中考数学考点专题复习试题及答案

合集下载

中考数学综合题专题复习【直角三角形的边角关系】专题解析附答案解析

中考数学综合题专题复习【直角三角形的边角关系】专题解析附答案解析

中考数学综合题专题复习【直角三角形的边角关系】专题解析附答案解析一、直角三角形的边角关系1.(6分)某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号).【答案】.【解析】试题分析:作AD⊥BC于D,于是有∠ABD=45°,得到AD=BD=,求出∠C=60°,根据正切的定义求出CD的长,得到答案.试题解析:作AD⊥BC于D,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°,∴∠ABD=45°,又AB=60,∴AD=BD=,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°,∴∠C=60°,在Rt△ACD中,∠C=60°,AD=,则tanC=,∴CD==,∴BC=.故该船与B港口之间的距离CB的长为海里.考点:解直角三角形的应用-方向角问题.2.如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线.(2)若BC=2,sin∠BCP=,求点B到AC的距离.(3)在第(2)的条件下,求△ACP的周长.【答案】(1)证明见解析(2)4(3)20【解析】试题分析:(1)利用直径所对的圆周角为直角,2∠CAN=∠CAB,∠CAB=2∠BCP判断出∠ACP=90°即可;(2)利用锐角三角函数,即勾股定理即可.试题解析:(1)∵∠ABC=∠ACB,∴AB=AC,∵AC为⊙O的直径,∴∠ANC=90°,∴∠CAN+∠ACN=90°,2∠BAN=2∠CAN=∠CAB,∵∠CAB=2∠BCP,∴∠BCP=∠CAN,∴∠ACP=∠ACN+∠BCP=∠ACN+∠CAN=90°,∵点D在⊙O上,∴直线CP是⊙O的切线;(2)如图,作BF⊥AC∵AB=AC,∠ANC=90°,∴CN=CB=,∵∠BCP=∠CAN,sin∠BCP=,∴sin∠CAN=,∴∴AC=5,∴AB=AC=5,设AF=x,则CF=5﹣x,在Rt△ABF中,BF2=AB2﹣AF2=25﹣x2,在Rt△CBF中,BF2=BC2﹣CF2=2O﹣(5﹣x)2,∴25﹣x2=2O﹣(5﹣x)2,∴x=3,∴BF2=25﹣32=16,∴BF=4,即点B到AC的距离为4.考点:切线的判定3.下图是某儿童乐园为小朋友设计的滑梯平面图.已知BC=4 m,AB=6 m,中间平台宽度DE=1 m,EN,DM,CB为三根垂直于AB的支柱,垂足分别为N,M,B,∠EAB=31°,DF⊥BC于点F,∠CDF=45°,求DM和BC的水平距离BM的长度.(结果精确到0.1 m.参考数据:sin31°≈0.52,cos 31°≈0.86,tan 31°≈0.60)【答案】2.5m.【解析】试题分析:设DF=x,在Rt△DFC中,可得CF=DF=x,则BF=4-x,根据线段的和差可得AN=5-x,EN=DM=BF=4-,在Rt△ANE中,∠EAB=,利用∠EAB的正切值解得x的值.试题解析:解:设DF=,在Rt△DFC中,∠CDF=,∴CF=tan·DF=,又∵CB=4,∴BF=4-,∵AB=6,DE=1,BM= DF=,∴AN=5-,EN=DM=BF=4-,在Rt△ANE中,∠EAB=,EN=4-,AN=5-,tan==0.60,解得=2.5,答:DM和BC的水平距离BM为2.5米.考点:解直角三角形.4.如图,在⊙O的内接三角形ABC中,∠ACB=90°,AC=2BC,过C作AB的垂线l交⊙O于另一点D,垂足为E.设P是上异于A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.(1)求证:△PAC∽△PDF;(2)若AB=5,,求PD的长;(3)在点P运动过程中,设=x,tan∠AFD=y,求y与x之间的函数关系式.(不要求写出x的取值范围)【答案】(1)证明见解析;(2);(3).【解析】试题分析:(1)应用圆周角定理证明∠APD=∠FPC,得到∠APC=∠FPD,又由∠PAC=∠PDC,即可证明结论.(2)由AC=2BC,设,应用勾股定理即可求得BC,AC的长,则由AC=2BC得,由△ACE∽△ABC可求得AE,CE的长,由可知△APB是等腰直角三角形,从而可求得PA的长,由△AEF是等腰直角三角形求得EF=AE=4,从而求得DF的长,由(1)△PAC∽△PDF得,即可求得PD的长.(3)连接BP,BD,AD,根据圆的对称性,可得,由角的转换可得,由△AGP∽△DGB可得,由△AGD∽△PGB可得,两式相乘可得结果.试题解析:(1)由APCB内接于圆O,得∠FPC=∠B,又∵∠B=∠ACE=90°-∠BCE,∠ACE=∠APD,∴∠APD=∠FPC.∴∠APD+∠DPC=∠FPC+∠DPC,即∠APC=∠FPD.又∵∠PAC=∠PDC,∴△PAC∽△PDF.(2)连接BP,设,∵∠ACB=90°,AB=5,∴.∴.∵△ACE∽△ABC,∴,即. ∴.∵AB⊥CD,∴.如图,连接BP,∵,∴△APB是等腰直角三角形. ∴∠PAB=45°,.∴△AEF是等腰直角三角形. ∴EF=AE=4. ∴DF=6.由(1)△PAC∽△PDF得,即.∴PD的长为.(3)如图,连接BP,BD,AD,∵AC=2BC,∴根据圆的对称性,得AD=2DB,即.∵AB⊥CD,BP⊥AE,∴∠ABP=∠AFD.∵,∴.∵△AGP∽△DGB,∴.∵△AGD∽△PGB,∴.∴,即.∵,∴.∴与之间的函数关系式为.考点:1.单动点问题;2.圆周角定理;3.相似三角形的判定和性质;4.勾股定理;5.等腰直角三角形的判定和性质;6.垂径定理;7.锐角三角函数定义;8.由实际问题列函数关系式.5.如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE.(1)判断DE与⊙O的位置关系,并说明理由;(2)求证:BC2=2CD•OE;(3)若314cos,53BAD BE∠==,求OE的长.【答案】(1)DE为⊙O的切线,理由见解析;(2)证明见解析;(3)OE =356.【解析】试题分析:(1)连接OD,BD,由直径所对的圆周角是直角得到∠ADB为直角,可得出△BCD为直角三角形,E为斜边BC的中点,由直角三角形斜边上的中线等于斜边的一半,得到CE=DE,从而得∠C=∠CDE,再由OA=OD,得∠A=∠ADO,由Rt△ABC中两锐角互余,从而可得∠ADO与∠CDE互余,可得出∠ODE为直角,即DE垂直于半径OD,可得出DE为⊙O的切线;(2)由已知可得OE是△ABC的中位线,从而有AC=2OE,再由∠C=∠C,∠ABC=∠BDC,可得△ABC∽△BDC,根据相似三角形的对应边的比相等,即可证得;(3)在直角△ABC中,利用勾股定理求得AC的长,根据三角形中位线定理OE的长即可求得.试题解析:(1)DE为⊙O的切线,理由如下:连接OD,BD,∵AB为⊙O的直径,∴∠ADB=90°,在Rt△BDC中,E为斜边BC的中点,∴CE=DE=BE=BC,∴∠C=∠CDE,∵OA=OD,∴∠A=∠ADO,∵∠ABC=90°,∴∠C+∠A=90°,∴∠ADO+∠CDE=90°,∴∠ODE=90°,∴DE⊥OD,又OD为圆的半径,∴DE为⊙O的切线;(2)∵E是BC的中点,O点是AB的中点,∴OE是△ABC的中位线,∴AC=2OE,∵∠C=∠C,∠ABC=∠BDC,∴△ABC∽△BDC,∴,即BC2=AC•CD.∴BC2=2CD•OE;(3)解:∵cos∠BAD=,∴sin∠BAC=,又∵BE=,E是BC的中点,即BC=,∴AC=.又∵AC=2OE,∴OE=AC=.考点:1、切线的判定;2、相似三角形的判定与性质;3、三角函数6.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,BC=16cm,AD是斜边BC上的高,垂足为D,BE=1cm.点M从点B出发沿BC方向以1cm/s的速度运动,点N从点E出发,与点M 同时同方向以相同的速度运动,以MN为边在BC的上方作正方形MNGH.点M到达点D 时停止运动,点N到达点C时停止运动.设运动时间为t(s).(1)当t为何值时,点G刚好落在线段AD上?(2)设正方形MNGH与Rt△ABC重叠部分的图形的面积为S,当重叠部分的图形是正方形时,求出S关于t的函数关系式并写出自变量t的取值范围.(3)设正方形MNGH的边NG所在直线与线段AC交于点P,连接DP,当t为何值时,△CPD是等腰三角形?【答案】(1)3;(2);(3)t=9s或t=(15﹣6)s.【解析】试题分析:(1)求出ED的距离即可求出相对应的时间t.(2)先求出t的取值范围,分为H在AB上时,此时BM的距离,进而求出相应的时间.同样当G在AC上时,求出MN的长度,继而算出EN的长度即可求出时间,再通过正方形的面积公式求出正方形的面积.(3)分DP=PC和DC=PC两种情况,分别由EN的长度便可求出t的值.试题解析:∵∠BAC=90°,∠B=60°,BC=16cm∴AB=8cm,BD=4cm,AC=8cm,DC=12cm,AD=4cm.(1)∵当G刚好落在线段AD上时,ED=BD﹣BE=3cm∴t=s=3s.(2)∵当MH没有到达AD时,此时正方形MNGH是边长为1的正方形,令H点在AB 上,则∠HMB=90°,∠B=60°,MH=1∴BM=cm.∴t=s.当MH到达AD时,那么此时的正方形MNGH的边长随着N点的继续运动而增大,令G点在AC上,设MN=xcm,则GH=DH=x,AH=x,∵AD=AH+DH=x+x=x=4,∴x=3.当≤t≤4时,S MNGN=1cm2.当4<t≤6时,S MNGH=(t﹣3)2cm2∴S关于t的函数关系式为:.(3)分两种情况:①∵当DP=PC时,易知此时N点为DC的中点,∴MN=6cm∴EN=3cm+6cm=9cm.∴t=9s故当t=9s的时候,△CPD为等腰三角形;②当DC=PC时,DC=PC=12cm∴NC=6cm∴EN=16cm﹣1cm﹣6cm=(15﹣6)cm∴t=(15﹣6)s故当t=(15﹣6)s时,△CPD为等腰三角形.综上所述,当t=9s或t=(15﹣6)s时,△CPD为等腰三角形.考点:1.双动点问题;2.锐角三角函数定义;3.特殊角的三角函数值;4.正方形的性质;5.由实际问题列函数关系式;6.等腰三角形的性质;7.分类思想的应用.7.在正方形ABCD中,AC是一条对角线,点E是边BC上的一点(不与点C重合),连接AE,将△ABE沿BC方向平移,使点B与点C重合,得到△DCF,过点E作EG⊥AC于点G,连接DG,FG.(1)如图,①依题意补全图;②判断线段FG与DG之间的数量关系与位置关系,并证明;(2)已知正方形的边长为6,当∠AGD=60°时,求BE的长.BE【答案】(1)①见解析,②FG=DG,FG⊥DG,见解析;(2)3【解析】【分析】(1)①补全图形即可,②连接BG,由SAS证明△BEG≌△GCF得出BG=GF,由正方形的对称性质得出BG=DG,得出FG=DG,在证出∠DGF=90°,得出FG⊥DG即可,(2)过点D作DH⊥AC,交AC于点H.由等腰直角三角形的性质得出DH=AH=2FG=DG=2GH=6,得出DF2DG=3Rt△DCF中,由勾股定理得出CF=3得出结果.【详解】解:(1)①补全图形如图1所示,②FG=DG,FG⊥DG,理由如下,连接BG,如图2所示,∵四边形ABCD是正方形,∴∠ACB=45°,∵EG ⊥AC , ∴∠EGC =90°,∴△CEG 是等腰直角三角形,EG =GC , ∴∠GEC =∠GCE =45°, ∴∠BEG =∠GCF =135°, 由平移的性质得:BE =CF ,在△BEG 和△GCF 中,BE CF BEG GCF EG CG =⎧⎪∠=∠⎨⎪=⎩,∴△BEG ≌△GCF (SAS ), ∴BG =GF ,∵G 在正方形ABCD 对角线上, ∴BG =DG , ∴FG =DG ,∵∠CGF =∠BGE ,∠BGE+∠AGB =90°, ∴∠CGF+∠AGB =90°, ∴∠AGD+∠CGF =90°, ∴∠DGF =90°, ∴FG ⊥DG.(2)过点D 作DH ⊥AC ,交AC 于点H .如图3所示, 在Rt △ADG 中, ∵∠DAC =45°, ∴DH =AH =2在Rt △DHG 中,∵∠AGD =60°, ∴GH 33236,∴DG =2GH =6, ∴DF 2DG =3 在Rt △DCF 中,CF ()22436-3∴BE =CF =3.【点睛】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的性质、勾股定理、解直角三角形的应用等知识;本题综合性强,证明三角形全等是解题的关键.8.如图,在平面直角坐标系中,菱形ABCD 的边AB 在x 轴上,点B 坐标(﹣6,0),点C 在y 轴正半轴上,且cos B =35,动点P 从点C 出发,以每秒一个单位长度的速度向D 点移动(P 点到达D 点时停止运动),移动时间为t 秒,过点P 作平行于y 轴的直线l 与菱形的其它边交于点Q .(1)求点D 坐标;(2)求△OPQ 的面积S 关于t 的函数关系式,并求出S 的最大值;(3)在直线l 移动过程中,是否存在t 值,使S =320ABCDS 菱形?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)点D 的坐标为(10,8).(2)S 关于t 的函数关系式为S =24(04)220(410)33t t t t t ⎧⎪⎨-+<⎪⎩剟…,S 的最大值为503.(3)3或7. 【解析】【分析】(1)在Rt △BOC 中,求BC,OC,根据菱形性质再求D 的坐标;(2)分两种情况分析:①当0≤t ≤4时和②当4<t ≤10时,根据面积公式列出解析式,再求函数的最值;(3)分两种情况分析:当0≤t ≤4时,4t =12,;当4<t ≤10时,22201233t t -+= 【详解】解:(1)在Rt △BOC 中,∠BOC =90°,OB =6,cos B =35, 10cos OB BC B∴==8OC ∴==∵四边形ABCD 为菱形,CD ∥x 轴,∴点D 的坐标为(10,8).(2)∵AB =BC =10,点B 的坐标为(﹣6,0),∴点A 的坐标为(4,0).分两种情况考虑,如图1所示.①当0≤t ≤4时,PQ =OC =8,OQ =t ,∴S =12PQ •OQ =4t , ∵4>0, ∴当t =4时,S 取得最大值,最大值为16;②当4<t ≤10时,设直线AD 的解析式为y =kx +b (k ≠0),将A (4,0),D (10,8)代入y =kx +b ,得:4k b 010k b 8+=⎧⎨+=⎩,解得:4k 316b 3⎧=⎪⎪⎨⎪=-⎪⎩, ∴直线AD 的解析式为41633y x =-. 当x =t 时,41633y t =-, 41648(10)333PQ t t ⎛⎫∴=--=- ⎪⎝⎭ 21220233S PQ OP t t ∴=⋅=-+ 22202502(5),033333S t t t =-+=--+-<Q ∴当t =5时,S 取得最大值,最大值为503. 综上所述:S 关于t 的函数关系式为S =24(04)220(410)33t t t t t ⎧⎪⎨-+<⎪⎩剟…,S 的最大值为503. (3)S 菱形ABCD =AB •OC =80.当0≤t ≤4时,4t =12,解得:t =3;当4<t ≤10时,222033t t -+=12, 解得:t 1=5﹣7(舍去),t 2=5+ 7. 综上所述:在直线l 移动过程中,存在t 值,使S =320ABCD S 菱形,t 的值为3或5+7.【点睛】考核知识点:一次函数和二次函数的最值问题.数形结合,分类讨论是关键.9.关于三角函数有如下的公式: sin (α+β)=sinαcosβ+cosαsinβ①cos (α+β)=cosαcosβ﹣sinαsinβ②tan (α+β)=③利用这些公式可将某些不是特殊角的三角函数转化为特殊角的三角函数来求值,如: tan105°=tan (45°+60°)==﹣(2+).根据上面的知识,你可以选择适当的公式解决下面的实际问题: 如图,直升飞机在一建筑物CD 上方A 点处测得建筑物顶端D 点的俯角α=60°,底端C 点的俯角β=75°,此时直升飞机与建筑物CD 的水平距离BC 为42m ,求建筑物CD 的高.【答案】建筑物CD 的高为84米.【解析】分析:如图,过点D作DE⊥AB于点E,由题意易得∠ACB=75°,∠ABC=90°,DE=BC=42m,∠ADE=60°,这样在Rt△ABC和在Rt△ADE中,结合题中所给关系式分别求出AB和AE的长,即可由CD=BE=AB-AE求得结果了.详解:如图,过点D作DE⊥AB于点E,由题意可得∠ACB=75°,∠ABC=90°,DE=BC=42m,CD=BE,∠ADE=60°,∴在Rt△ABC和Rt△ADEAB=BC•tan75°=42tan75°=,AE=,∴CD=AB﹣AE=(米).答:建筑物CD的高为84米.睛:读懂题意,把已知量和未知量转化到Rt△ABC和Rt△ADE中,这样利用直角三角形中边角间的关系结合题目中所给的“两角和的三角形函数公式”即可使问题得到解决.10.如图,正方形ABCD的边长为2+1,对角线AC、BD相交于点O,AE平分∠BAC分别交BC、BD于E、F,(1)求证:△ABF∽△ACE;(2)求tan∠BAE的值;(3)在线段AC上找一点P,使得PE+PF最小,求出最小值.【答案】(1)证明见解析;(2)tan∠EAB2﹣1;(3)PE+PF的最小值为22【解析】【分析】(1)根据两角对应相等的两个三角形相似判断即可;(2)如图1中,作EH ⊥AC 于H .首先证明BE=EH=HC ,设BE=EH=HC=x ,构建方程求出x 即可解决问题;(3)如图2中,作点F 关于直线AC 的对称点H ,连接EH 交AC 于点P ,连接PF ,此时PF+PE 的值最小,最小值为线段EH 的长;【详解】(1)证明:∵四边形ABCD 是正方形,∴∠ACE =∠ABF =∠CAB =45°,∵AE 平分∠CAB ,∴∠EAC =∠BAF =22.5°,∴△ABF ∽△ACE .(2)解:如图1中,作EH ⊥AC 于H .∵EA 平分∠CAB ,EH ⊥AC ,EB ⊥AB ,∴BE =EB ,∵∠HCE =45°,∠CHE =90°,∴∠HCE =∠HEC =45°,∴HC =EH ,∴BE =EH =HC ,设BE =HE =HC =x ,则EC 2,∵BC 2+1,∴x+x 2+1,∴x =1,在Rt △ABE 中,∵∠ABE =90°,∴tan ∠EAB =221BE AB == 1. (3)如图2中,作点F 关于直线AC 的对称点H ,连接EH 交AC 于点P ,连接PF ,此时PF+PE 的值最小.作EM ⊥BD 于M .BM =EM =2, ∵AC =22AB BC +=2+2,∴OA =OC =OB =12AC =22+ , ∴OH =OF =OA•tan ∠OAF =OA•tan ∠EAB =22+ •(2﹣1)=2, ∴HM =OH+OM =222+, 在Rt △EHM 中,EH =2222222EM HM 22⎛⎫⎛⎫+++ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭= =22+.. ∴PE+PF 的最小值为22+..【点睛】 本题考查正方形的性质,相似三角形的判定,勾股定理,最短问题等知识,解题的关键是学会添加常用辅助线,学会利用轴对称解决最短问题,属于中考常考题型.11.如图,在航线l 的两侧分别有观测点A 和B ,点B 到航线l 的距离BD 为4km ,点A 位于点B 北偏西60°方向且与B 相距20km 处.现有一艘轮船从位于点A 南偏东74°方向的C 处,沿该航线自东向西航行至观测点A 的正南方向E 处.求这艘轮船的航行路程CE 的长度.(结果精确到0.1km )(参考数据:3≈1.73,sin74°≈0.96,cos74°≈0.28,tan74°≈3.49)【答案】20.9km【解析】分析:根据题意,构造直角三角和相似三角形的数学模型,利用相似三角形的判定与性质和解直角三角形即可.详解:如图,在Rt △BDF 中,∵∠DBF=60°,BD=4km ,∴BF=cos 60BD o =8km , ∵AB=20km ,∴AF=12km , ∵∠AEB=∠BDF ,∠AFE=∠BFD ,∴△AEF ∽△BDF , ∴AE BD AF BF, ∴AE=6km , 在Rt △AEF 中,CE=AE•tan74°≈20.9km .故这艘轮船的航行路程CE 的长度是20.9km .点睛:本题考查相似三角形,掌握相似三角形的概念,会根据条件判断两个三角形相似.12.如图所示,小华在湖边看到湖中有一棵树AB ,AB 与水面AC 垂直.此时,小华的眼睛所在位置D 到湖面的距离DC 为4米.她测得树梢B 点的仰角为30°,测得树梢B 点在水中的倒影B′点的俯角45°.求树高AB (结果保留根号)【答案】AB=(3)m .【解析】【分析】设BE=x ,则BA=x+4,B′E=x+8,根据∠ADB′=45°,可知DE=B′E=x+8,再由tan30°=BE DE即可得出x 的值,进而得到答案,【详解】如图:过点D 作DE ⊥AB 于点E ,设BE=x ,则BA=x+4,B′E=x+8,∵∠ADB′=45°,∴DE=B′E=x+8,∵∠BDE=30°,∴tan30°=383BE x DE x ==+ ,解得x=4+43 , ∴AB=BE+4=(8+43 )m .【点睛】本题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解答此题的关键。

中考数学复习考点题型专题练习28---《圆的选择题综合》(解析版)

中考数学复习考点题型专题练习28---《圆的选择题综合》(解析版)

中考数学复习考点题型专题练习《圆的选择题综合》1.如图,点O为Rt△ABC的斜边AB的中点,∠C=90°,∠A=30°,以点O为旋转中心顺时针旋转△ABC得到△A1B1C1,若BC=2,当BC∥A1C1时,图中弧BC1所构成的阴影部分面积为( )A.B.C.D.2.如图,已知A、B、C、D四点都在⊙O上,OB⊥AC,BC=CD,在下列四个说法中,①=2;②AC=2CD;③OC⊥BD;④∠AOD=3∠BOC,正确的个数是( )A.1个 B.2个 C.3个 D.4个3.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,连结OD,AD.以下结论:①∠ADB=90°;②D是BC的中点;③AD是∠BAC的平分线;④OD∥AC,其中正确结论的个数有( )A.1个 B.2个 C.3个 D.4个4.如图,圆心为M的量角器的直径的两个端点A,B分别在x轴,y轴正半轴上(包括原点O),AB=4.点P,Q分别在量角器60°,120°刻度线外端,连结MP.量角器从点A与点Q重合滑动至点Q与点O重合的过程中,线段MP扫过的面积为( )A.π+B.π C.π+2D.35.如图,在△ABC中,∠ABC=90°,AB=6,点P是AB边上的一个动点,以BP为直径的圆交CP于点Q,若线段AQ长度的最小值是3,则△ABC的面积为( )A.18 B.27 C.36 D.546.如图,△ABC内接于⊙O,且AB=AC.直径AD交BC于点E,F是AE的中点,连结CF,若AD=6.则CF的最大值为( )A.6 B.5 C.4 D.37.如图,分别以正五边形ABCDE的顶点A、D为圆心,以AB长为半径画、.若AB=a,则阴影部分图形的面积为( )(结果保留到0.01,参考:sin72°≈0.951,tan36°≈0.727)A.0.45a2B.0.3a2C.0.6a2D.0.15a28.如图,两个三角形纸板△ABC,△MNP能完全重合,∠A=∠M=50°,∠ABC=∠N=60°,BC=4,将△MNP绕点C(P)从重合位置开始,按逆时针方向旋转,边MN,MP分别与BC,AB交于点H,Q(点Q不与点A,B重合),点O是△BCQ的内心,若∠BOC=130°,点N 运动的路径为,则图中阴影部分的面积为( )A.π﹣2 B.2π﹣4 C.D.9.如图,⊙O的半径是5,点A是圆周上一定点,点B在⊙O上运动,且∠ABM=30°,AC ⊥BM,垂足为点C,连接OC,则OC的最小值是( )A.B.C.D.﹣10.如图,在圆O上依次有A.B,C三点,BO的延长线交圆O于E,=,点C作CD ∥AB交BE的延长线于D,AD交圆O于点F,连接OA,OF,若∠AOF=3∠FOE,且AF=2,劣弧CF的长是( )A.π B.π C.π D.π11.如图,在单位长度为1米的平面直角坐标系中,曲线是由半径为2米,圆心角120°的弧AB多次复制并首尾连接而成.现有一点P从A(A为坐标原点)出发,以每秒π米的速度沿曲线向右运动,则在第2020秒时点P的纵坐标为( )A.﹣2 B.﹣1 C.0 D.112.如图,正方形ABCD中,⊙O过点A,B交边AD于点E,连结CE交⊙O于点F,连结AF,若tan∠AFE=,则的值为( )A.1 B.C.D.13.如图,点O为正六边形的中心,P,Q分别从点A(1,0)同时出发,沿正六边形按图示方向运动,点P的速度为每秒1个单位长度,点Q的速度为每秒2个单位长度,则第2020次相遇地点的坐标为( )A.B.(1,0) C.D.(﹣1,0) 14.如图,在平面直角坐标系中.点A的坐标是(20,0),点B的坐标是(16,0),点C,D在以OA为直径的半圆M上,四边形OCDB是平行四边形.则点C的坐标为( )A.(1,7) B.(2,6) C.(2,7) D.(1,6) 15.如图,在△ABC中,AB=AC,以AB为直径作半圆O,交BC于点D,交AC于点E,若∠C =72°,则∠DOE的度数是( )A.30° B.35° C.36° D.40°16.如图,AB是⊙O的直径,点C,点D是半圆上两点,连结AC,BD相交于点P,连结AD,OD.已知OD⊥AC于点E,AB=2.下列结论:①AD2+BC2=4;②sin∠DAC=;③若AC=BD,则DE=OE;④若点P为BD的中点,则DE=2OE.其中确的是( )A.①②③ B.②③④ C.③④ D.②④17.如图,∠MON=30°,OP是∠MON的角平分线,PQ∥ON交OM于点Q,以P为圆心半径为4的圆与ON相切,如果以Q为圆心半径为r的圆与⊙P相交,那么r的取值范围是( )A.4<r<12 B.2<r<12 C.4<r<8 D.r>418.如图,半径为3的⊙O与五边形ABCDE的边相切于点A,C,连接OA交BC于点H,连接OB,AB.若∠D+∠E=240°,HC=3BH,则△ABO的面积为( )A.3B.C.D.219.如图,在△ABC中,∠C=40°,∠A=60°.以B为圆心,适当长度为半径作弧,分别交AB,BC于点D,E;分别以D,E为圆心,大于DE长度为半径作弧,两弧交于点F;作射线BP,交AC于点P,过点P作PM⊥AB于M;以P为圆心,PM的长为半径作⊙P.则下列结论中,错误的是( )A.∠PBA=40° B.PC=PBC.PM=MB D.⊙P与△ABC有4个公共点20.如图,在平面直角坐标系中,已知C(3,4),以点C为圆心的圆与y轴相切.点A、B 在x轴上,且OA=OB.点P为⊙C上的动点,∠APB=90°,则AB长度的最小值为( )A.4 B.3 C.7 D.8参考答案1.解:设A1C1与AB的交点为D,连接OC1,作DE⊥OC1于E,∵在△ABC中,∠C=90°,∠A=30°,BC=2,∴AB=2BC=4,∠ABC=60°,∵点O为Rt△ABC的斜边AB的中点,∴OC=AB=2,∴OC1=OA1=2,∴∠A1=∠A1C1O=30°,∴∠A1OC1=120°,∵BC∥A1C1,∴∠ADA1=∠ABC=60°,∵∠A1=∠A=30°,∴∠A1OD=90°,∴∠DOC1=30°,∴∠DOC1=∠A1C1O,∴OD=DC1,∴OE=EC1=1,∴DE=OE=,∴S阴影=S扇形﹣S=﹣=﹣, 故选:A.2.解:∵OB⊥AC,BC=CD,∴,,∴=2,故①正确;AC<AB+BC=BC+CD=2CD,故②错误;OC⊥BD,故③正确;∠AOD=3∠BOC,故④正确;故选:C.3.解:∵AB=AC,∴∠B=∠C,∵AB为⊙O的直径,∴∠ADB=90°,∴AD⊥BC,∴BD=CD,∠BAD=∠CAD,∴D是BC的中点,AD是∠BAC的平分线,∴①②③正确,∵OB=OD,∴∠B=∠ODB,∴∠ODB=∠C,∴OD∥AC,∴④正确,故选:D.4.解:由题意可知,点M的运动轨迹是以O为圆心,2为半径,圆心角为60°的扇形, 点P在第四象限内时,∠AOB是弧AP所对的圆周角,所以∠AOP=30°,点P在第二象限内时,∠BOP是弧BP所对的圆周角,所以∠BOP=60°,所以点P的运动路径是一条线段,当量角器从点A与O重合滑动至点Q与点O重合时,MP扫过的图形是如图所示的阴影部分,它是由两个边长为2的等边三角形与一个扇形组成,所以PM扫过的面积为: +2××22=π+2,故选:C.5.解:如图,取BC的中点T,连接AT,QT.∵PB是⊙O的直径,∴∠PQB=∠CQB=90°,∴QT=BC=定值,AT是定值,∵AQ≥AT﹣TQ,∴当A,Q,T共线时,AQ的值最小,设BT=TQ=x,在Rt△ABT中,则有(3+x)2=x2+62,解得x=4.5,∴BC=2x=9,∴S△ABC=•AB•BC=×6×9=27,故选:B.6.解:∵F是AE的中点,∴设AF=EF=x,则AE=2x,∴DE=6﹣2x,∵AB=AC,∴=,∵AD为⊙O的直径,∴BC⊥AD,∠ABD=90°∴BE=CE,∠ABE+∠DBE=∠DBE+∠D=90°,∴∠ABE=∠D,∵∠AEB=∠DEB=90°,∴△ABE∽△BDE,∴,∴BE2=AE•DE=2x(6﹣x),∴CE2=2x(6﹣x),在Rt△CEF中,CF2=EF2+CE2=x2+2x(6﹣x)=﹣3(x﹣2)2+36,∴当x=2时,CF的最大值为6,故选:A.7.解:如图,设正五边形ABCDE的中心为O,连接OB,OC,连接AF,EO并延长交BC于G,过E作EH⊥AF于H,则∠EAB=∠AED==108°,∠BOC==72°,EG⊥BC,AE=AF,∴∠AEF=∠AFE=54°,∴∠EAF=72°,∴∠BAF=36°,∵AE=AF=AB=a,∴sin72°===0.951,∴EH=0.951a,∴S弓形EF=S扇形EAF﹣S△AEF=﹣a•0.951a=﹣0.951a2=0.1528a2,∵S扇形EAB===0.942a2,∴S空白=2×(0.942a2﹣2×0.1528a2)=1.2728a2,∵∠BOG=36°,BG=a,∴OG===,∴S△OBC=BC•OG=a×,∴正五边形ABCDE的面积=5S△BOC=×=1.719a2,∴阴影部分图形的面积=正五边形ABCDE的面积﹣S空白≈0.45a2, 故选:A.8.解:设旋转角为α,则∠BCN=∠ACM=α,∵∠A=∠M=50°,∠ABC=∠N=60°,∴∠ACB=∠MPN=70°,∴∠BCM=70°﹣α,∵点O是△BCQ的内心,∴∠BCO=∠BCM=35°﹣,=30°,∵∠BOC=130°,∴35°﹣+30°+130°=180°,解得α=30°,∴∠BCN=30°,∵∠N=60°,∴∠CHN=90°,∴NH=CN==2,CH=CN=×4=2,∴S△CNH==2,∴S阴影=S扇形BCN﹣S△CHN=﹣2=π﹣2,故选:D.9.解:如图,设BM交⊙O于T,连接OT,OA,过点O作OH⊥AT于H,连接CH.∵∠B=30°,∴∠TOA=60°,∵OT=OA,∴△OTA是等边三角形,∴OT=OA=AT=5,∵OH⊥AT,∴TH=AH=,OH===,∵AC⊥BM,∴∠ACT=90°,∴CH=,∵OC≥OH﹣CH=﹣,∴OC的最小值为=﹣.故选:D.10.解:∵=,∴∠CBD=∠ABD,∵CD∥AB,∴∠ABD=∠CDB,∴∠CBD=∠CDB,∴CB=CD,∵BE是⊙O的直径,∴=,∴AB=BC=CD,∵CD∥AB,∴四边形ABCD是菱形,∴BC∥AD,∵∠AOF=3∠FOE,设∠FOE=x,则∠AOF=3x,∠AOD=∠FOE+∠AOF=4x,∵OA=OF,∴∠OAF=∠OFA=(180﹣3x)°,∵OA=OB,∴∠OAB=∠OBA=2x,∴∠ABC=4x,∵BC∥AD,∴∠ABC+∠BAD=180°,∴4x+2x+(180﹣3x)=180,解得:x=20°,∴∠AOF=3x=60°,∠AOE=80°,∴∠COF=80°×2﹣60°=100°,∵OA=OF,∴△AOF是等边三角形,∴OF=AF=2,∴的长==π,故选:C.11.解:==,=2(秒),2020÷4=505,故在第2020秒时点P的纵坐标为0,故选:C.12.解:如图,设⊙O交BC于J,连接AJ,JF,EJ,过点F作FM⊥AD于M交BC于N.设AB=3a.∵四边形ABCD是正方形,∴∠ABC=∠BAD=∠BCD=90°,AD∥BC,AD=AB=BC=CD=3a, ∴AJ是⊙O的直径,∴∠AFJ=∠AEJ=90°,∵FM⊥AD,AD∥CB,∴MN⊥BC,∴∠MNC=∠BCD=∠D=90°,∴四边形MNCD是矩形,四边形ABJE是矩形,∴MN=CD=3a,AE=BJ,∴=,∴∠BAJ=∠AFE,∴tan∠BAJ=tan∠AFE=,∴BJ=AE=a,JC=2a,∵∠JAF=∠JEC,∴tan∠JAF=tan∠JEC,∴==,∵∠AFM+∠JFN=90°,∠JFN+∠FJN=90°,∴∠AFM=∠FJN,∵∠AMF=∠FNJ=90°,∴△AMF∽△FNJ,∴===,设JN=2x,则FM=3x,∵AM=AE+EM=a+2x,∴FN=AM=(a+2x),∵FM+FN=3a,∴3x+(a+2x)=3a,∴9x+2a+4x=9a,∴x=a,∴CN=2a﹣2x=2a﹣a=a,∵EM∥CN,∴===,故选:B.13.解:∵A(1,0),O为正六边形的中心,∴OA=AB=1,连接OB,作BG⊥OA于点G,则AG=OA=,BG=,∴B(,),∴C(﹣,),E(﹣,﹣),∵正六边形的边长=1,∴正六边形的周长=6,∵点P的速度为每秒1个单位长度,点Q的速度为每秒2个单位长度, ∴第1次相遇需要的时间为:6÷(1+2)=2(秒),此时点P的路程为1×2=2,点的Q路程为2×2=4,此时P,Q相遇地点的坐标在点C(﹣,),以此类推:第二次相遇地点在点E(﹣,﹣),第三次相遇地点在点A(1,0),…如此下去,∵2020÷3=673…1,∴第2020次相遇地点在点C,C的坐标为(﹣,). 故选:A.14.解:如图,连接OD,AD,DM,作DF⊥OA于F.∵A(20,0),B(16,0),∴OA=20,OB=16,∴AB=20﹣16=4,∵四边形ABCD是平行四边形,∴CD∥OB,CD=OB=16,OC=BD,∴∠CDO=∠DOA,∴=,∴OC=AD=BD,∵DF⊥BA,∴BF=FA=2,∴OF=18,∴在Rt△DMF中.DF===6,∴D(18,6),C(2,6),故选:B.15.解:如图,连接AD.∵AB=AC,∠C=72°,∴∠ABC=∠C=72°.∴∠CAB=36°.∵AB是圆O的直径,∴AD⊥BD.又∵AB=AC,∴BD=CD.∴AD是∠CAB的平分线,∴∠CAD=∠CAB=18°.∴∠DOE=2∠CAD=36°.故选:C.16.解:∵AB是直径,∴∠ACB=90°,∴AC2+BD2=AB2=4,∵AC>AD,∴AD2+BC2<4,故①错误,∵∠DAC=∠CBD,∴sin∠DAC=sin∠CBD=,故②正确,∵AE⊥OE,假设DE=EO,则AD=AO=OD,∴△ADO是等边三角形,显然不符合题意,故③错误, ∵∠DEP=∠BCP=90°,DP=PB,∠DPE=∠BPC,∴△PDE≌△PBC(AAS),∴DE=BC,∵OE∥BC,AO=OB,∴AE=EC,∴DE=2OE,故④正确.故选:D.17.解:如图,过点P作PA⊥OM于点A.∵圆P与ON相切,设切点为B,连接PB.∴PB⊥ON.∵OP是∠MON的角平分线,∴PA=PB.∴PA是半径,∴OM是圆P的切线.∵∠MON=30°,OP是∠MON的角平分线,∴∠1=∠2=15°.∵PQ∥ON,∴∠3=∠2=15°.∴∠4=∠1+∠3=30°.∵PA=4,∴PQ=2PA=8.∴r最小值=8﹣4=4,r最大值=8+4=12.∴r的取值范围是4<r<12.故选:A.18.解:连接OC,过点C,B分别作AO的垂线,垂足分别为M,N, ∵半径为3的⊙O与五边形ABCDE的边相切于点A,C,∴∠OAE=∠OCD=90°,∵∠AOC+∠OCD+∠D+∠E+∠OAE=540°,∠D+∠E=240°,∴∠AOC=120°,∴∠MOC=180°﹣∠AOC=60°,∴,∵CM⊥AO,BN⊥AO,∴CM∥BN,∴△HCM∽△HBN,∴,∴,∴,故选:C.19.解:∵∠C=40°,∠A=60°,∴∠ABC=80°,由题意得,BP平分∠ABC,∴∠ABP=ABC=40°,故选项A正确; ∵∠PBC=∠PBA=ABC=40°,∴∠C=∠PBC,∴PC=PB,故选项B正确;∵PM⊥AB,∴∠BMP=90°,∴∠BPM=50°,∴∠BPM≠∠MBP,∴PM≠BM,故C选项错误;∵点P在∠ABC的角平分线上,∴P到AB和BC的距离=PM=⊙P的半径,∴AB,BC与⊙P相切,∵PA>PM,PC>PM,∴⊙P与AC相交,∴⊙P与△ABC有4个公共点,故D选项正确,故选:C.20.解:连接OC,交⊙C上一点P,以O为圆心,以OP为半径作⊙O,交x轴于A、B,此时AB的长度最小,∵C(3,4),∴OC==5,∵以点C为圆心的圆与y轴相切.∴⊙C的半径为3,∴OP=OC﹣3=2,∴OP=OA=OB=2,∵AB是直径,∵∠APB=90°,∴AB长度的最小值为4,故选:A.。

中考数学复习专题训练精选试题及答案

中考数学复习专题训练精选试题及答案

中考数学复习专题训练精选试题及答案一、选择题1. 以下哪一个数是最小的无理数?A. √2B. πC. 3.14D. √9答案:A2. 若一个等差数列的首项是2,公差是3,则第8项是多少?A. 17B. 18C. 19D. 20答案:A3. 一个二次函数的图像开口向上,顶点坐标为(3,-4),则该二次函数的一般式为:A. y = x² + 6x - 13B. y = x² - 6x + 13C. y = -x² + 6x - 13D. y = -x² - 6x + 13答案:B4. 在三角形ABC中,a = 5,b = 7,C = 60°,则边c 的长度等于:A. 6B. 8C. 10D. 12答案:C二、填空题1. 已知a = 3,b = 4,则a² + b² = _______。

答案:252. 已知一个等差数列的前5项和为35,首项为7,求公差d = _______。

答案:23. 在梯形ABCD中,AB // CD,AB = 6,CD = 8,AD = BC = 5,求梯形的高h = _______。

答案:34. 若函数f(x) = x² - 2x + 1的最小值为m,求m =_______。

答案:0三、解答题1. 已知一元二次方程x² - 4x - 12 = 0,求解该方程。

解:首先,将方程因式分解为(x - 6)(x + 2) = 0。

然后,解得x = 6或x = -2。

答案:x = 6或x = -22. 已知一个长方体的长为a,宽为b,高为c,且a、b、c成等差数列。

若长方体的体积为V,求V的表达式。

解:由题意可知,a + c = 2b,所以c = 2b - a。

长方体的体积V = abc = ab(2b - a)。

答案:V = ab(2b - a)3. 已知三角形ABC,AB = AC,∠BAC = 40°,BC = 6,求三角形ABC的周长。

中考数学一轮复习考点知识专项训练15--- 一次函数(含答案)

中考数学一轮复习考点知识专项训练15--- 一次函数(含答案)

中考数学一轮复习考点知识专项训练一次函数命题点1一次函数的图象与性质1.(2020·浙江嘉兴)一次函数y=2x-1的图象大致是( )2.(2020·湖南益阳)一次函数y=kx+b的图象如图所示,则下列结论正确的是( )A.k<0B.b=-1C.y随x的增大而减小D.当x>2时,kx+b<03.(2019·山东临沂)下列关于一次函数y=kx+b(k<0,b>0)的说法,错误的是( ) A.图象经过第一、二、四象限B.y随x的增大而减小C.图象与y轴交于点(0,b)D.当x>-bk时,y>04.(2020·上海)已知正比例函数y=kx(k是常数,k≠0)的图象经过第二、四象限,那么y的值随着x的增大而________(填“增大”或“减小”).5.(2020·山东东营)已知一次函数y=kx+b(k≠0)的图象经过A(1,-1),B(-1,3)两点,则k______0(填“>”或“<”).命题点2一次函数表达式的确定6.(2019·山东枣庄)如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过点P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为8,则该直线的函数表达式是( )A.y=-x+4 B.y=x+4C.y=x+8 D.y=-x+87.(2020·贵州黔西南州)如图,正比例函数的图象与一次函数y=-x+1的图象相交于点P,点P到x轴的距离是2,则这个正比例函数的表达式是_______.8.(2020·江苏南通)如图,直线l1:y=x+3与过点A(3,0)的直线l2交于点C(1,m),与x轴交于点B.(1)求直线l2的表达式;(2)点M在直线l1上,MN∥y轴,交直线l2于点N,若MN=AB,求点M的坐标.9.(2019·江西)如图,在平面直角坐标系中,点A,B的坐标分别为(-32,0),(32,1),连接AB,以AB为边向上作等边三角形ABC.(1)求点C的坐标;(2)求线段BC所在直线的表达式.10.(2020·江苏南京)将一次函数y=-2x+4的图象绕原点O逆时针旋转90°,所得到的图象对应的函数表达式是________________.11.(2020·北京)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x 的图象平移得到,且经过点(1,2).(1)求这个一次函数的表达式;(2)当x>1时,对于x的每一个值,函数y=mx(m≠0)的值都大于一次函数y=kx+b的值,直接写出m的取值范围.能力点1 一次函数与方程(组)、不等式的关系12.(2018·辽宁辽阳)如图,直线y =ax +b (a ≠0)过点A (0,4),B (-3,0),则方程ax +b =0的解是( )A .x =-3B .x =4C .x =-43D .x =-3413.(2020·贵州遵义)如图,直线y =kx +b (k ,b 是常数,k ≠0)与直线y =2交于点A (4,2),则关于x 的不等式kx +b <2的解集为______________.14.(2019·贵州贵阳)在平面直角坐标系内,一次函数y =k 1x +b 1与y =k 2x +b 2的图象如图所示,则关于x ,y 的方程组⎩⎨⎧y -k 1x =b 1,y -k 2x =b 2的解是____________.能力点2 一次函数的实际应用15.(2019·广东深圳)有A ,B 两个发电厂,每焚烧一吨垃圾,A 发电厂比B 发电厂多发40度电,A 焚烧20吨垃圾比B 焚烧30吨垃圾少发1 800度电.(1)求焚烧1吨垃圾A和B发电厂各发电多少度;(2)A,B两个发电厂共焚烧90吨的垃圾,A焚烧的垃圾不多于B焚烧的垃圾的两倍,求A发电厂和B发电厂总发电量的最大值.16.(2019·吉林)甲、乙两车分别从A,B两地同时出发,沿同一条公路相向行驶,相遇后,甲车继续以原速行驶到B地,乙车立即以原速原路返回到B地,甲、乙两车距B 地的路程y(km)与各自行驶的时间x(h)之间的关系如图所示.(1)m=________,n=________;(2)求乙车距B地的路程y关于x的函数表达式,并写出自变量x的取值范围;(3)当甲车到达B地时,求乙车距B地的路程.17.(2020·浙江衢州)2020年5月16日,“钱塘江诗路”航道全线开通.一艘游轮从杭州出发前往衢州,线路如图①所示.当游轮到达建德境内的“七里扬帆”景点时,一艘货轮沿着同样的线路从杭州出发前往衢州.已知游轮的速度为20 km/h,游轮行驶的时间记为t(h),两艘轮船距离杭州的路程s(km)关于t(h)的图象如图②所示(游轮在停靠前后的行驶速度不变).(1)写出图②中点C的横坐标的实际意义,并求出游轮在“七里扬帆”停靠的时长.(2)若货轮比游轮早36分钟到达衢州.问:①货轮出发后几小时追上游轮?②游轮与货轮何时相距12 km?图①图②18.(2020·湖北荆州)为了抗击新型冠状病毒肺炎疫情,我市甲、乙两厂积极生产了某种防疫物资共500吨,乙厂的生产量是甲厂的2倍少100吨.这批防疫物资将运往A地240吨,B地260吨,运费如下表(单位:元/吨):(1)(2)设这批物资从乙厂运往A地x吨,全部运往A,B两地的总运费为y元,求y与x之间的函数关系式,并设计使总运费最少的调运方案;(3)当每吨的运费均降低m元(0<m≤15且m为整数)时,按(2)中设计的调运方案运输,总运费不超过5 200元.求m的最小值.19.(2020·浙江绍兴)我国传统的计重工具——秤的应用,方便了人们的生活.如图①,可以用秤砣到秤纽的水平距离来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x(厘米)时,秤钩所挂物重为y(斤),则y是x的一次函数.下表中为若干次称重时所记录的一些数据:(1)在上表哪一对是错误的;(2)根据(1)的发现,问秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少?图①图②20.(2017·江西)如图所示的是一种斜挎包,其挎带由双层部分、单层部分和调节扣构成.小敏用后发现,通过调节扣加长或缩短单层部分的长度,可以使挎带的长度(单层部分与双层部分长度的和,其中调节扣所占的长度忽略不计)加长或缩短.设单层部分的长度为x cm,双层部分的长度为y cm,经测量,得到如下数据:(1)(2)根据小敏的身高和习惯,挎带的长度为120 cm时,背起来正合适,请求出此时单层部分的长度;(3)设挎带的长度为l cm,求l的取值范围.参考答案1.B 2.B 3.D4.减小 5.< 6.A 7.y =-2x8.解:(1)把x =1代入y =x +3中,得y =4, ∴C (1,4).设直线l 2的表达式为y =kx +b ,将A ,C 两点的坐标分别代入, 得⎩⎨⎧k +b =4,3k +b =0,解得⎩⎨⎧k =-2,b =6, ∴直线l 2的表达式为y =-2x +6.(2)在y =x +3中,令y =0,解得x =-3,∴B (-3,0). 设M (a ,a +3),由MN ∥y 轴,得N (a ,-2a +6), ∴MN =|a +3-(-2a +6)|=AB =3-(-3)=6, 解得a =3或a =-1, ∴M (3,6)或(-1,2).9.解:(1)如图,过点B 作BD ⊥x 轴于点D ,∵点A 的坐标为(-32,0),点B 的坐标为(32,1),∴AD =3,BD =1,∴由勾股定理得AB =AD 2+BD 2=(3)2+12=2, ∴sin ∠BAD =BD AB =12,∴∠BAD =30°. 又∵△ABC 是等边三角形, ∴∠CAB =60°,AC =AB =2, ∴∠CAD =90°,∴点C 的坐标为(-32,2).(2)设线段BC 所在直线的表达式为y =kx +b ,将点B (32,1),C (-32,2)分别代入,得 ⎩⎪⎨⎪⎧32k +b =1,-32k +b =2,解得⎩⎪⎨⎪⎧k =-33,b =32, ∴线段BC 所在直线的表达式为y =-33x +32.10.y =12x +211.解:(1)∵一次函数y =kx +b (k ≠0)的图象由y =x 的图象平移得到, ∴k =1.将点(1,2)代入y =x +b ,可得2=1+b ,解得b =1, ∴这个一次函数的表达式为y =x +1.(2)当x >1时,对于x 的每一个值,函数y =mx (m ≠0)的值都大于一次函数y =x +1的值,即其图象在一次函数y =x +1图象的上方,由下图可知.临界值为当x =1时,两条直线都过点(1,2),∴当x >1,m ≥2时,y =mx (m ≠0)的值都大于y =x +1的值, ∴m 的取值范围为m ≥2. 12.A 13.x <4 14.⎩⎨⎧x =2y =115.解:(1)设焚烧1吨垃圾A 发电厂发电a 度,B 发电厂发电b 度,根据题意,得⎩⎨⎧a -b =40,30b -20a =1 800,解得⎩⎨⎧a =300,b =260.答:焚烧1吨垃圾A 发电厂发电300度,B 发电厂发电260度.(2)设A 发电厂焚烧x 吨垃圾,则B 发电厂焚烧(90-x )吨垃圾.设两厂的总发电量为y 度,则y =300x +260(90-x )=40x +23 400,∵⎩⎨⎧0≤x ,0≤90-x ,x≤2(90-x ),∴0≤x ≤60.∵y 随x 的增大而增大,∴当x =60时,y 有最大值,且最大值为40×60+23 400=25 800.答:A 发电厂和B 发电厂总发电量的最大值是25 800度.16.解:(1)4 120(2)当0≤x ≤2时,设乙车距离B 地的路程y 关于x 的函数表达式为y =kx ,∵图象过点(2,120),∴2k =120,解得k =60,∴此时y 关于x 的函数表达式为y =60x (0≤x ≤2);当2<x ≤4时,设乙车距离B 地的路程y 关于x 的函数表达式为y =k 1x +b ,∵图象过(2,120),(4,0)两点,∴⎩⎨⎧2k 1+b =120,4k 1+b =0,解得⎩⎨⎧k 1=-60,b =240, ∴此时y 关于x 的函数表达式为y =-60x +240(2<x ≤4).综上所述,乙车距B 地的路程y 关于x 的函数表达式为y =⎩⎨⎧60x (0≤x≤2),-60x +240(2<x≤4).(3)当x =3.5时,y =-60×3.5+240=30.∴当甲车到达B 地时,乙车距B 地的路程为30 km .17.解:(1)点C 横坐标的实际意义是游轮从杭州出发前往衢州共用了23 h , ∴游轮在“七里扬帆”停靠的时长=23-(420÷20)=23-21=2(h ).(2)①280÷20=14(h ),14+2=16(h ),∴点A (14,280),点B (16,280),点D (14,0).∵36÷60=0.6(h ),23-0.6=22.4(h ),∴点E (22.4,420).设直线BC 的表达式为s =kt +b ,把B (16,280),C (23,420)两点的坐标分别代入,得⎩⎨⎧280=16k +b ,420=23k +b ,解得⎩⎨⎧k =20,b =-40,∴线段BC 的表达式为s =20t -40(16≤t ≤23).同理由D (14,0),E (22.4,420)两点可得线段DE 的表达式为s =50t -700(14≤t ≤22.4), 由题意,得20t -40=50t -700,解得t =22.∵22-14=8(h ),∴货轮出发后8 h 追上游轮.②当相遇之前相距12 km 时,20t -40-(50t -700)=12,解得t =21.6;当相遇之后相距12 km 时,50t -700-(20t -40)=12,解得t =22.4,∴游轮行驶21.6 h 或22.4 h 时游轮与货轮相距12 km .18.解:(1)设这批防疫物资甲厂生产了a 吨,乙厂生产了b 吨,则⎩⎨⎧a +b =500,2a -b =100,解得⎩⎨⎧a =200,b =300. ∴这批防疫物资甲厂生产了200吨,乙厂生产了300吨.(2)由题意,得y =20(240-x )+25[260-(300-x )]+15x +24(300-x )=-4x +11 000,由题意,得⎩⎨⎧x≥0,240-x≥0,300-x≥0,260-(300-x )≥0,解得40≤x ≤240, ∵-4<0,∴y 随x 的增大而减小,∴当x =240时,y 有最小值,∴使总运费最少的调运方案为甲厂的200吨物资全部运往B 地,乙厂运往A 地240吨,运往B 地60吨.(3)由题意,得y =-4x +11 000-500m ,当x =240时,y 最小=-4×240+11 000-500m =10 040-500m ,由题意,得10 040-500m ≤5 200,解得m ≥9.68.又∵0<m ≤15且m 为整数,∴m 的最小值为10.【核心素养提升】19.解:(1)描点连线如下图:观察图象可知,x =7,y =2.75这组数据错误.(2)设y 与x 之间的函数表达式为y =kx +b (x >0),把x =1,y =0.75,x =2,y =1代入可得⎩⎨⎧k +b =0.75,2k +b =1,解得⎩⎪⎨⎪⎧k =14,b =12,∴y =14x +12.当x =16时,y =14×16+12=4.5,∴秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是4.5斤.20.解:(1)70 0y 关于x 的函数表达式为y =-0.5x +75(0≤x ≤150).(2)根据题意,得⎩⎨⎧x +y =120,y =-0.5x +75,解得⎩⎨⎧x =90,y =30.答:此时单层部分的长度为90 cm .(3)根据题意,得l =x +y =0.5x +75,∵0≤x ≤150,∴75≤l ≤150.答:l 的取值范围为75≤l ≤150.。

2023年中考数学解答题专项复习:尺规作图(附答案解析)

2023年中考数学解答题专项复习:尺规作图(附答案解析)

2023年中考数学解答题专项复习:尺规作图1.(2021•青岛)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:∠O及其一边上的两点A,B.
求作:Rt△ABC,使∠C=90°,且点C在∠O内部,∠BAC=∠O.
2.(2021•赤峰)如图,在Rt△ABC中,∠ACB=90°,点D是斜边AB上一点,且AC=AD.
(1)作∠BAC的平分线,交BC于点E;(要求尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接DE,求证:DE⊥AB.
3.(2021•襄阳)如图,BD为▱ABCD的对角线.
(1)作对角线BD的垂直平分线,分别交AD,BC,BD于点E,F,O(尺规作图,不写作法,保留作图痕迹);
(2)连接BE,DF,求证:四边形BEDF为菱形.
4.(2021•陕西)如图,已知△ABC,AB>AC.请在边AB上求作一点P,使点P到点B、
C的距离相等.(尺规作图,保留作图痕迹,不写作法)
第1 页共13 页。

中考数学复习专项练习---圆知识点复习及练习(含答案)

中考数学复习专项练习---圆知识点复习及练习(含答案)
37.如图,AB 是⊙O 的直径,弦 CD⊥AB 于点 E,连接 AC,BC.
(1)求证:∠A=∠BCD; (2)若 AB=10,CD=6,求 BE 的长.
38.如图,A,P,B,C 是半径为 8 的⊙O 上的四点,且满足∠BAC=∠APC=60°,
(1)求证:△ABC 是等边三角形; (2)求圆心 O 到 BC 的距离 OD. 39.如图,在 Rt△ABC 中,∠ACB=90°,∠A=30°,BC=1,以边 AC 上一点 O 为圆心,OA 为半 径的⊙O 经过点 B. (1)求⊙O 的半径;
A.4 3
B.6 3
C.2 3
D.8
3.如图,△ABC 内接于⊙O,AB 是⊙O 的直径,∠B=30°,CE 平分∠ACB 交⊙O 于 E,交 AB 于 点 D,连接 AE,则 S△ADE:S△CDB 的值等于( )
A.1:
B.1:
C.1:2 D.2:3
4.如图,⊙O 中,C 是优弧 A MB 上的一点,∠AOC=100°,则∠ABC 的度数是( )
(2)⊙O 的半径为 5,tanA= 3 ,求 FD 的长. 4
31.如图,在△ABC 中,BC=AC=6,以 BC 为直径的⊙O 与边 AB 相交于点 D,DE⊥AC,垂足为 点 E. (1)求证:点 D 是 AB 的中点; (2)求点 O 到直线 DE 的距离.
32.如图,已知 AB 是圆 O 的直径,弦 CD⊥AB,垂足 H 在半径 OB 上,AH=5,CD= 4 5 ,点 E
(3)连接 OE 交 BC 于点 F,若 AB= 10 ,求 OE 的长度. 34.如图,在 ABC 中, BA BC , ABC 90 ,以 AB 为直径的半圆 O 交 AC 于点 D,点 E 是 BD 上不与点 B,D 重合的任意一点,连接 AE 交 BD 于点 F,连接 BE 并延长交 AC 于点 G. (1)求证: ADF BDG ;

中考数学复习专题——找规律(含答案)

中考数学复习专题——找规律(含答案)

中考数学试复习专题——找规律1、如图所示,观察小圆圈的摆放规律,第一个图中有5个小圆圈,第二个图中有8个小圆圈,第100个图中有__________个小圆圈.(1) (2) (3)2、 找规律.下列图中有大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,则第4幅图中有 个菱形,第n 幅图中有 个菱形.3、用同样大小的黑色棋子按下图所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 枚(用含n 的代数式表示).4、观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a 、b 、c 的值分别为______________.5、如图①是一块瓷砖的图案,用这种瓷砖来铺设地面.如果铺成一个22⨯的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个33⨯的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个44⨯的正方形图案(如图④),其中完整的圆共有25个.若这样铺成一个1010⨯的正方形图案, 则其中完整的圆共有 个.1 2 3n … … 第1个图 2个图 3个图 …6、 如下图,用同样大小的黑、白两种颜色的棋子摆设如下图所示的正方形图案,则第n 个图案需要用白色棋子 枚(用含有n 的代数式表示,并写成最简形式).○ ○ ○ ○ ○ ○ ○ ○ ○○ ○ ○ ○ ● ● ○ ○ ● ● ● ○○ ● ○ ○ ● ● ○ ○ ● ● ● ○○ ○ ○ ○ ○ ○ ○ ○ ● ● ● ○○ ○ ○ ○ ○7、用火柴棒按下图中的方式搭图形,按照这种方式搭下去,搭第334个图形需 根火柴棒。

8、将正整数按如图5所示的规律排列下去,若有序实数对(n ,m )表示第n 排,从左到右第m 个数,如(4,2)表示实数9,则表示实数17的有序实数对是 .9、如图 2 ,用n 表示等边三角形边上的小圆圈,f(n)表示这个三角形中小圆圈的总数,那么f(n)和n 的关系是10、观察图4的三角形数阵,则第50行的最后一个数是 ( )1-2 3-4 5 -67 -8 9 -10。

人教部编版初中数学中考考点专题复习利用“角边角”“角角边”判定三角形全等练习及答案

人教部编版初中数学中考考点专题复习利用“角边角”“角角边”判定三角形全等练习及答案

利用“角边角”“角角边”判定三角形全等1.在△ABC和△A'B'C'中,①AB=A'B',②BC=B'C',③AC=A'C',④∠A=∠A',⑤∠B=∠B',⑥∠C=∠C',则下列条件中不能保证△ABC≌△A'B'C'的是().A.①②③B.①②⑤C.①⑤⑥D.①②④2.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是().A.AB=ACB.BD=CDC.∠B=∠CD.∠BDA=∠CDA3.如图,小聪房子上的一块玻璃碎成了三块,他手头没有测量的工具,于是他想带着玻璃去配一块.同学们想一想,小聪需要带着第块玻璃.4.如图,分别过点C,B作△ABC的BC边上的中线AD及其延长线的垂线,垂足分别为点E,F.求证:BF=CE.5.小刚同学在一次智能大赛中,分别画了三个三角形,不料都被墨迹污染了(如图),他想分别画三个与原来一样的三角形,你认为是否可以,说明你的理由.6.如图,已知△ABC≌△A'B'C',AD,A'D'分别是△ABC和△A'B'C'的高.求证:AD=A'D',并用一句话说明你的结论.7.如图,在△ABC与△DBC中,∠ACB=∠DBC=90°,E为BC的中点,EF⊥AB于点F,且AB=DE.(1)求证:△BCD是等腰直角三角形;(2)若BD=8 cm,求AC的长.★8.如图,∠BCA=∠α,CA=CB,C,E,F分别是直线CD上的三点,且∠BEC=∠CFA=∠α,请提出对EF,BE,AF三条线段数量关系的合理猜想,并证明.★9.如图,A,B,C,D,E,F,M,N是某公园里的八个景点,D,E,B三个景点间的距离相等,A,B,C三个景点间的距离相等.其中D,B,C三个景点在同一直线上,E,F,N,C在同一直线上,D,M,F,A在同一直线上,游客甲从E点出发,沿E→F→N→C→A→B→M游览,游客乙从D点出发,沿D→M→F→A→C→B→N游览.若两人的速度相同,且在各景点游览的时间相同,甲、乙两人谁先游览完?说明理由.参考答案能力提升1.D用①②④时,属于“边边角”,而“边边角”是不能用来判定两个三角形全等的.2.B3.③4.证明:∵CE⊥AF,FB⊥AF,∴∠DEC=∠DFB=90°.∵AD为BC边上的中线,∴BD=CD.又∵∠EDC=∠FDB(对顶角相等),∴△BFD≌△CED(AAS),∴BF=CE.5.解:在三角形(1)中保留了完整的两角与它们的夹边,可以根据“ASA”画出与(1)全等的三角形;在三角形(3)中保留了完整的两边及它们的夹角,可以根据“SAS”画出与(3)全等的三角形;在三角形(2)中只保留了一个角,因此不能画出与(2)全等的三角形.6.证明:∵△ABC≌△A'B'C',∴AB=A'B',∠B=∠B'.∵AD,A'D'分别是△ABC,△A'B'C'的高,∴∠ADB=∠A'D'B'=90°.在△ABD和△A'B'D'中,∴△ABD≌△A'B'D'(AAS).∴AD=A'D'.结论:全等三角形对应边上的高相等.7.(1)证明:∵DE⊥AB,∠CBD=90°,∴∠EDB+∠DBF=∠ABC+∠DBF=90°.∴∠EDB=∠ABC.在△ACB和△EBD中,°∴△ACB≌△EBD(AAS).∴CB=BD,即△BCD是等腰直角三角形.(2)解:由△ACB≌△EBD,有AC=BE,而E为BC的中点,则EB=BC=BD=4(cm).故AC=4 cm.8.解:猜想:EF=BE+AF.证明:∵∠BCE+∠CBE+∠BEC=180°,∠BCE+∠FCA+∠BCA=180°,∠BCA=∠α=∠BEC, ∴∠CBE=∠FCA.∵∠BEC=∠CFA=∠α,CB=CA,∴△BEC≌△CFA(AAS),∴BE=CF,EC=FA,∴EF=EC+CF=BE+FA.创新应用9.解:甲与乙同时游览完.理由如下:由题意,得△EBD和△ABC都为等边三角形,所以DB=EB,BC=BA,∠CBN=∠DBM=60°,∠EBC=∠DBA=120°.在△EBC和△DBA中,所以△EBC≌△DBA,所以EC=DA,∠CEB=∠ADB.在△DBM和△EBN中,所以△DBM≌△EBN,所以BM=BN.所以EC+AC+AB+BM=DA+AC+BC+BN.所以两人所走的路程相等,故同时游览完.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、___________的倒数是 ;0.28的相反数是_________。
2、如图1,数轴上的点M所表示的数的相反数为_________
M
3、 ,则 的值为________
4、已知 ,且 ,则 的值等于________
5、实数 在数轴上对应点的位置如图2所示,下列式子中正确的有()
① ② ③ ④
A.1个B.2个C.3个D.4个
5、C
考点2数轴、倒数、相反数、绝对值
1、若 ,则它的相反数是______,它的倒数是______。0的相反数是________。
2、一个正实数的绝对值是____________;一个负实数的绝对值是____________;0的绝对值是__________。
3、一个数的绝对值就、如果 是实数,且满足 ,则有
1、下列说法中,正确的是()
A.3的平方根是 B.7的算术平方根是
C. 的平方根是 D. 的算术平方根是
2、9的算术平方根是______
3、 等于_____
4、 ,则
考点4近似数和科学计数法
1、精确位:四舍五入到哪一位。
2、有效数字:从左起_______________到最后的所有数字。
3、科学计数法:正数:_________________
负数:_________________
1、据生物学统计,一个健康的成年女子体内每毫升血液中红细胞的数量约为420万个,用科学计算法可以表示为___________
2、由四舍五入得到的近似数0.5600的有效数字的个数是______,精确度是_______
2、幂的运算法则:(以下的 是正整数)
; ; ; ;
3、乘法公式:
; ;
4、去括号、添括号的法则是_________________
1、下列计算正确的是()
A. B. C. D.
2、下列不是同类项的是()
A. B. C. D
3、计算:
4、计算:
考点8因式分解
因式分解的方法:
1、提公因式:
2、公式法:
4、若 ,则x=__________
5、计算:
6、计算:
7、计算:
8、 数a、b在数轴上的位置如图所示,化简:
.
数与式考点分析及复习研究(答案)
考点1有理数、实数的概念
1、有理数集{ }
无理数集{ }
正实数集{ }
2、2
3、2
4、答案不唯一。如( )
考点2数轴、倒数、相反数、绝对值
1、 ,
2、
3、
4、
3、二次根式的乘除法
4、分母有理化:
5、最简二次根式:
6、同类二次根式:化简到最简二次根式后,根号内的数或式子相同的二次根式
7、二次根式有意义,根号内的式子必须大于或等于零
1、下列各式是最简二次根式的是()
A. B. C. D.
2、下列根式与 是同类二次根式的是()
A. B. C. D.
3、二次根式 有意义,则x的取值范围_________
1、分解因式 ,
2、分解因式
考点9:分式
1、分式的判别:(1)分子分母都是整式,(2)分母含有字母;
2、分式的基本性质:
3、分式的值为0的条件:___________________
4、分式有意义的条件:_____________________
5、最简分式的判定:_____________________
中考数学考点专题复习
《数与式》
考点1有理数、实数的概念
1、实数的分类:有理数,无理数。
2、实数和数轴上的点是___________对应的,每一个实数都可以用数轴上的________来表示,反过来,数轴上的点都表示一个________。
3、______________________叫做无理数。一般说来,凡开方开不尽的数是无理数,但要注意,用根号形式表示的数并不都是无理数(如 ),也不是所有的无理数都可以写成根号的形式(如 )。
1、把下列各数填入相应的集合内:
有理数集{ },无理数集{ }
正实数集{ }
2、在实数 中,共有_______个无理数
3、在 中,无理数的个数是_______
4、写出一个无理数________,使它与 的积是有理数
解这类问题的关键是对有理数和无理数意义的理解。无理数与有理数的根本区别在于能否用既约分数来表示。
3、用小数表示: =_____________
考点5实数大小的比较
1、正数>0>负数;
2、两个负数绝对值大的反而小;
3、在数轴上,右边的数总大于左边的数;
4、作差法:
1、比较大小: 。
2、应用计算器比较 的大小是____________
3、比较 的大小关系:__________________
4、已知 中,最大的数是___________
6、①数轴上表示-2和-5的两点之间的距离是______数轴上表示1和-3的两点之间的距离是________。
②数轴上表示 和-1的两点A和B之间的距离是_______,如果|AB|=2,那么
1、若 互为相反数,则 ;反之也成立。若 互为倒数,则 ;反之也成立。
2、关于绝对值的化简
(1)绝对值的化简,应先判断绝对值符号内的数或式的值是正、负或0,然后再根据定义把绝对值符号去掉。
考点6实数的运算
1、 。
2、今年我市二月份某一天的最低温度为 ,最高气温为 ,那么这一天的最高气温比最低气温高___________
3、如图1,是一个简单的数值运算程序,当输入x的值为-1时,则输出的数值为____________
4、计算
(1)
(2)
考点7乘法公式与整式的运算
1、判别同类项的标准,一是__________;二是________________。
(2)已知 ,求 时,要注意
考点3平方根与算术平方根
1、若 ,则 叫 做的_________,记作______;正数 的__________叫做算术平方根,0的算术平方根是____。当 时, 的算术平方根记作__________。
2、非负数是指__________,常见的非负数有(1)绝对值 ;(2)实数的平方 ;(3)算术平方根 。
6、分式的运算:通分,约分
1、当x_______时,分式 有意义
2、当x_______时,分式 的值为零
3、下列分式是最简分式的是()
A. B. C. D
4、下列各式是分式的是()
A. B. C. D
5、计算:
6、计算:
考点10二次根式
1、二次根式:如
2、二次根式的主要性质:
(1) (2)
(3) (4)
相关文档
最新文档