matlab图形处理工具

合集下载

基于MATLAB GUI图像处理系统的设计与实现

基于MATLAB GUI图像处理系统的设计与实现

基于MATLAB GUI图像处理系统的设计与实现MATLAB是一种功能强大的图像处理工具,其GUI(图形用户界面)设计及实现可以使图像处理更加直观和简单。

本文将介绍基于MATLAB GUI图像处理系统的设计与实现,包括系统的功能设计、界面设计及实现步骤等内容,旨在为使用MATLAB进行图像处理的读者提供一些参考和帮助。

一、系统功能设计1. 图像基本处理功能:包括图像的读取、显示、保存,以及图像的基本操作(如缩放、旋转、翻转等)。

2. 图像增强功能:包括亮度、对比度、色彩平衡调整,以及直方图均衡化、滤波等操作。

3. 图像特征提取功能:包括边缘检测、角点检测、纹理特征提取等。

4. 图像分割功能:包括阈值分割、边缘分割、区域生长等。

5. 图像识别功能:包括基于模板匹配、人工智能算法的图像识别等。

6. 图像测量功能:包括测量图像中物体的大小、长度、面积等。

二、界面设计1. 主界面设计:主要包括图像显示区域、功能按钮、参数调节控件等。

2. 子功能界面设计:根据不同的功能模块设计相应的子界面,以便用户进行更详细的操作。

3. 界面美化:可以通过添加背景图案、调整按钮颜色、字体等方式美化界面,提高用户体验。

三、实现步骤1. 图像显示与基本处理:通过MATLAB自带的imread()函数读取图像,imshow()函数显示图像,并设置相应的按钮实现放大、缩小、旋转、翻转等基本操作。

2. 图像增强:利用imadjust()函数实现对图像亮度、对比度的调整,利用histeq()函数实现直方图均衡化,利用imfilter()函数实现图像的滤波处理。

3. 图像特征提取:利用edge()函数实现图像的边缘检测,利用corner()函数实现角点检测,利用texture()函数实现纹理特征提取。

4. 图像分割:利用im2bw()函数实现阈值分割,利用edge()函数实现边缘分割,利用regiongrowing()函数实现区域生长。

MATLAB图像处理函数大全

MATLAB图像处理函数大全

Matlab图像处理函数大全目录图像增强 (3)1. 直方图均衡化的Matlab 实现 (3)1.1 imhist 函数 (3)1.2 imcontour 函数 (3)1.3 imadjust 函数 (3)1.4 histeq 函数 (4)2. 噪声及其噪声的Matlab 实现 (4)3. 图像滤波的Matlab 实现 (4)3.1 conv2 函数 (4)3.2 conv 函数 (5)3.3 filter2函数 (5)3.4 fspecial 函数 (6)4. 彩色增强的Matlab 实现 (6)4.1 imfilter函数 (6)图像的变换 (6)1. 离散傅立叶变换的Matlab 实现 (6)2. 离散余弦变换的Matlab 实现 (7)2.1. dct2 函数 (7)2.2. dict2 函数 (8)2.3. dctmtx函数 (8)3. 图像小波变换的Matlab 实现 (8)3.1 一维小波变换的Matlab 实现 (8)3.2 二维小波变换的Matlab 实现 (9)图像处理工具箱 (11)1. 图像和图像数据 (11)2. 图像处理工具箱所支持的图像类型 (12)2.1 真彩色图像 (12)2.2 索引色图像 (13)2.3 灰度图像 (14)2.4 二值图像 (14)2.5 图像序列 (14)3. MATLAB图像类型转换 (14)4. 图像文件的读写和查询 (15)4.1 图形图像文件的读取 (15)4.2 图形图像文件的写入 (16)4.3 图形图像文件信息的查询imfinfo()函数 (16)5. 图像文件的显示 (16)5.1 索引图像及其显示 (16)5.2 灰度图像及其显示 (16)5.3 RGB 图像及其显示 (17)5.4 二进制图像及其显示 (17)5.5 直接从磁盘显示图像 (18)图像处理函数 (18)图像处理函数详解——strel (18)图像处理函数详解——roipoly (19)图像处理函数详解——roifilt2 (20)图像处理函数详解——roifill (20)图像处理函数详解——roicolor (21)matlab图像处理函数详解——rgb2gray (22)Matlab图像处理函数:regionprops (22)图像处理函数详解——padarray (26)图像处理函数详解——nlfilter (27)图像处理函数详解——montage (27)函数详解——mat2gray (28)图像处理函数详解——imclose (29)图像处理函数详解——imopen (29)图像处理函数详解——imerode (30)图像处理函数详解——imdilate (30)图像处理函数详解——imresize (31)图像处理函数详解——imnoise (32)图像处理函数详解——imhist (32)图像处理函数详解——imfinfo (33)图像处理函数详解——imcomplement (34)图像处理函数详解——imapprox (35)图像处理函数详解——imadjust (35)图像处理函数详解——imadd (36)图像处理函数详解——im2uint8 (36)图像处理函数详解——im2bw (37)图像处理函数详解——histeq (37)图像处理函数详解——dither (38)图像处理函数详解——conv2 (38)图像处理函数详解——colfilt (39)图像处理函数详解——bwperim (39)图像处理函数详解——bwlabel (40)图像处理函数详解——bwareaopen (41)图像增强1. 直方图均衡化的Matlab 实现1.1 imhist 函数功能:计算和显示图像的色彩直方图格式:imhist(I,n)imhist(X,map)说明:imhist(I,n) 其中,n 为指定的灰度级数目,缺省值为256;imhist(X,map) 就算和显示索引色图像 X 的直方图,map 为调色板。

MATLAB的常用函数和工具介绍

MATLAB的常用函数和工具介绍

MATLAB的常用函数和工具介绍MATLAB是一款被广泛应用于科学计算和工程设计的软件,它提供了丰富的函数库和工具箱,能够帮助用户进行数据分析、模拟仿真、图像处理、信号处理等多种任务。

本文将介绍一些MATLAB常用的函数和工具,帮助读者更好地利用MATLAB进行编程和数据处理。

一、MATLAB函数介绍1. plot函数:该函数用于绘制二维图形,如折线图、曲线图等。

通过输入数据点的坐标,plot函数可以帮助用户快速可视化数据分布,同时支持自定义线型、颜色和标注等功能。

2. imread函数:该函数用于读取图像文件,支持常见的图像格式,如JPEG、PNG等。

通过imread函数,用户可以方便地加载图像数据进行后续的处理和分析。

3. fft函数:该函数用于进行快速傅里叶变换,可以将时域信号转换为频域信号。

傅里叶变换在信号处理中广泛应用,通过fft函数,用户可以快速计算信号的频谱信息。

4. solve函数:该函数用于求解方程组,支持线性方程和非线性方程的求解。

用户只需输入方程组的表达式,solve函数会自动求解变量的值,帮助用户解决复杂的数学问题。

5. mean函数:该函数用于计算数据的平均值。

mean函数支持数组、矩阵和向量等多种数据类型,可以方便地对数据进行统计分析。

6. importdata函数:该函数用于导入外部数据文件,如文本文件、CSV文件等。

通过importdata函数,用户可以将外部数据加载到MATLAB中,进行后续的数据处理和分析。

二、MATLAB工具介绍1. MATLAB Editor:这是MATLAB自带的编辑器,可以用于编写和调试MATLAB代码。

它提供了代码高亮、自动缩进和代码片段等功能,能够提高编程效率和代码可读性。

2. Simulink:这是MATLAB的一个强大的仿真工具,用于建立动态系统的模型并进行仿真。

Simulink支持直观的图形化建模界面,用户可以通过拖拽元件和线条来搭建系统模型,进而进行仿真和系统分析。

Matlab图像处理函数:regionprops

Matlab图像处理函数:regionprops

Matlab图像处理函数:regionprops这⾥给出在Matlab图像处理⼯具箱中⾮常重要的⼀个图像分析函数:regionprops。

顾名思义:它的⽤途是get the properties of region,即⽤来度量图像区域属性的函数。

语法STATS = regionprops(L,properties)描述测量标注矩阵L中每⼀个标注区域的⼀系列属性。

L中不同的正整数元素对应不同的区域,例如:L中等于整数1的元素对应区域1;L中等于整数2的元素对应区域2;以此类推。

返回值STATS是⼀个长度为max(L(:))的结构数组,结构数组的相应域定义了每⼀个区域相应属性下的度量。

properties 可以是由逗号分割的字符串列表、饱含字符串的单元数组、单个字符串 'all' 或者 'basic'。

如果 properties 等于字符串 'all',则所有下述字串列表中的度量数据都将被计算,如果 properties 没有指定或者等于 'basic',则属性: 'Area', 'Centroid', 和 'BoundingBox' 将被计算。

下⾯的列表就是所有有效的属性字符串,它们⼤⼩写敏感并且可以缩写。

属性字符串列表Area EquivDiameter MajorAxisLengthBoundingBox EulerNumber MinorAxisLengthCentroid Extent OrientationConvexArea Extrema PixelIdxListConvexHull FilledArea PixelListConvexImage FilledImage SolidityEccentricity Image属性详细定义本部分将结合⼀个具体的例⼦说明各种字串相关属性的意义,矩阵取⾃在蚁蛉模式识别中做过预处理后的斑纹分割图像,如下图:这是⼀幅⼆值图像,在应⽤regionprops函数之前必须将其标注,可以调⽤ bwlabel函数和伪彩⾊处理,标注后的图像如下图:下⾯基于以上的材料来考察属性的含义。

Matlab 图形处理

Matlab 图形处理

7.2.3 曲面与网格图命令命令1 mesh功能生成由X,Y和Z指定的网线面,由C指定的颜色的三维网格图。

网格图是作为视点由view(3)设定的surface图形对象。

曲面的颜色与背景颜色相同(当要动画显示不透明曲面时,这时可用命令hidden控制),或者当画一个标准的可透视的网线图时,曲面的颜色就没有(命令shading控制渲染模式)。

当前的色图决定线的颜色。

用法 mesh(X,Y,Z) 画出颜色由c指定的三维网格图,所以和曲面的高度相匹配,1.若X与Y均为向量,length(X)=n,length(Y)=m,而[m,n]=size(Z),空间中的点 (X(j),Y(I),Z(I,j)) 为所画曲面网线的交点,分别地,X对应于z的列,Y对应于z的行。

2.若X与Y均为矩阵,则空间中的点 (X(I,j),Y(I,j),Z(I,j))为所画曲面的网线的交点。

mesh(Z) 由[n,m] = size(Z)得,X =1:n与Y=1:m,其中z为定义在矩形划分区域上的单值函数。

mesh(…,C) 用由矩阵c指定的颜色画网线网格图。

Matlab对矩阵c中的数据进行线性处理,以便从当前色图中获得有用的颜色。

mesh(…,PropertyName’,PropertyValue, …) 对指定的属性PropertyName设置属性值Pr opertyValue,可以在同一语句中对多个属性进行设置。

h = mesh(…) 返回surface图形对象句柄。

运算规则:1.数据X,Y和z的范围,或者是对当前轴的XLimMode,YLimMode和ZLimMode属性的设置决定坐标轴的范围。

命令aXis可对这些属性进行设置。

2.参量c的范围,或者是对当前轴的Clim和ClimMode属性的设置(可用命令caxis进行设置),决定颜色的刻度化程度。

刻度化颜色值作为引用当前色图的下标。

3.网格图显示命令生成由于把z的数据值用当前色图表现出来的颜色值。

MATLAB绘图与图形处理

MATLAB绘图与图形处理

MATLAB绘图与图形处理人们很难从一大堆原始的数据中发现它们的含义,而数据图形恰能使视觉感官直接感受到数据的许多内在本质,发现数据的内在联系。

MATLAB可以表达出数据的二维,三维,甚至四维的图形。

通过图形的线型,立面,色彩,光线,视角等属性的控制,可把数据的内在特征表现得淋漓尽致。

下面我们分别介绍图形的命令。

7.1 二维图形7.1.1 基本平面图形命令命令1 plot功能线性二维图。

在线条多于一条时,若用户没有指定使用颜色,则plot循环使用由当前坐标轴颜色顺序属性(current axes ColorOrder property)定义的颜色,以区别不同的线条。

在用完上述属性值后,plot又循环使用由坐标轴线型顺序属性(axes LineStyleOrder property)定义的线型,以区别不同的线条。

用法plot(X,Y) 当X,Y均为实数向量,且为同维向量(可以不是同型向量),X=[x(i)],Y=[y(i)],则plot(X,Y)先描出点(x(i),y(i)),然后用直线依次相连;若X,Y为复数向量,则不考虑虚数部分。

若X,Y均为同维同型实数矩阵,X = [X(i)],Y = [Y(i)],其中X(i),Y(i)为列向量,则plot(X,Y)依次画出plot(X(i),Y(i)),矩阵有几列就有几条线;若X,Y中一个为向量,另一个为矩阵,且向量的维数等于矩阵的行数或者列数,则矩阵按向量的方向分解成几个向量,再与向量配对分别画出,矩阵可分解成几个向量就有几条线;在上述的几种使用形式中,若有复数出现,则复数的虚数部分将不被考虑。

plot(Y) 若Y为实数向量,Y的维数为m,则plot(Y)等价于plot(X,Y),其中x=1:m;若y 为实数矩阵,则把y按列的方向分解成几个列向量,而y 的行数为n,则plot(Y)等价于plot(X,Y)其中x=[1;2;…;n];在上述的几种使用形式中,若有复数出现,则复数的虚数部分将不被考虑。

figure在matlab中的用法

figure在matlab中的用法

figure在matlab中的用法Figure在Matlab中的用法___________________________MATLAB(Matrix Laboratory)是一种用于科学计算、可视化和编程的高级语言和交互式环境,它拥有一个强大的图形处理工具包,可以帮助用户创建出各种漂亮的图形。

其中,figure函数尤为重要,下面我们来看看figure在Matlab中的用法。

### 一、figure函数基本用法Figure函数是Matlab中创建图形的基本函数,它可以创建出一个独立的图形窗口,也可以在已有的图形窗口中创建新的图形。

该函数的基本用法如下:```h = figure;```在此,h是figure函数的返回值,表示新创建的图形窗口的句柄(handle),可以通过该句柄来操作图形窗口,例如设置图形窗口的大小、位置等。

### 二、figure函数高级用法除了上面提到的基本用法外,figure函数还具有一些高级用法,例如可以在创建图形窗口时同时设置图形窗口的大小、位置和背景色等。

例如:```h = figure('Position', [200, 200, 800, 500], 'Color', 'white');```在此,figure函数中添加了一个Position参数,表明新创建的图形窗口位于屏幕上方200像素、左侧200像素处,宽度为800像素、高度为500像素。

同时,添加了一个Color参数,表明新创建的图形窗口的背景色为白色。

### 三、使用figure函数的注意事项使用figure函数时需要注意以下几点:- 在使用figure函数时应尽量避免使用全局变量;- 在使用figure函数时应尽量避免使用循环语句;- 在使用figure函数时应避免使用不必要的计算;- 在使用figure函数时应尽量避免使用多余的字符串操作。

### 四、总结通过上面的介绍,我们可以看到figure函数在Matlab中的重要作用。

MATLAB 图像处理命令使用

MATLAB 图像处理命令使用

MATLAB 图像处理命令使用1.MATLAB中图像处理的一些简单函数A、imreadimread函数用于读入各种图像文件,其一般的用法为[X,MAP]=imread(‘filename’,‘fmt’)其中,X,MAP分别为读出的图像数据和颜色表数据,fmt为图像的格式,filename为读取的图像文件(可以加上文件的路径)。

例:[X,MAP]=imread(’flowers.tif’,’tif’);比较读取二值图像,灰度图像,索引图像,彩色图像的X和MAP的特点,可以利用size 函数用来显示数组的维数,了解数据的特点。

B=size(a) 返回数组a 的维数。

B、imwriteimwrite函数用于输出图像,其语法格式为:imwrite(X,map,filename,fmt)imwrite(X,map,filename,fmt)按照fmt指定的格式将图像数据矩阵X和调色板map写入文件filename。

C、imfinfoimfinfo函数用于读取图像文件的有关信息,其语法格式为imfinfo(filename,fmt)imfinfo函数返回一个结构info,它反映了该图像的各方面信息,其主要数据包括:文件名(路径)、文件格式、文件格式版本号、文件的修改时间、文件的大小、文件的长度、文件的宽度、每个像素的位数、图像的类型等。

2.MATLAB中图像文件的显示imshowimshow函数是最常用的显示各种图像的函数,其语法如下:imshow(X,map)其中X是图像数据矩阵,map是其对应的颜色矩阵,若进行图像处理后不知道图像数据的值域可以用[]代替map。

(1)二进制(二值)图像显示方法,在MATLAB中一幅二值图像是uint8或双精度的,该矩阵仅包含0和1。

如果希望工具箱中的函数能将图像理解为二进制的,那么所有数据都要是逻辑数据,必须对其进行设置(将所有数据标志均设置on).可以对数据利用“~”取反操作实现图像逆转即黑白反色。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、matlab函数bwareaopen──删除小面积对象
格式:BW2 = bwareaopen(BW,P,conn)
作用:删除二值图像BW中面积小于P的对象,默认情况下使用8邻域。

算法:
(1)Determine the connected components.
L = bwlabeln(BW, conn);
(2)Compute the area of each component.
S = regionprops(L, 'Area');
(3)Remove small objects.
bw2 = ismember(L, find([S.Area] >= P));
2、matlab函数bwarea──计算对象面积
格式:total = bwarea(BW)
作用:估计二值图像中对象的面积。

注:该面积和二值图像中对象的像素数目不一定相等。

3、matlab函数imclearborder──边界对象抑制
格式:IM2 = imclearborder(IM,conn)
作用:抑制和图像边界相连的亮对象。

若IM是二值图,imclearborder将删除和图像边界相连的对象。

默认情况conn=8。

注:For grayscale images, imclearborder tends to reduce the overall intensity level in addition to suppressing border structures.
算法:
(1)Mask image is the input image.
(2)Marker image is zero everywhere except along the border, where it equals the mask image.
4、matlab函数bwboundaries──获取对象轮廓
格式:B = bwboundaries(BW,conn)(基本格式)
作用:获取二值图中对象的轮廓,和OpenCV中cvFindContours函数功能类似。

B是一个P×1的cell数组,P为对象个数,每个cell是Q×2的矩阵,对应于对象轮廓像素的坐标。

5、matlab函数imregionalmin──获取极小值区域
格式:BW = imregionalmin(I,conn)
作用:寻找图像I的极小值区域(regional maxima),默认情况conn=8。

Regional minima are connected components of pixels with a constant intensity value, and whose external boundary pixels all have a higher value.
6、matlab函数bwulterode──距离变换的极大值
格式:BW2 = bwulterode(BW,method,conn)
作用:终极腐蚀。

寻找二值图像BW的距离变换图的区域极大值(regional maxima)。

用于距离变换的距离默认为euclidean,连通性为8邻域。

相关文档
最新文档