分子晶体和原子晶体

合集下载

分子晶体和原子晶体

分子晶体和原子晶体

学与问
1、怎样从原子结构角度理解金刚石、硅 和锗的熔点和硬度依次下降?
解释:结构相似的原子晶体,原子半径越小, 键长越短,键能越大,晶体熔点越高 金刚石 > 碳化硅 > 晶体硅
2、“具有共价键的晶体叫做原子晶体”。这 种说法对吗?为什么?
知识拓展-石墨
一种结晶形碳,有天然出产的矿物。铁黑 色至深钢灰色。质软具滑腻感,可沾污手指成 灰黑色。有金属光泽。六方晶系,成叶片状、 鳞片状和致密块状。密度2.25g/cm3,化学性 质不活泼。具有耐腐蚀性,在空气或氧气中强 热可以燃烧生成二氧化碳。石墨可用作润滑剂, 并用于制造坩锅、电极、铅笔芯等。
因此,比较分子晶体的熔、沸点高低, 实际上就是比较分子间作用力(包括范力 和氢键)的大小。
(1)组成和结构相似的物质,
分子量越大,熔沸点越高。 ___________________________________
烷烃、烯烃、炔烃、饱和一元醇、醛、 羧酸等同系物的沸点均随着碳原子数的增 加而升高。
因为CO2是分子晶体,SiO2是原子晶体, 所以熔化时CO2是破坏范德华力而SiO2是破 坏化学键。所以SiO2熔沸点高。
破坏CO2分子与SiO2时,都是破坏共价 健,而C-O键能>Si-O键能,所以CO2分子更 稳定。
4、原子晶体熔、沸点比较规律 在共价键形成的原子晶体中,原子半
径小的,键长短,键能大,晶体的熔、沸 点高。如:金刚石 > 碳化硅 > 晶体硅
2 、分子晶体和原子晶体
一、分子晶体
1、概念 分子间以分子间作用力(范德华力,氢键)相 结合的晶体叫分子晶体。
构成分子晶体的粒子是分子,
粒子间的相互作用是分子间作用力 .
分子晶体有哪些物理特性,为什么?

分子晶体与原子晶体

分子晶体与原子晶体

晶胞类型 观察同一种点,如观察空心圆点 Cl-,正
六面体的 8 个顶点和各面的中心,均有一个。所以为面心
立方晶胞。
整理课件
23
小结、晶体结构的基本单元 --晶胞
1、 晶胞是晶体的最小结构重复单元。
晶胞是从晶体结构中截取出来的大小、形状完 全 相同的平行六面体。
晶体是晶胞“无隙并置”而成 2、 晶胞必须符合两个条件: 一是代表晶体的化学组成;二是代表晶体的对称性, 即与晶体具有相同的对称元素 —— 对称轴,对称面 和对称中心 ) 。
3
Ti
8=1 Ca:1
整理课件
O
40
现有甲、乙、丙、丁四种晶胞(如图2-8所
示 比)为_,_1可_:_1推_;知乙:晶甲体晶的体化中学A与式B为的_C_离_2子_D_个;数丙 晶体的化学式为_E__F___;丁晶体的化学式 为_X__Y__2_Z。
整理课件
41
巩固练习:
某晶胞结 构如图所示, 晶胞中各微粒 个数分别为:
整理课件
14
干冰晶体结构
整理课件
碘晶体结构 15
二﹑晶胞 组成晶体的细胞 1. 晶胞:描述晶体结构的基本单元
蜂巢与蜂室
铜晶体
铜铜晶晶胞胞
晶体与晶胞的关系可用蜂巢与峰室的关系比 喻
整理课件16Fra bibliotek 晶体与晶胞整理课件
17
NaCl晶体结构和晶胞
整理课件
18
干冰的晶体结构图 将图中的CO2分子换成I2分子 即为碘晶体的结构图
二 氧 化 碳 分 子
整理课件
19
CsCl晶体
整理课件
20
1、体心——全部 2、面心——1/2 3、棱上的点——1/4 4、顶点(具体问题具体分析)

高中化学选修3之知识讲解_晶体的常识 分子晶体与原子晶体_基础-

高中化学选修3之知识讲解_晶体的常识 分子晶体与原子晶体_基础-

晶体的常识分子晶体与原子晶体【学习目标】1、初步了解晶体的知识,知道晶体与非晶体的本质差异,学会识别晶体与非晶体的结构示意图;2、知道晶胞的概念,了解晶胞与晶体的关系,学会通过分析晶胞得出晶体的组成;3、了解分子晶体和原子晶体的特征,能以典型的物质为例描述分子晶体和原子晶体的结构与性质的关系;4、知道分子晶体与原子晶体的结构粒子、粒子间作用力的区别。

【要点梳理】要点一、晶体与非晶体【分子晶体与原子晶体#晶体与非晶体】1、概念:①晶体:质点(分子、离子、原子)在空间有规则地排列成的、具有整齐外型、以多面体出现的固体物质。

晶体具有的规则的几何外形源于组成晶体的微粒按一定规律周期性的重复排列。

②非晶体:非晶态物质内部结构没有周期性特点,而是杂乱无章地排列,如:玻璃、松香、明胶等。

非晶体不具有晶体物质的共性,某些非晶态物质具有优良的性质要点诠释:晶体与非晶体的区分:晶体是由原子或分子在空间按一定规律周期性地重复排列构成的固体物质。

周期性是晶体结构最基本的特征。

许多固体的粉末用肉眼是看不见晶体的,但我们可以借助于显微镜观察,这也证明固体粉末仍是晶体,只不过晶粒太小了。

晶体的熔点较固定,而非晶体则没有固定的熔点。

区分晶体和非晶体最可靠的科学方法是对固体,进行X—射线衍射实验,X射线透过晶体时发生衍射现象。

特别注意:一种物质是否晶体,是由其内部结构决定的,而非由外观判断。

2、分类:说明:①自范性:晶体能自发性地呈现多面体外形的性质。

所谓自范性即“自发”进行,但这里要注意,“自发”过程的实现仍需一定的条件。

例如:水能自发地从高处流向低处,但若不打开拦截水流的闸门,水库里的水不能下泻;②晶体自范性的条件之一:生长速率适当;③晶体自范性的本质:是晶体中粒子微观空间里呈现周期性的有序排列的宏观表象。

4、晶体形成的途径:①熔融态物质凝固,例:熔融态的二氧化硅,快速冷却得到玛瑙,而缓慢冷却得到水晶。

②气态物质冷却不经液态直接凝固(凝华);③溶质从溶液中析出。

无机化学——原子晶体与分子晶体

无机化学——原子晶体与分子晶体

B
B
C A
A
面心立方 紧密堆积
六方紧密堆积
Body-centered cubic cell (BCC)
体心立方紧密堆积 CN=12,利用率 =68% K、Rb、Cs、Li、 Na A B
A
体心立方 紧密堆积
7.4.2 金属键 金属键:金属原子的价电子可以完全失去成为自由电子,并在 晶格中运动,自由电子把金属阳离子胶合成金属晶体,这种胶 合作用就叫金属键。金属键无饱和性和方向性。
氯化氢、氨、三氯化磷、冰等由极性键构成的极性分子,晶体 中分子间存在色散力、取向力、诱导力,有的还有氢键,所以 它们的结点上的粒子间作用力大于分子量相近的非极性分子之 间的引力。
分子晶体的特性 分子晶体是以独立的分子出现的 ,化学式就是分子式。
分子晶体可以是非金属单质,如卤素、H2、N2、O2; 非金属化合物,如CO2、H2S、HCl、HN3等 绝大多数有机化合物,稀有气体的晶体
7.6.3 离子极化对物质性质的影响 一、离子的电子构型
外层电子结构 电子构型 阳离子实例
ns2np6
8
Na+, Mg2+,Al3+,Ti4+
ns2np6 nd1-9
9-17
Cr3+,Mn2+,Fe3+,Cu2+
ns2np6 nd10
18
Ag+,Zn2+,Cd2+,Hg2+
s2p6d10ns2
18+2
7.3 原子晶体与分子晶体 Atomic Crystals
在原子晶体的晶格结点上排列着中性原子,原子间以极强的 共价键相结合,如单质硅(Si)、二氧化硅(SiO2)、碳化 硅(SiC)金刚砂、金刚石(C)和氮化硼BN(立方)等。

分子晶体和原子晶体

分子晶体和原子晶体

分子晶体和原子晶体
1、分子晶体和原子晶体区别:
(1)单体结构不同。

分子晶体一般是有物质分子构成,而原子晶体一般有单个原子构成;
(2)晶体内作用力不同。

分子晶体一般是通过分子间范德华力作用形成,而原子晶体一般通过原子共价键作用形成;
(3)物理性质不同。

分子晶体一般硬度、熔点较低,而原子晶体一般硬度、熔点很高。

比如白糖属于分子晶体,而钻石属于原子晶体,二者硬度、熔点差别很大;
(4)存在形式有差异。

分子晶体一般有固、液、气三种存在形式,而原子晶体一般只有固体存在形式。

分子晶体典型代表:
1、所有非金属氢化物;
2、大部分非金属单质(稀有气体形成的晶体也属于分子晶体),如:卤素(X2)、氧气、硫(S8)、氮(N2)、白磷(P4)、C60等(金刚石,和单晶硅等是原子晶体);
3、部分非金属氧化物,如:CO2、SO2、SO3、P4O6、P4O10等(如SiO2是原子晶体) ;
4、几乎所有的酸;
5、绝大多数有机化合物,如:苯、乙酸、乙醇、葡萄糖等 ;
6、所有常温下呈气态的物质、常温下呈液态的物质(除汞外)、
易挥发的固态物质。

原子晶体类型:
1、某些金属单质:晶体锗(Ge)等;
2、某些非金属化合物:氮化硼(BN)晶体、碳化硅、二氧化硅等;
3、非金属单质:金刚石、晶体硅、晶体硼等。

原子晶体 分子晶体

原子晶体 分子晶体

原子晶体分子晶体
原子晶体和分子晶体都是固体的一种形式,它们之间的主要区别在于它们的基本构建单位。

1. 原子晶体:
•构建单位:在原子晶体中,基本的构建单位是原子。

这些原子通过离子键、共价键或金属键等方式相互结合,形成均匀的晶体结构。

•例子:金属晶体(如铁、铜)、离子晶体(如氯化钠NaCl)是原子晶体的例子。

在金属晶体中,金属原子通过金属键结合,形成具有电子云的电子海。

在离子晶体中,正负离子通过离子键相互吸引形成晶体结构。

2. 分子晶体:
•构建单位:在分子晶体中,基本的构建单位是分子。

分子通过分子间的力(如范德华力、氢键、共价键等)相互结合,形成晶体结构。

•例子:葡萄糖、水合铜硫酸是分子晶体的例子。

在葡萄糖中,分子是由碳、氢、氧原子组成的葡萄糖分子,它们通过共价键结合在一起。

在水合铜硫酸中,分子是由铜、氧、硫、氢和水分子组成,它们通过范德华力等相互结合。

总的来说,原子晶体和分子晶体的区别在于它们构建晶体结构的基本单位:是原子还是分子。

在实际应用中,这两种类型的晶体具有不同的性质和特征。

分子晶体与原子晶体

分子晶体与原子晶体

一、分子晶体
回顾:分子间作用力(分子与分子之间的相互作用),存在于分子之间。
分子间作用力
范德华力 氢键
分子间作用力大小的影响因素:
①相对分子质量:同类型分子,相对分子质量越大, 分子间作用力越大。
②分子的极性:分子的极性影响分子间作用力,极性>非极性。
分子通常指的是小分子,不是指高分子。
• 典型的分子晶体:
对于组成和结构相似、晶体中又不含氢键的物质来说,相对分子质量增大, 分子间作用力增强,熔沸点升高。
对于分子间不含氢键的物质来说,由于分子间的作用力无方向性也使得分子 在堆积时会尽可能利用空间并采取紧密堆积方式,这一点与金属晶体和离子晶体 相似,分子的形状、极性以及氢键的存在都会影响分子的堆积方式。
思考与交流
小结:怎么比较晶体的熔点呢?
三、晶体熔、沸点的比较 (1)不同类型晶体熔、沸点的比较: ①不同类型晶体的熔、沸点高低的一般规律:
原__子__晶__体_____>_离__子__晶__体____>_分__子__晶__体____。 ②金属晶体的熔、沸点差别很大,如钨、铂等熔、沸点
很高,汞、铯等熔、沸点很低。
晶胞
金刚石中 每个C原子都以SP3杂化轨道与周围4个碳原子以共价键结合,构成正四面体。 C—C键间的夹角为109.5°。因为中心原子周围排列的原子的数目是有限的,所以这 种比较松散的排列与金属晶体和离子晶体中的紧密堆积排列有很大的不同。
(1)每个碳与①________以共价键结合,形成正四面体结构 (2)键角均为②________ (3)最小碳环由③____个C组成且六原子不在同一平面内 (4)每个C参与4条C—C键的形成,C原子数与C—C键之比为④______
阴离子,如金属晶体。 (4)易误认为金属晶体的熔点比分子晶体的熔点高,其实不一定,如Na

晶体结构(3, 原子晶体与分子晶体)

晶体结构(3, 原子晶体与分子晶体)

金刚石晶体
金刚石晶体
①每个碳 原子与 4 个碳原子 相连; 相连;
基本单元: 基本单元: 六元环
6 个碳
原子形成一 个六 元 环
金刚石晶体
②晶体中碳原子与C-C键数 晶体中碳原子与C 目比 1:2 。
SiO2晶体
①构成SiO2晶体的微粒是什么? 构成SiO 晶体的微粒是什么? Si原子和 原子和O Si原子和O原子
CO2
SiO2
课堂练习
° 1、 白磷分子中的键角为 60° ,分子的空间结 、 每个P原子与 构为正四面体 ,每个 原子与 3 个P原子结合成共 原子结合成共 价键。若将1分子白磷中的所有 分子白磷中的所有P-P键打开并各插 价键。若将 分子白磷中的所有 键打开并各插 个氧原子, 若每个P 入一个氧原子, 入一个氧原子,共可结合 6 个氧原子, 若每个P 原子上的孤对电子再与氧原子配位, 原子上的孤对电子再与氧原子配位,就可以得到 填分子式)。 磷的另一种氧化物 P4O10 (填分子式)。
SiO2晶体
④晶体中最小的环有 12 个 原子。 原子。
小结: 小结:三种化学键的比较
化学键 成键本质
由电子静电作用 键的方 影响键强弱 的因素 向性和 饱和性
金属键 金属阳离子和自 离子键 阴阳离子间的 静电作用 共价键 共用电子对
无 无 有
原子半径和 价电子数 离子半径和 离子电荷 键长
课堂练习 1、下列物质属于原子晶体的 化合物是 ( C ) A.金刚石 A.金刚石 B.NaOH C.二氧化硅 D.干冰 C.二氧化硅 D.干冰
小试牛刀】 【小试牛刀】
下列物质在变化过程中, 例1.下列物质在变化过程中,只需克服分子 下列物质在变化过程中 间作用力的是 ( C ) A.食盐溶解 食盐溶解 C.干冰升华 干冰升华 B.铁的熔化 铁的熔化 D.氯化铵的“升华” 氯化铵的“ 氯化铵的 升华”
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分子晶体和原子晶体
共价分子
定义:分子中原子之间全部是共价键的分子,包括单质和化合物。

例如Cl2,NH3,一般不含金属元素,特例:AlCl3、FeCl3
共价化合物
定义:只由共价键形成的化合物叫共价化合物,由分子或原子直接构成。

例如: HCl、CO2 、SiO2
分子晶体
1、定义:
分子间以范德华力相结合而形成的晶体称分子晶体。

2、构成微粒:分子
3、微粒间的作用力:范德华力
4、分子晶体的特点:
晶格质点是分子,化学式就是分子式
分子内原子之间以共价键结合(特例:稀有气体)
熔沸点较低,硬度较小,相似相溶
熔融状态不导电,有些在水溶液中可以导电
常见的分子晶体
⑴非金属氢化物如:CH4、H2O、NH3、HF
⑵部分非金属单质如:C60、O2、S、P4、Ar
⑶部分非金属氧化物如:CO2、SO2、SO3
⑷几乎所有的酸如:H2SO4、HNO3、H3PO4
⑸绝大多数有机物如:各类烃、卤代烃、醇、醛、羧酸、酯、糖类、蛋白质原子晶体
1、定义:原子间以共价键相结合而形成的空间网状结构的晶体。

2、构成微粒:原子
3、微粒之间的作用:共价键
4、物理性质:熔沸点高,硬度大,难溶于一般溶剂。

原子晶体的熔沸点高低取决于共价键的键长,共价键键能的大小,键长越短,键能越大,熔沸点越高。

常见原子晶体
某些非金属单质:硼(B)、硅(Si)、锗(Ge)、金刚石(C)
某些非金属化合物:SiC、BN等
某些氧化物:SiO2等
不同原子之间也可以通过共价键直接构成化合物,SiO2是Si、O原子以共价键形成的晶体。

石墨
石墨为层状结构,各层之间是范德华力结合,容易滑动,所以石墨很软。

各层均为平面网状结构,碳原子之间存在很强的共价键,故熔沸点很高。

为混合型晶体。

判断晶体类型的依据——三看
一看构成晶体的粒子(原子、离子、分子等)
二看粒子间的相互作用(离子键、共价键、金属键、分子间作用力)三看晶体的物理性质(硬度、熔点、沸点、导电性等)。

相关文档
最新文档