海洋地球化学 可燃冰 天然气水合物
可燃冰 研究报告

可燃冰研究报告可燃冰是一种在高压低温条件下形成的天然天然气水合物,在海洋沉积物中广泛存在。
它是由甲烷分子和水分子组成的,呈现出固态结构,状如冰。
由于其含有大量的甲烷,可燃冰被认为是一种潜在的能源资源。
近年来,可燃冰成为能源界的研究热点之一。
虽然可燃冰的存在已经被发现很久,但由于其采掘和提取成本高昂,并且存在环境和安全风险,一直没有得到大规模商业化应用。
然而,随着能源需求的不断增长和传统能源源头的日益枯竭,人们对可燃冰的研究兴趣逐渐加深。
一些国家已经开始投入大量资金和人力进行可燃冰的开采和提取研究。
中国是可燃冰研究的领头羊之一,在南海海域成功开展了多次试采。
这些试采活动显示出可燃冰具有巨大的潜力,对国家能源安全和可持续发展具有重要意义。
此外,日本、美国、加拿大等国家也在积极推动可燃冰的研究和实践,试图进一步开发和利用这一资源。
可燃冰的提取主要通过两种方式:热解和减压。
热解是将可燃冰暴露在高温环境下,使其释放出甲烷分子;减压是通过减小可燃冰的压力来释放其中的天然气。
这些方法各有优劣,需要在实际采掘中根据具体情况进行选择。
在可燃冰的开采过程中,需要考虑到一系列的技术和环境问题。
首先是钻井技术,由于可燃冰存在于海洋沉积物中,钻探深度较大,对钻井技术的要求也较高。
其次是采集和处理技术,可燃冰的采集需要特殊设备,以保证安全和高效。
此外,还需要开发环境保护技术,防止可燃冰开采过程中对海洋环境造成不可逆的影响。
虽然可燃冰具有巨大的潜力,但仍然面临一系列挑战。
首先是成本问题,目前可燃冰的开采和提取成本仍然较高,需要进一步降低成本才能实现商业化应用。
其次是技术问题,包括钻井技术、采集和处理技术等,需要进一步研究和突破。
此外,还需要考虑可燃冰对环境和气候的影响,以及相关安全问题。
可燃冰作为一种新型的能源资源,具有巨大的发展潜力。
通过不断的研究和实践,相信可燃冰的开采和利用技术会不断完善和创新,为人类提供一种清洁、高效的能源选择。
天然气水合物(可燃冰)的详解

天然气水合物(可燃冰)的详解2017年5月18日,国土资源部中国地质调查局在我国南海神狐海域宣布可燃冰试开采成功,实现连续8天稳定产气,标志着我国成为在海域可燃冰试开采中少数几个获得连续稳定产气的国家。
为此,中共中央、国务院对此次试采成功发去贺电。
贺电称,天然气水合物是资源量丰富的高效清洁能源,是未来全球能源发展的战略制高点。
经过近20年不懈努力,我国取得了天然气水合物勘查开发理论、技术、工程、装备的自主创新,实现了历史性突破。
这是我国在掌握深海进入、深海探测、深海开发等关键技术方面取得的重大成果,是中国人民勇攀世界科技高峰的又一标志性成就,对推动能源生产和消费革命具有重要而深远的影响。
此次试开采同时达到了日均产气一万方以上以及连续一周不间断的国际公认指标,不仅表明我国天然气水合物勘查和开发的核心技术得到验证,也标志着中国在这一领域的综合实力达到世界顶尖水平。
一、各国天然气水合物的开发进程海底天然气和水在低温、高压条件下可形成的一种类似状的可燃固态物质,称为天然气水合物,由于外貌极像冰雪或固体酒精,点火即可燃烧,有“可燃水”、“气冰”、“固体瓦斯”之称,在大陆边缘陆坡区等地区有较广泛发育。
天然气水合物是20世纪科学考察中发现的一种新的矿产资源,早在1965年,前苏联就首次在西西伯利亚永久冻土带发现天然气水合物矿藏,并引起多国科学家的注意。
1971年,美国学者Stoll等人在深海钻探岩心中首次发现海洋天然气水合物,并正式提出“天然气水合物”概念。
1979年,DSDP第66和67航次在墨西哥湾实施深海钻探,从海底获得91.24米的天然气水合物岩心,首次验证了海底天然气水合物矿藏的存在。
2000年开始,可燃冰的研究与勘探进入高峰期,世界上至少有30多个国家和地区参与其中。
在2013年3月12日,日本成功地在爱知县渥美半岛以南70公里、水深1000米处海底开采出可燃冰并提取出甲烷,成为世界上首个掌握海底可燃冰采掘技术的国家。
天然气水合物Natural Gas Hydrate

天然气水合物Natural Gas Hydrate天然气水合物(Natural Gas Hydrate,简称Gas Hydrate)是分布于深海沉积物或陆域的永久冻土中,由天然气与水在高压低温条件下形成的类冰状的结晶物质。
因其外观像冰一样而且遇火即可燃烧,所以又被称作“可燃冰”或者“固体瓦斯”和“气冰”。
天然气水合物甲烷含量占80%~99.9%,燃烧污染比煤、石油、天然气都小得多,而且储量丰富,全球储量足够人类使用1000年,因而被各国视为未来石油天然气的替代能源。
天然气水合物赋存于水深大于100-250米(两极地区)和大于400-650米(赤道地区)的深海海底以下数百米至1000多米的沉积层内,这里的压力和温度条件能使天然气水合物处于稳定的固态[1]。
目前,30多个国家和地区已经进行“可燃冰”的研究与调查勘探,最近两年开采试验取得较大进展。
我国计划于2015年在中国海域实施天然气水合物的钻探工程,将有力推动中国“可燃冰”勘探与开发的进程。
天然气水合物是指由主体分子(水)和客体分子(甲烷、乙烷等烃类气体,及氮气、二氧化碳等非烃类气体分子)在低温(-10℃~+28℃)、高压(1~9MPa)条件下,通过范德华力相互作用,形成的结晶状笼形固体络合物其中水分子借助氢键形成结晶网格,网格中的孔穴内充满轻烃、重烃或非烃分子。
水合物具有极强的储载气体能力,一个单位体积的天然气水合物可储载100~200倍于该体积的气体量。
组成结构编辑天然气水合物(Natural Gas Hydrate,简称Gas Hydrate),也称为可燃冰、甲烷水合物、甲烷冰、天然气水合物、“笼形包合物”(Clathrate),分子式为:CH4·nH2O,现已证实分子式为CH4·8H2O。
因其外观像冰一样而且遇火即可燃烧,所以又被称作“可燃冰”(英译为:Flammable ice)或者“固体瓦斯”和“气冰”。
形成天然气水合物有三个基本条件:温度、压力和原材料。
新能源可燃冰(天然气水合物)

您认为是否该开发可燃冰呢?请说出您的见解!
您认为有什么方法可以有效利用现有资源呢?请跟
大家分享一下您的看法!
甲烷蒸汽。但此方法难处在于不好收集。海底的多孔介质不是集中为“一 片”,也不是一大块岩石,而是较为均匀地遍布着。如何布设管道并高效 收集是急于解决的问题。
第二是降压法。有科学家提出将核废料埋入地底,利用核辐射效应使其分 解。但它们都面临着和热解法同样布设管道并高效收集的问题。
第三是置换法。研究证实,将CO2液化(实现起来很容易),注入1500米 以下的洋面(不一定非要到海底),就会生成二氧化碳水合物,它的比重 比海水大,于是就会沉入海底。如果将CO2注射入海底的甲烷水合物储层, 因CO2较之甲烷易于形成水合物,因而就可能将甲烷水合物中的甲烷分子 “挤走”,从而将其置换出来。
存在于海洋浅水生态圈中。在海洋里,以高压 及18 °C的温度下,能维持稳定存在。
可燃冰是目前世界上迫切需要的能源之一,它所 带给我们的能源可以说像太阳一样取之不尽用之 不竭,但是如果没有好好开采和善加利用,反而 会害人类走向灭亡之路,加上人们不努力阻止全 球暖化,让蕴藏在海底的甲烷喷发出来,后果好 比世界末日。
燃烧影片
可燃冰它存在于300―500米海洋深处的沉 积物中和寒冷的高纬度地区
其储量是煤炭、石油和天然气总和的两倍, 估计一立方公尺的天然气水合物,可释放 六十立方公尺的天然气, 在能源紧缺的现在发现它真可解燃眉之急。
开采方案主要有三种。 第一是热解法。利用“可燃冰”在加二氧化 碳强23倍,在人类活动中会产生,尤其在畜牧業 的生产过程中,会大量增加。甲烷同时是一种
易燃、对人体有毒性的气体。全世界蕴藏着巨 量的甲烷,其主要分布在西伯利亚沼泽(约有近8 百亿吨)、南北极冰原(约蕴藏5千亿吨)及海底中 (约有2.5~10兆吨)。只要释放十分之一,就可毒 害全人类及生物。自然界中常以甲烷水合物状态
可燃冰

天然气水合物(可燃冰)天然气水合物(Natural Gas Hydrate,简称Gas Hydrate)是分布于深海沉积物中,由天然气与水在高压低温条件下形成的类冰状的结晶物质。
因其外观象冰一样而且遇火即可燃烧,所以又被称作“可燃冰”或者“固体瓦斯”和“气冰”,被誉为21世纪具有商业开发前景的战略资源。
1.成分结构组成天然气的成分如CH4、C2H6、C3H8、C4H10等同系物以及CO2、N2、H2S等可形成单种或多种天然气水合物。
形成天然气水合物的主要气体为甲烷,对甲烷分子含量超过99%的天然气水合物通常称为甲烷水合物(Methane Hydrate)。
天然气水合物使用方便,燃烧值高,清洁无污染。
据了解,全球天然气水合物的储量是现有天然气、石油储量的两倍,具有广阔的开发前景,在标准状况下,一单位体积的气水合物分解最多可产生164单位体积的甲烷气体,因而其是一种重要的潜在未来资源。
2.分布状况全球蕴藏的常规石油天然气资源消耗巨大,预计在四五十年之后就会枯竭。
能源危机让人们忧心忡忡,而可燃冰就像是上天赐予人类的珍宝,它年复一年地积累,形成延伸数千乃至数万里的矿床。
仅仅是现在探明的可燃冰储量,就比全世界煤炭、石油和天然气加起来的储量还要多几倍。
美国、日本等国均已经在各自海域发现并开采出天然气水合物。
天然气水合物在自然界广泛分布在大陆、岛屿的斜坡地带、活动和被动大陆边缘的隆起处、极地大陆架以及海洋和一些内陆湖的深水环境。
据测算,我国南海天然气水合物的资源量为700亿吨油当量,约相当我国目前陆上石油、天然气资源量总数的二分之一。
科学家的评价结果表明,仅仅在海底区域,可燃冰的分布面积就达4000万平方公里,占地球海洋总面积的1/4。
目前,世界上已发现的可燃冰分布区多达116处,其矿层之厚、规模之大,是常规天然气田无法相比的。
科学家估计,海底可燃冰的储量至少够人类使用1000年。
海底天然气水合物作为21 世纪的重要后续能源,及其对人类生存环境及海底工程设施的灾害影响,正日益引起科学家们和世界各国政府的关注。
天然气水合物形成条件

04
深海环境中天然气水合物形成特 点
深海环境特征描述
01
02
03
高压低温
深海环境具有极高的压力 和相对较低的温度,这是 天然气水合物形成的基本 条件。
沉积物丰富
深海底部沉积物丰富,为 天然气水合物的形成提供 了充足的物质来源。
地质稳定
深海环境地质相对稳定, 有利于天然气水合物的长 期保存和聚集。
未来发展趋势预测
技术进步
随着天然气水合物勘探开发技术的不断进步,未来有望实现商业 化开发,降低开采成本,提高产量和效率。
环保要求
在环保要求日益严格的背景下,天然气水合物开发将更加注重环境 保护和可持续发展。
能源转型
在全球能源转型的大背景下,天然气水合物作为一种清洁、高效的 能源,有望在未来能源结构中占据重要地位。
可燃冰名称由来
01
因其外观像冰,遇火即燃,因此 被 称 为 “ 可 燃 冰”( Combustible ice )。
02
同时,这种天然气水合物又被 称 为“固体瓦斯”或“气冰” ,以 突出其可燃性和固态特征。
02
天然气水合物形成条件概述
高压低温环境要求
压力
天然气水合物的形成需要较高的压力,通常存在于深海沉积 物或高纬度地区的永久冻土中。在这些环境中,压力可以使 气体分子被压缩并接近水分子,从而形成水合物。
06
天然气水合物资源潜力及开发前 景
全球资源潜力评估
资源丰富
全球天然气水合物资源量巨大,据估算,其总有机碳储量是全球 已知煤、石油和天然气总储量的两倍以上。
分布广泛
天然气水合物分布于世界各大洋和陆地永久冻土带,其中海底天 然气水合物资源占主导地位。
人类新能源:海洋深处“可燃冰”

龙源期刊网 人类新能源:海洋深处“可燃冰”作者:林英来源:《课外阅读》2008年第07期天然气水合物又称可燃冰。
二十世纪七十年代,美国地质工作者在海洋中钻探时,发现了一种看上去像普通干冰的东西,当它从海底被捞上来后,那些“冰”很快就成为冒着气泡的泥水,而那些气泡却意外地被点着了,这些气泡就是甲烷。
据研究测试,这些像干冰一样的灰白色物质,是由天然气与水在高压低温条件下结晶形成的固态混合物。
目前的科研考察结果表明,它仅存于海底或陆地冻土层内。
纯净的天然气水合物外观呈白色,形似冰雪,可以像固体酒精一样直接点燃,因此,人们通俗、形象地称其为“可燃冰”。
科学家的研究结果表明,可燃冰的能量密度非常高,1立方米可燃冰可以释放出164立方米的天然气。
目前地球上可供人类开采的石油、煤炭等能源正在不断减少,许多国家正在寻找新的替代能源,可燃冰的发现立即引起人们的关注。
一些国家相继把可燃冰作为后续能源进行开发研究,对可燃冰的科学考察取得可喜成绩。
美国、日本等国家先后在海底获得了可燃冰实物样品,而加拿大在冻土层内找到了可燃冰。
综合考察表明,天然气水合物资源量巨大,据保守估算,世界上天然气水合物所含的有机碳的总资源量,相当于全球已知煤、石油和天然气总量的2倍。
特别是天然气水合物的主要成分是甲烷,燃烧后几乎没有污染,是一种绿色的新型能源。
从其储量之大、分布范围之广和应用前景之好来看,它是石油、天然气、煤等传统能源之后最佳的接替能源。
可燃冰点燃了人类二十一世纪能源利用的希望之光。
但是要触到这束希望之光并不容易。
有关研究成果表明,可燃冰形成的必要条件是低温和高压,因而它主要存在于冻土层和海底大陆坡中。
它所需要的特殊温度和压力条件,使人们采集可燃冰的实物样品十分困难,不仅需要高投资,还需要游泳航海、地质钻探、样品取存等方面的高技术和先进设备。
可燃冰的开发利用更是世界性难题。
科学家指出,开发可燃冰非常危险,由于水化物是在低温高压下形成的,它的主要成分是甲烷80%、二氧化碳20%,一旦脱离地下和海底,气化造成的“温室效应”十分严重。
海底新能源—天然气水合物又称为甲烷水合物

海底新能源—天然氣水合物(又稱為甲烷水合物)一、前言近年來天然氣水合物(Natural Gas Hydrate)的研究與開發受到重視,由於天然氣水合物所解離出的甲烷氣體可直接應用於目前的各種發電設備、運輸工具及生活所需,乃被認為可能成為本世紀的一種新能源。
亞洲名列已開發國家的日本,屬於天然資源缺乏而需仰賴大量能源進口之國家,因此非常積極探勘與準備開發周邊海域所蘊藏的天然氣水合物,其研究進度為亞洲國家之首,值得台灣在開拓自給能源政策擬定之參考二、天然氣水合物介紹天然氣水合物為冰霜狀的白色結晶固體,其主要成分是天然氣和水,於低溫高壓的情況下所形成的固態水合物。
在大自然所發現的天然氣水合物,其包含的氣體以甲烷為主,佔有99%以上,因此又稱為甲烷水合物(Methane Hydrate)。
天然氣水合物可以直接點火燃燒,形成冰火共存燃燒的情形,因此也被稱為可燃冰。
天然氣水合物形成的條件會因為其氣體成分而異,一般在溫度攝氏零下10度及壓力高於17個大氣壓的條件下,水分子形成冰晶籠狀結構,將甲烷氣體分子包覆在中間形成所謂的天然氣水合物(鄧瑞彬、林再興,2003)。
由於天然氣水合物的組成僅是水分子包覆所形成的結晶體,天然氣水合物中的氣體分子並非以離子鍵或化學鍵連結的方式與水分子結合,在溫度及壓力變動時,天然氣可輕易從固態水合物中分解出來。
在標準狀態下,1立方公尺的天然氣水合物,約可分解出0.8立方公尺的水及約164立方公尺的天然氣(Kvenvolden, 1999)。
自然界最早發現天然氣水合物是在北極圈附近的永凍層,而在近期許多國家的海洋探測計畫中,發現在世界各地陸緣的海洋沉積層也含有大量的天然氣水合物。
外觀類似冰塊的天然氣水合物,在溫度低、壓力高的地質環境下蘊藏於海床沉積層的孔隙中,此沉積層為一不透水層,在適合條件下,沉積層下方可能存有游離天然氣。
由於固態的天然氣水合物與氣態的游離天然氣其密度差異大,二者間界面會形成強反射面,即所謂的海底仿擬反射,是搜尋天然氣水合物存在的重要徵兆之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可燃冰开采方案主要有三种。 第一是热解法。利用“可燃冰”在加温时分解的特性,使其由固态 分解出甲烷蒸汽。但此方法难处在于不好收集。海底的多孔介质不是集 中为“一片”,也不是一大块岩石,而是较为均匀地遍布着。如何布设 管道并高效收集是急于解决的问题。 方案二是降压法。Байду номын сангаас科学家提出将核废料埋入地底,利用核辐射效 应使其分解。但它们都面临着和热解法同样布设管道并高效收集的问题。 方案三是“置换法”。研究证实,将CO2液化(实现起来很容易), 注入1500米以下的洋面(不一定非要到海底),就会生成二氧化碳水 合物,它的比重比海水大,于是就会沉入海底。如果将CO2注射入海底 的甲烷水合物储层,因CO2较之甲烷易于形成水合物,因而就可能将甲 烷水合物中的甲烷分子“挤走”,从而将其置换出来。
从各国迚行的试验性开采看, 目前的开采方法要么技术复杂成 本高昂,要么推广价值不大,不 适合大规模作业。 一方面,可燃冰有着其他传 统能源无可比拟的开发优势,而 另一方面,可燃冰的利用难度极 大,不仅要求技术高,而且要方 案完备。
可见,“可燃冰”带给 人类的不仅是新的希望,同 样也有新的困难,只有合理 的、科学的开发和利用, “可燃冰”才会真正的为人 类造福。
早在1778年英国化学家普 得斯特里就着手研究气体生 成的气体水合物温度和压强。 1934年,人们在油气管道和 加工设备中发现了冰状固体 堵塞现象,这些固体不是冰, 就是人们现在说的可燃冰。 1965年苏联科学家预言,天 然气的水合物可能存在海洋 底部的地表层中,后来人们 终于在北极的海底首次发现 了大量的可燃冰。
然而,可燃冰在作为未来新能源的同时,也是一 种危险的能源。可燃冰的开发利用就像一把“双 刃剑”,需要小心对待。
甲烷是绝大多数可燃冰中的主要成分,同时它也是一 种反应快速、影响明显的温室气体。可燃冰中甲烷的 总量大致是大气中甲烷数量的3000倍。作为短期温 室气体,甲烷比二氧化碳所产生的温室效应要大得多。 在大气层中释放一吨甲烷对温室效应的加剧等亍释放 七十二吨的二氧化碳。可燃冰非常不稳定,在常温和 常压环境下极易分解。这些冰球一旦从海底升到海面 就会砰然而逝,导致甲烷气的大量散失。而这种气体 迚入大气,无疑会增加温室效应,迚而使地球升温更 快。
简介 形成
天然气水合物
发现 储量及分布 开采利用 开采危害
天然气水化合物,也就是我们说的“可燃冰”其化 学式为CH4· 8H2O “可燃冰”是未来洁净的新能源。它的主要成分 是甲烷分子与水分子。它的形成与海底石油、天然 气的形成过程相仿,而且密切相关。埋于海底地层 深处的大量有机质在缺氧环境中,厌气性细菌把有 机质分解,最后形成石油和天然气(石油气)。其中许 多天然气又被包进水分子中,在海底的低温与压力 下又形成“可燃冰”。这是因为天然气有个特殊性 能,它和水可以在温度2~5摄氏度内结晶,这个结 晶就是“可燃冰”。因为主要成分是甲烷,因此也 常称为“甲烷水合物”。在常温常压下它会分解成 水与甲烷,“可燃冰”可以看成是高度压缩的固态 天然气。
全球天然气水合物分布明显呈现受地理格局控制的特 点。主要存在于世界范围内的沟盆体系、陆坡体系、边缘 海盆陆缘,尤其是与泥火山、热水活动、盐泥底辟及大型 断裂构造有关的深海盆地中;另外还包括扩张盆地和北极 地区的永久冻土区,大西洋的85%、太平洋的95%和印度 洋的96%的地区中也含有天然气水合物,并且主要分布于 海平面下200-600m的深度内
开采过程中天然气水合物的分解还会产生大量的 水,释放岩层孔隙空间,使天然气水合物赋存区地层 的固结性变差,引发地质灾变。海洋天然气水合物的 分解则可能导致海底滑塌事件。迚入海水中的甲烷量 如果特别大,则还可能造成海水汽化和海啸,甚至会 产生海水动荡和气流负压卷吸作用,严重危害海面作 业甚至海域航空作业。 迚入海水中的甲烷会影响海洋生态。甲烷迚入海 水中后会发生较快的微生物氧化作用,影响海水的化 学性质。甲烷气体如果大量排入海水中,其氧化作用 会消耗海水中大量的氧气,使海洋形成缺氧环境,从 而对海洋微生物的生长发育带来危害。
外表上看它像冰霜,从微观上看其分子结构就像一个一个由 若干水分子组成的笼子,每个笼子里“关”一个气体分子。 目前,可燃冰主要分布在东、西太平洋和大西洋西部边缘, 是一种极具发展潜力的新能源,但由于开采困难,海底可燃冰 至今仍原封不动地保存在海底和永久冻土层内。
可燃冰存在于海底或陆地冻土带内,具有非常高的使用 价值,1m3可燃冰等于164m3 的常规天然气藏,是其他非常 规气源岩( 如煤层、黑色页岩)能量密度的10 倍,是常规天 然气能量密度的2 ~ 5倍
可燃冰 的形成有三个基本条件 第一,温度不能太高,在零度 以上可以生成0℃~10℃为宜, 最高限是20℃左右,温度再高 “可燃冰”就会分解。 第二,压力要够,但也不能太 大,0℃时,30个大气压以上 它就可能生成 第三,要有气源。
目前,世界上有79 个国家和地区 都发现了天然气水合物气藏。各国科 学家对全球天然气水合物资源量较为 一致的评价为2 × 1016 m3,是剩余 天然气储量( 156 × 1014 m3 ) 的128 倍。据第28 届国际地质大会提供的资 料显示,海底有大量存在的天然气水 合物,可满足人类1 000 年的能源需 要。按照目前的消耗速度,再有50- 60年,全世界的石油资源将消耗殆尽。 可燃冰的发现,让陷入能源危机的人 类看到新希望。 我国可燃冰主要分布在南海海域、 东海海域、青藏高原冻土带以及东北 冻土带,其中,南海北部陆坡的可燃 冰资源量达185 亿t 油当量,相当于南 海深水勘探已探明的油气地质储备的 6 倍,达到我国陆上石油总量的50%。