC ⊥ KN KL ∴⊥ 可得2124MNKLNK KL S NK KL +⎛⎫=⋅≤=⎪⎝⎭四边形(当且仅当NK KL =时取等号) 本题正确选项:A5.(2019·湖北高三月考(理))若一个四棱锥底面为正方形,顶点在底面的射影为正方形的中心,且该四棱锥的体积为9,当其外接球表面积最小时,它的高为( ) A .3 B .2C .3D .33【答案】A 【解析】设正方形的边长为a ,则四棱锥的高为227h a =2a ,则其外接圆的半径22r a =.设球的半径为R ,则()222h R r R -+=,解得44222272727210844108a a R a a a =+=++4322272793441084a a a ≥⋅⋅=,当且仅当42274108a a =,即3a =时等号成立,此时,四棱锥的高为2272739h a ===.故选A. 6.(2019·四川雅安中学高三开学考试(文))已知三棱锥D ABC -四个顶点均在半径为R 的球面上,且2AB BC ==,2AC =,若该三棱锥体积的最大值为1,则这个球的表面积为( )A.50081πB.1009πC.259πD.4π【答案】B 【解析】2AB BC ==,2AC = 222AB BC AC ∴+= AB BC ∴⊥112ABC S AB BC ∆∴=⋅= 如下图所示:若三棱锥D ABC -体积最大值为1,则点D 到平面ABC 的最大距离:3d = 即:3DO '=设球的半径为R ,则在Rt OAO '∆中:()22213R R =+-,解得:53R =∴球的表面积:210049S R ππ==本题正确选项:B7.(2017·山西高三(理))两球1O 和2O 在棱长为1的正方体1111ABCD A B C D -的内部,且互相外切,若球1O 与过点A 的正方体的三个面相切,球2O 与过点1C 的正方体的三个面相切,则球1O 和2O 的表面积之和的最小值为( ) A .(323p B .(423pC .(323p +D .(423p【答案】A 【解析】设球1O 与球2O 的半径分别为r 1,r 2,∴r 1+r 23r 1+r 2)= 3 r 1+r 2313+=332-, r 1+r 2⩾12r r 球1O 与球2O 的面积之和为: S =4π(21r+21r)=4π(r 1+r 2)2−8π12r r ⩾()212π13+−2π()2313+=(6−3)π,当且仅当r 1=r 2时取等号 其面积最小值为(6−3π. 故选A.8.(2019·广东高考模拟(理))平面四边形ABCD 中,2AD AB ==5CD CB ==且AD AB ⊥,现将ABD ∆沿对角线BD 翻折成A BD '∆,则在A BD '∆折起至转到平面BCD 的过程中,直线A C '与平面BCD 所成最大角的正切值为( )A .2B .12C 3D 3【答案】D 【解析】 取BD 的中点O,则,,,A B A D BC CD A O BD CO BD '''==∴⊥⊥即BD ⊥平面A OC ',从而平面BCD ⊥平面A OC ',因此A '在平面BCD 的射影在直线OC 上,即A CO '∠为直线A C '与平面BCD 所成角,因为2AD AB ==5CD CB ==AD AB ⊥,所以111,2sin sin sin 22A O A O OC A CO OA C OA C OC '''''==∴∠=∠=∠≤,即A CO '∠最大值为π6,因此直线A C '与平面BCD 所成最大角的正切值为π3tan63=,选D.9.(2019·云南省玉溪第一中学高二月考(理))已知底面边长为42,侧棱长为25的正四棱锥S ABCD -内接于球1O .若球2O 在球1O 内且与平面ABCD 相切,则球2O 的直径的最大值为__________. 【答案】8 【解析】如图所示,正四棱锥S ABCD -内接于球1O ,1SO 与平面ABCD 交于点O , 正方形ABCD 中,42,4AB AO ==, 在直角三角形SAO 中,2222(25)42SO SA OA =-=-=,设球1O 的半径为R ,则在直角三角形1OAO 中,222(2)4R R -+=, 解得5R =, 所以球1O 的直径为10,当求2O 与平面ABCD 相切且与球1O 相切时,球2O 的直径最大, 又因为球2SO =,所以球2O 的直径的最大值为1028-=.10.(2019·山西高三月考)已知三棱锥P ABC -的四个顶点都在半径为3的球面上,AB AC ⊥,则该三棱锥体积的最大值是__. 【答案】323【解析】如图所示,设,AB m AC n ==,则12ABCS mn ∆=,ABC ∆22m n +22934m n +-,三棱锥P ABC -的体积公式为222222111(93)(93)324344m n m n m n mn +++⨯-≤⨯-, 设224m n t +=,则1()(93)3f t t t =-+,1()93329f t t t '⎫=-+⎪-⎭,令()0f t '=,解得8t =,()f t 在()0,8单增,[]8,9单减,max 32()(8)3f t f ∴==, 所以三棱锥P ABC -体积最大值为32311.(2019·云南师大附中高三月考)在直三棱柱111ABC A B C -中,90BAC ∠=︒且14BB =,设其外接球的球心为O ,已知三棱锥O -ABC 的体积为2,则球O 的表面积的最小值是_____________. 【答案】28π 【解析】 如图,在Rt ABC △中,设AB c =,=AC b ,则22BC b c =+, 取BC ,11B C 的中点分别为2O ,1O ,则2O ,1O 分别为Rt ABC △和111Rt A B C △的外接圆的圆心,连接2O 1O ,又直三棱柱111ABC A B C -的外接球的球心为O ,则O 为2O 1O 的中点,连接OB ,则OB 为三棱柱外接球的半径.设半径为R ,因为直三棱柱111ABC A B C -,所以1214BB O O ==,所以三棱锥O ABC -的高为2,即22OO =,又三棱锥O ABC -体积为2,所以1122632O ABC V bc bc -=⨯⨯=⇒=.在2Rt OO B △中,2222222221()4424b c b c R BC OO ++⎛⎫=+=+=+ ⎪⎝⎭⎝⎭, 所以2=4πS R =球表22224π4π()16π2π16π12π16π28π4b c b c bc ⎛⎫++=+++=+= ⎪⎝⎭≥,当且仅当b c =时取“=”,所以球O 的表面积的最小值是28π,故答案为28π.12.(2019·湖南高三月考(文))已知三棱锥A BCD -满足3AB BD DC CA ====,则该三棱锥体积的最大值为________. 【答案】3【解析】取AD 中点E ,连接BE ,CE ,因为3AB BD DC CA ====, 所以BE AD ⊥,CE AD ⊥,且BE CE =,由题意可得,当平面⊥BAD 平面CAD 时,棱锥的高最大,等于BE ,此时体积也最大; 所以此时该三棱锥体积为113sin sin 362-∆=⋅⋅=⋅⋅⋅∠⋅=⋅∠A BCD ACD V S BE CA CD ACD BE CE ACD ,设ACD θ∠=,则sin 3cos 22πθθ-⎛⎫=⋅=⎪⎝⎭CE CD , 所以239cos sin 9sin cos 9sin sin 222222θθθθθθ-⎛⎫=⋅=⋅=- ⎪⎝⎭A BCD V , 令sin2θ=x ,因为0θπ<<,所以0sin12θ<<,设3()=-f x x x ,01x <<,则2()13'=-f x x ,由2()130'=->f x x 得303x <<; 由2()130'=-<f x x 得313x <<; 所以函数3()=-f x x x 在30,3⎛⎫ ⎪ ⎪⎝⎭上单调递增,在3,13⎛⎫⎪ ⎪⎝⎭上单调递减; 所以max 333323()33279⎛⎫==-= ⎪ ⎪⎝⎭f x f ,因此三棱锥体积的最大值为239239-=⋅=A BCD V . 故答案为2313.(2019·河南高三月考(文))已知三棱锥P ABC -的四个顶点均在同一个球面上,底面ABC ∆满足6BA BC ==,2ABC π∠=,若该三棱锥体积的最大值为3.则其外接球的体积为________.【答案】323π 【解析】 如图所示:设球心为O ,ABC △所在圆面的圆心为1O ,则1OO ⊥平面ABC ;因为6BA BC ==2ABC π∠=,所以ABC △是等腰直角三角形,所以1O 是AC 中点;所以当三棱锥体积最大时,P 为射线1O O 与球的交点,所以113p ABC ABC V PO S -=⋅⋅;因为16632ABCS==,设球的半径为R ,所以2221113PO PO OO R R AO R R =+=-=+-(213333R R ⋅-⋅=,解得:2R =,所以球的体积为:343233R ππ=.14.(2019·四川双流中学高三月考(文))已知球的直径4DC =,A ,B 是该球面上的两点,6ADC BDC π∠=∠=,则三棱锥A BCD -的体积最大值是______.【答案】2 【解析】因为球的直径4DC =,且6ADC BDC π∠=∠=,所以2AC BC ==,23AD BD ==13A BCD BCD V S h -∆=⨯⨯(其中h 为点A 到底面BCD 的距离),故当h 最大时,A BCD V -的体积最大,即当面ADC ⊥面BDC 时,h 最大且满足4223h =⨯3h =112233232A BCD V -=⨯⨯⨯=.15.(2019·河北高三月考)在四棱锥P ABCD -中,PD AC ⊥,AB ⊥平面PAD ,底面ABCD 为正方形,且3CD PD +=,若四棱锥P ABCD -的每个顶点都在球O 的球面上,则球O 的表面积的最小值为_____. 【答案】6π 【解析】∵AB ⊥平面PAD ,∴AB PD ⊥,又PD AC ⊥,∴PD ⊥平面ABCD ,则四棱锥P ABCD -可补形成一个长方体,球O 的球心为PB 的中点,设()03CD x x =<<,则3PD x =-.从而球O 的表面积为()()222223431262x x x x πππ⎛⎫++- ⎪⎡⎤=-+≥⎣⎦ ⎪⎝⎭. 故答案为6π 16.(2016·浙江高考真题(文))如图,已知平面四边形ABCD ,AB=BC=3,CD=1,AD=5,∠ADC=90°.沿直线AC 将ACD 翻折成ACD',直线AC 与BD' 所成角的余弦的最大值是______.6 【解析】试题分析:如图,连接BD′,设直线AC 与'BD 所成的角为θ.O 是AC 的中点.由已知得6AC =,以OB 为x 轴, OA 为y 轴,过O 与平面ABC 垂直的直线为z 轴,建立空间直角坐标系,则60,2A ⎛⎫ ⎪ ⎪⎝⎭, 302B ⎛⎫ ⎪ ⎪⎝⎭, 60,2C ⎛⎫- ⎪ ⎪⎝⎭.作DH AC ⊥于H ,连接D′H 翻折过程中, 'D H 始终与AC 垂直, 则266CD CH CA ===则63OH = 15306DH ⨯==因此30630'cos ,sin 636D αα⎛⎫-- ⎪ ⎪⎝⎭(设∠DHD′=α), 则3030630'BD αα⎛⎫= ⎪ ⎪⎝⎭,与CA 平行的单位向量为()0,1,0n =,所以cos cos ',BD n θ= ''BD n BD n⋅==6395cos α+,所以cos 1α=-时, cos θ取得最大值,为66. 17.(2019·重庆一中高三开学考试(理))已知正方形ABCD 的边长为22,将ABC ∆沿对角线AC 折起,使平面ABC ⊥平面ACD ,得到如图所示的三棱锥B-ACD .若O 为AC 的中点,点M ,N 分别为DC ,BO 上的动点(不包括端点),且BN CM =,则当三棱锥N-AMC 的体积取得最大值时,点N 到平面ACD 的距离为______.【答案】1【解析】由题意知,BO AC ⊥,而平面ABC ⊥平面ACD ,所以BO ⊥平面ACD ,易知BO =2,设BN x =,三棱锥N AMC -的高为NO ,则2NO x =-,由三棱锥体积公式得21122=22(2)(1)3233N AMC V y x x x -=⨯⨯⨯-=--+,∴x =1时,y max =23.此时,211NO =-=. 故本题正确答案为1.18.(2019·浙江高三开学考试)如图,在棱长为2的正方体1111ABCD A B C D -中,点M 是AD 中点,动点P 在底面ABCD 内(不包括边界),使四面体1A BMP 体积为23,则1C P 的最小值是___________. 【答案】2305【解析】 由已知得四面体1A BMP 体积1122,33A MBP MBP V S -∆=⨯⨯= 所以1,MBPS ∆=设P 到BM 的距离为h ,则151,2MBP S h ∆=⨯⨯= 解得25,5h =所以P 在底面ABCD 内(不包括边界)与BM 平行且距离为255的线段l 上, 要使1C P 的最小,则此时P 是过C 作BM 的垂线的垂足.点C 到BM 的距离为45,5所以25,5CP = 此时()221min 252302.55C P ⎛⎫=+= ⎪ ⎪⎝⎭故答案为2305. 19.(2019·安徽合肥一中高考模拟(文))如图,在棱长为 1 的正方体1111ABCD A B C D -中,点M 是AD 的中点,动点P 在底面ABCD 内(不包括边界),若1//B P 平面1A BM ,则1C P 的最小值是____.【答案】305 【解析】 取BC 中点N ,连结11,,B D B N DN ,作CO DN ⊥,连1C O ,因为面1//B DN 面面1A BM ,所以动点P 在底面ABCD 内的轨迹为线段DN , 当点P 与点O 重合时,1C P 取得最小值,因为1115222552DN CO DC NC CO ⋅=⋅⇒==, 所以221min 11130()155C P C O CO CC ==+=+=. 20.(2019·湖南高三期末(文))点P 在正方体1111ABCD A B C D -的侧面11BCC B 及其边界上运动,并保持1AP BD ⊥,若正方体边长为2,则PB 的取值范围是__________.【答案】2,2⎡⎤⎣⎦【解析】连结1AB ,AC ,1CB ,易知平面11ACB BD ⊥,故P 点的轨道为线段1CB ,当P 在1CB 当P 与C 或1B 重合时:最大值为2则PB 的取值范围是2⎤⎦.故答案为:2⎤⎦。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何中的最值问题一、线段长度最短或截面周长最小问题例1. 正三棱柱ABC —A 1B 1C 1中,各棱长均为2,M 为AA 1中点,N 为BC 的中点,则在棱柱的表面上从点M 到点N 的最短距离是多少?并求之.解析: (1)从侧面到N ,如图1,沿棱柱的侧棱AA 1剪开,并展开,则MN =22AN AM +=22)12(1++=10(2)从底面到N 点,沿棱柱的AC 、BC 剪开、展开,如图2.则MN =︒⋅-+120cos 222AN AM AN AM =21312)3(122⨯⨯⨯++=34+∵34+<10 ∴m in MN =34+.例2.如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直。
点M 在AC 上移动,点N 在BF 上移动,若CM=BN=a ).20(<<a (1)求MN 的长;(2)当a 为何值时,MN 的长最小; (3)当MN 长最小时,求面MNA 与面MNB 所成的二面角α的大小。
解析:(1)作MP ∥AB 交BC 于点P ,NQ ∥AB 交BE 于点Q ,连接PQ ,依题意可得MP ∥NQ ,且MP=NQ ,即MNQP 是平行四边形。
∴MN=PQ,由已知,CM=BN=a,CB=AB=BE=1,∴2==BF AC ,21,21a BQ a CP ==, 即2aBQ CP ==, ∴=+-==22)1(BQ CP PQ MN )20(21)22()2()21(222<<+-=+-a a a a (2)由(1)知: 2222==MN a 时,当,的中点时,分别移动到即BF AC N M ,, 22的长最小,最小值为MN(3)取MN 的中点G ,连接AG 、BG ,∵AM=AN,BM=BN ,∴AG ⊥MN,BG ⊥MN ,∴∠AGB 即为二面角α的平面角。
又46==BG AG ,所以由余弦定理有31464621)46()46(cos 22-=••-+=α。
故所求二面角)31arccos(-=α。
例3. 如图,边长均为a 的正方形ABCD 、ABEF 所在的平面所成的角为)20(πθθ<<。
点M 在AC 上,点N 在BF 上,若AM=FN ,(1)求证:MN//面BCE ; (2)求证:MN ⊥AB;A(3)求MN 的最小值.解析:(1)如图,作MG//AB 交BC 于G, NH//AB 交BE 于H, MP//BC 交AB 于P, 连PN, GH , 易证MG//NH,且MG=NH, 故MGNH 为平行四边形,所以MN//GH , 故MN//面BCE ; (2)易证AB ⊥面MNP, 故MN ⊥AB ;(3)MPN ∠即为面ABCD 与ABEF 所成二面角的平面角,即θ=∠MPN ,设AP=x , 则BP=a -x , NP=a -x , 所以:θcos )(2)(22x a x x a x MN ---+=22)cos 1(21)2)(cos 1(2a a x θθ-+-+=,故当2a x =时,MN有最小值a )cos 1(21θ-. 例4.如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直。
点M 在AC 上移动,点N 在BF 上移动,若CM=x ,BN=y, ).2,0(<<y x (1)求MN 的长(用x,y 表示);(2)求MN 长的最小值,该最小值是否是异面直线AC ,BF 之间的距离。
解析:在面ABCD 中作MP ⊥AB 于P ,连PN ,则MP ⊥面ABEF ,所以MP ⊥PN ,PB=1-AP=x 22在∆PBN 中,由余弦定理得:ABFECDPNMPN 2=02245cos 2)22(xy y x -++ xy y x -+=2221,在PMN Rt ∆中,MN=xy y x x PN MP -++-=+2222221)221(1222+--+=x xy y x ).2,0(<<y x ;(2)MN 1222+--+=x xy y x 31)322(43)2(22+-+-x xy ,故当322=x ,32=y 时,MN 有最小值33。
且该最小值是异面直线AC ,BF 之间的距离。
例5. 如图,在ΔABC 中,∠ACB =90°,BC =a,AC =b,D 是斜边AB 上的点,以CD 为棱把它折成直二面角A —CD —B 后,D 在怎样的位置时,AB 为最小,最小值是多少?解析: 设∠ACD =θ,则∠BCD =90°-θ,作AM ⊥CD 于M ,BN ⊥CD 于N ,于是AM =bsin θ,CN =asin θ.∴MN =|asin θ-bcos θ|,因为A —CD —B 是直二面角,AM ⊥CD ,BN ⊥CD ,∴AM 与BN 成90°的角,于是AB =22222)cos sin (cos sin θθθθb a a b -++=θ222sin ab b a -+≥ab b a -+22.∴当θ=45°即CD 是∠ACB 的平分线时,AB 有最小值,最小值为ab b a -+22.例6. 正三棱锥A-BCD ,底面边长为a ,侧棱为2a ,过点B 作与侧棱AC 、AD 相交的截面,在这样的截面三角形中,求(1)周长的最小值;(2)周长为最小时截面积的值,(3)用这周长最小时的截面截得的小三棱锥的体积与三棱锥体积之比.解析:(1)沿侧棱AB 把正三棱锥的侧面剪开展成平面图.如图1,当周长最小时,EF 在直线BB ′上,∵ΔABE ≌ΔB ′AF ,∴AE =AF ,AC =AD ,∴B ′B ∥CD ,∴∠1=∠2=∠3,∴BE =BC =a ,同理B ′F =B ′D =a.∵ΔFDB ′∽ΔADB ′,∴B D DF '=B A B D '',a DF =a a 2=21,∴DF =21a,AF =23a.又∵ΔAEF ∽ΔACD ,∴BB ′=a+43a+a =411a,∴截面三角形的周长的最小值为411a.(2)如图2,∵ΔBEF 等腰,取EF 中点G ,连BG ,则BG ⊥EF.∴BG =22EG BE -=22)83(a a -=855a ∴S ΔBEF =21·EF ·BG =21·43a ·855a =64553a 2.(3)∵V A-BCD =V B-ACD ,而三棱锥B —AEF ,三棱锥B —ACD 的两个高相同,所以它们体积之比于它们的两底面积之比,即CAD B AEF B V V --=ACD AEF S S △△=22CD EF =169 评析 把曲面上的最短路线问题利用展开图转化为平面上两点间距离的问题,从而使问题得到解决,这是求曲面上最短路线的一种常用方法.本题中的四面体,其中任何一个面都可以做为底面,因而它可有四个底面和与之对应的四条高,在解决有关三棱锥体积题时,需要灵活运用这个性质.二、面积最值问题例7. 如图1所示,边长AC =3,BC =4,AB =5的三角形简易遮阳棚,其A 、B 是地面上南北方向两个定点,正西方向射出的太阳光线与地面成30°角,试问:遮阳棚ABC 与地面成多大角度时,才能保证所遮影面ABD 面积最大?解析: 易知,ΔABC 为直角三角形,由C 点引AB 的垂线,垂足为Q ,则应有DQ 为CQ 在地面上的斜射影,且AB 垂直于平面CQD ,如图2所示.因太阳光与地面成30°角,所以∠CDQ =30°,又知在ΔCQD 中,CQ =512,由正弦定理,有 ︒30sin CQ =QCD QD ∠sin 即 QD =56sin ∠QCD. 为使面ABD 的面积最大,需QD 最大,这只有当∠QCD =90°时才可达到,从而∠CQD = 60°.故当遮阳棚ABC 与地面成60°角时,才能保证所遮影面ABD 面积最大.例8. 在三棱锥A —BCD 中,ΔABC 和ΔBCD 都是边长为a 的正三角形,二面角A —BC —D =φ,问φ为何值时,三棱锥的全面积最大。
解析:S ΔBAC =S ΔBCD =43a 2为常量,所以三棱锥全面积的大小取决于S ΔABD与S ΔACD 的大小,由于ΔABD ≌ΔACD ,所以只求S ΔACD 何时面积取最大值即可。
∵S ΔACD =21asin ∠ACD ,所以当∠ACD =90°时面积最大,问题得解。
解 如图,取BC 中点M ,连AM 、DM ,∴ΔABC 和ΔBCD 都是正三角形,∴∠AMD 是二面角A-BC-D 的平面角,∠AMD =φ,又∵ΔABD ≌ΔACD ,且当∠ACD =90°时,ΔACD 和ΔABD 面积最大,此时AD =2a ,在ΔAMD 中,由余弦定理cos ∠AMD =-31,∴当φ=π-arccos 31时,三棱锥A-BCD 的全面积最大。
点评 本题将求棱锥全面积的最大值,转化为求ΔACD 面积的最大值,间接求得φ角。
例9、一个圆锥轴截面的顶角为1200,母线为1,过顶点作圆锥的截面中,最大截面面积为 。
分析:本题是截面问题中的常见题,设圆锥的轴截面顶角是α,母线长为l ,则截面面积S max =⎪⎪⎩⎪⎪⎨⎧∈∈],2[21)2,0(sin 2122ππαπααl l ,本题轴截面顶角为1200,∴最大面积为21。
例10、圆柱轴截面的周长L 为定值,求圆柱侧面积的最大值。
分析:设圆柱的底面直径和高分别为d,h,则有:2(d+h )=L,d+h=L/2,S 侧=πdh ≤π22⎪⎭⎫ ⎝⎛+h d =162lπ(当且仅当d=h 时取“=”)。