聚类分析在现实中的应用.doc
生活中聚类的例子

生活中聚类的例子1、基于用户位置信息的商业选址随着信息技术的快速发展,移动设备和移动互联网已经普及到千家万户。
在用户使用移动网络时,会自然的留下用户的位置信息。
随着近年来GIS地理信息技术的不断完善普及,结合用户位置和GIS地理信息将带来创新应用。
如百度与万达进行合作,通过定位用户的位置,结合万达的商户信息,向用户推送位置营销服务,提升商户效益。
希望通过大量移动设备用户的位置信息,为某连锁餐饮机构提供新店选址。
2、中文地址标准化处理地址是一个涵盖丰富信息的变量,但长期以来由于中文处理的复杂性、国内中文地址命名的不规范性,使地址中蕴含的丰富信息不能被深度分析挖掘。
通过对地址进行标准化的处理,使基于地址的多维度量化挖掘分析成为可能,为不同场景模式下的电子商务应用挖掘提供了更加丰富的方法和手段,因此具有重要的现实意义。
3、国家电网用户画像随着电力体制改革向纵深推进,售电侧逐步向社会资本放开,当下的粗放式经营和统一式客户服务内容及模式,难以应对日益增长的个性化、精准化客户服务体验要求。
如何充分利用现有数据资源,深入挖掘客户潜在需求,改善供电服务质量,增强客户黏性,对公司未来发展至关重要。
对电力服务具有较强敏感度的客户对于电费计量、供电质量、电力营销等各方面服务的质量及方式上往往具备更高的要求,成为各级电力公司关注的重点客户。
经过多年的发展与沉淀,目前国家电网积累了全网4亿多客户档案数据和海量供电服务信息,以及公司营销、电网生产等数据,可以有效的支撑海量电力数据分析。
因此,国家电网公司希望通过大数据分析技术,科学的开展电力敏感客户分析,以准确地识别敏感客户,并量化敏感程度,进而支撑有针对性的精细化客户服务策略,控制电力服务人工成本、提升企业公众形象。
4、非人恶意流量识别2016年第一季度Facebook发文称,其Atlas DSP平台半年的流量质量测试结果显示,由机器人模拟和黑IP等手段导致的非人恶意流量高达75% . 仅2016上半年,AdMaster反作弊解决方案认定平均每天能有高达28% 的作弊流量。
聚类分析在STATA中的实现和案例.doc

第15章聚类分析聚类分析是根据样品或指标的“相似”特征进行分类的一种多元统计分析方法,其目标是发现样品或指标的自然分类方法。
在社会经济领域中存在着大量分类问题,比如对我国31个省市自治区独立核算工业企业经济效益进行分析,一般不逐个分析省市自治区,而较好的做法是选取反映企业经济效益的代表性指标,如百元固定资产实现利率、资金利税率、产值利税率、百元销售收入实现利润、全员劳动生产率等等,根据这些指标对31个省市自治区进行分类,然后根据分类结果对企业经济效益进行综合评价,就易于得出科学的分析。
聚类分析方法包括两个体系:系统聚类和非系统聚类。
系统聚类法包括最短距离法、最长距离法、中间距离法、可变距离法、重心法、类平均法、加权类平均法、Ward最小方差法。
非系统聚类方根包括K均值、K中位数法。
15.1 相似性测度很多多元统计方法,包括聚类分析,是基于变量或观测值的相近程度来分析的,因此在介绍聚类的Stata命令之前,我们首先介绍一下Stata中关于矩阵相似性或异性的测度方法。
统计学中用各种距离来测度变量或观测值的相似性或相异性。
一般将这种相似性称为相似系数,来刻画两个指标的相似程度,相似系数绝对值越接近于1,表示两个指标之间的关系越密切,相似系数绝对值越接近于0,则表示两个指标之间的关系越疏远。
Stata计算相似性的命令格式如下:matrix dissimilarity matname = [varlist] [if] [in] [,options]一般情况下,我们选用默认情况就行了,对于options不用去理。
15.2 系统聚类法命令格式1(利用数据进行系统聚类):cluster singlelinkage [varlist] [if] [in] [, options] 最短距离法将两个组之间最接近的一对观测案例之间的相异性作为两个组之间的相异性来加以计算。
尽管简单,但是这一方法对特异值或测量错误的耐抗性较差。
聚类分析应用范例

安徽工程大学本科课程设计(论文)专业:题目:基于聚类分析方法的农村消费状况探索作者姓名: ***指导老师:成绩:年月日摘要多元统计分析是运用数理统计方法来研究解决多指标问题的理论和方法。
近30年来,随着计算机应用技术的发展和科研生产的迫切需要,多元统计分析被广泛应用于自然学科和社会科学的各个学科,已经成为人们解决实际问题不可或缺的重要工具。
我国是一个农业大国,农民约占全国总人口的70%以上,是最大的消费群体,进行研究时要处理大量的复杂信息,因此运用统计方法探索农村消费状况有着重要的实际意义。
本文首先从我国农村消费现状入手,采用聚类分析方法对我国各地区农村消费支出结构水平进行分类比较研究,以得出各因素对农村消费状况影响程度,进而得出了相应的结论并提出增加我国农村居民消费的对策:一是增加农村居民收入;二是提高消费者素质;三是改善农村居民的消费环境;四是完善农村社会保障;五是统筹协调发展。
本文所研究的农村消费状况就受多种因素支配,各种因素之间也常存在着一定的内在联系和相互制约。
需要分析哪些是主要的,本质的,哪些是次要的,片面的,他们之间是什么样的关系等问题,多元统计分析正是解决这些问题的有力工具。
因而利用统计方法中的聚类分析有着重要的应用价值。
关键词:农村;消费;聚类分析引言经过改革开放三十年的风雨历程,在投资、消费和出口三驾马车的拉动下,我国经济飞速发展,人民生活水平日益提高,居民收入不断增长,全面建设小康社会取得重大进展,实现了人民生活由温饱不足向总体小康的历史性跨越。
十七届三中全会提出“到2020年,农村改革发展基本目标任务是:农村经济体制更加健全,城乡经济社会发展一体化体制机制基本建立;现代农业建设取得显著进展,农业综合生产能力明显提高,国家粮食安全和主要农产品供给得到有效保障;农民人均纯收入比2008年翻一番,消费水平大幅提升,绝对贫困现象基本消除[1]。
”党中央正式把提升农村居民消费水平作为未来我国经济发展的目标,不仅体现了改革开放给农村居民生活所带来的显著变化,更体现了整个中国居民的整体消费水平的增长,借此稳定中国的经济基础,实现国民经济的可持续发展的长远规划。
聚类分析的应用案例

聚类分析的应用案例聚类分析是一种常用的数据分析方法,它可以帮助我们对数据进行分类和分组,发现数据中的潜在模式和规律。
在现实生活和工作中,聚类分析有着广泛的应用,下面我们将介绍几个聚类分析的应用案例。
首先,聚类分析在市场营销领域有着重要的应用。
在市场营销中,我们常常需要对顾客进行分类,以便针对不同类别的顾客制定不同的营销策略。
通过聚类分析,我们可以根据顾客的消费行为、偏好等特征将顾客进行分类,从而更好地理解顾客群体的特点,并针对性地开展营销活动,提高营销效果。
其次,聚类分析在医学领域也有着重要的应用。
在医学研究中,我们常常需要对疾病患者进行分类,以便更好地了解不同类型患者的病情特点和治疗效果。
通过聚类分析,我们可以根据患者的临床表现、病情指标等特征将患者进行分类,从而更好地指导临床诊断和治疗方案的制定,提高治疗效果和患者生存率。
此外,聚类分析还在推荐系统中有着重要的应用。
在电子商务平台和社交媒体平台上,推荐系统可以根据用户的行为和偏好向其推荐商品、信息等内容。
而聚类分析可以帮助推荐系统对用户进行分类,从而更好地理解用户的兴趣和偏好,提高推荐的准确性和个性化程度,增强用户体验。
最后,聚类分析还在金融领域有着重要的应用。
在金融风控和信用评估中,我们常常需要对客户进行分类,以便更好地评估客户的信用风险和制定个性化的信贷方案。
通过聚类分析,我们可以根据客户的财务状况、信用记录等特征将客户进行分类,从而更好地了解客户的信用状况,提高风险控制的精准度和效果。
总之,聚类分析在各个领域都有着重要的应用,它可以帮助我们更好地理解数据和问题的本质,发现数据中的潜在规律和价值信息,为决策提供科学依据。
随着数据科学和人工智能技术的不断发展,相信聚类分析的应用领域会越来越广泛,对我们的生活和工作产生越来越大的影响。
聚类分析定义及其应用

在生物信息学中,聚类分析被广泛用于基因组、蛋白质组和代谢组学的研究。 例如,可以将基因表达数据聚类为不同的模式,以发现潜在的生物过程;或者 将蛋白质相互作用网络中的节点聚类为不同的模块,以发现潜在的功能单元
聚类分析的应用
3. 市场细分
在商业中,聚类分析被用来进行市场细分。通过分析消费者的购买行为、人口 统计信息和其他特征,可以将消费者分为不同的群体,并针对每个群体制定不 同的营销策略
20XX
聚类分析定义及其应用
演讲者:xxx
-
聚类分析的定义
目录
聚类分析的应用
聚类分析定义及其应用
聚类分析是一种无监督学习方法,它在统计学、机器 学习、生物信息学等领域有着广泛的应用。聚类分析 的主要目的是将数据集中的对象分组,使得同一组 (即,一个聚类)内的对象相互之间更相似(根据所选 的相似性度量),而不同组的对象尽可能不同
聚类分析的定义
评估和解释聚类结果
评估聚类结果的常见度量包 括轮廓系数(Silhouette Coefficient)、DaviesBouldin Index、CalinskiHarabasz Index等。此外, 为了解释聚类结果,我们通 常需要使用某种可视化工具 (如散点图、树状图、热力 图等)来展示聚类结果
聚类分析的定义
聚类算法
聚类算法是用于发现聚类的算法。这些算法可以大致分为以下几类 划分方法:这种方法首先将数据集随机划分为K个聚类,然后逐步改进聚类 以更好地匹配数据。代表性的算法有K-Means和K-Medoids
聚类分析的定义
层次方法:这种方法通过反复合 并最相似的聚类来形成一棵聚类 树。用户可以选择合并的次数, 或者通过剪切树来获得不同的聚 类数目。代表性的算法有BIRCH 和Agglomerative Hierarchical
聚类分析在农业大数据中的应用

聚类分析在农业大数据中的应用随着技术的不断发展,农业大数据正在深度融合农业领域,为现代农业带来了前所未有的变革和机遇。
而在农业大数据的应用中,聚类分析技术具有十分重要的作用,它可以帮助我们更好地理解和把握农业生产中的复杂性和多样性,促进农业生产的科学化、精细化和可持续化发展。
一、聚类分析简介聚类分析是一种基于计算机算法的数据挖掘技术,它通过对数据样本进行聚类和分类,将相似的样本归为一类,不同的样本归为不同类。
在农业大数据中,聚类分析可以帮助我们发现农业生产中的规律、特点和趋势,从而提高生产效率和决策水平。
二、聚类分析在农业大数据领域的应用1. 农田土壤分析在农田土壤分析中,聚类分析可以通过对土壤样本中的不同物理、化学和生物指标进行聚类分类,帮助农民更好地了解土地肥力状况、作物需求和肥料投入量。
例如,在农业科技示范区的土壤监测和改良中,聚类分析可对土壤性质进行分析,有效评估土壤质量,减少土地污染和肥料过量使用。
2. 农产品各项指标分析在农产品生产中,聚类分析可对作物生长情况、产量、品质和后期质量变化进行分析,提高农产品的数量和品质。
例如,通过对番茄农场不同采摘期番茄的营养指标进行聚类分析,可以得出番茄不同采摘期间营养元素的变化规律,从而定出最佳的采摘时机。
3. 区域农业资源分析聚类分析在区域农业资源的识别和评估方面具有很大的作用。
例如,在广阔的农村地域中,如果想把不同的农村地域巧妙地利用起来,聚类分析就可以根据自然、气候和地理环境等方面,把同类的区域识别出来,提高资源的利用效率。
4. 农业生产全流程监控聚类分析可以跟踪记录生产全流程中的各项指标,以发现潜在的问题和改进方案。
例如,在农业生产过程中,聚类分析可以对农场内各环节的生产情况进行分类,分析不同环节对产量、品质和生产成本的影响,优化农业生产流程,提高农业生产效率和经济效益。
三、聚类分析在未来农业大数据应用中的前景未来,农业大数据中聚类分析的应用将充满前景。
聚类分析在现实中的应用

聚类分析在现实中的应用聚类分析是一种常用的机器学习方法,可以将类似的数据点归为一类。
通过找到数据点之间的相似性和相互关系,聚类分析可以帮助我们发现数据中的模式和隐藏的结构。
在现实生活中,聚类分析有着广泛的应用。
1.市场细分:聚类分析可以帮助企业将顾客划分为不同的市场细分。
通过分析顾客的消费行为、偏好和特征,企业可以了解不同市场细分的需求和特点,并根据这些特点制定有针对性的市场营销策略。
2.人群分类:聚类分析可以帮助社会科学家和市场调研人员将人群划分为不同的分类。
比如,在城市规划中,可以将居民按照收入、职业和居住区域等因素进行聚类,以了解不同人群的需求和生活方式,从而为城市规划提供参考。
3.图像分析:聚类分析可以用于图像处理和分析中,帮助识别和分类图像。
通过对图像中的像素进行聚类,可以将图像分割成不同的区域,从而实现目标检测、图像识别和图像分析等应用。
5.医学诊断:聚类分析可以用于医学领域,帮助医生对疾病进行分类和诊断。
通过对患者的病历、症状和生理指标等进行聚类分析,可以帮助医生了解不同疾病之间的关系,从而提供更准确的诊断和治疗建议。
6.推荐系统:聚类分析可以用于推荐系统中,帮助推荐个性化的产品或服务。
通过将用户划分为不同的群体或兴趣类别,可以根据用户的消费行为和偏好进行推荐,提高推荐系统的准确性和用户满意度。
7.网络安全:聚类分析可以用于网络安全领域,帮助识别和防止恶意活动。
通过对网络流量和日志数据进行聚类分析,可以发现异常行为和潜在威胁,并及时采取相应的安全措施。
8.交通流分析:聚类分析可以帮助交通规划者和城市管理者分析交通流量和拥堵情况。
通过对交通数据进行聚类分析,可以了解交通流量的分布和变化趋势,从而优化交通网络和改善交通状况。
总之,聚类分析在现实生活中有着广泛的应用。
无论是市场调研、社会科学研究还是医学诊断等领域,聚类分析都可以帮助我们发现数据中的模式和结构,提取有价值的信息,从而辅助决策和解决实际问题。
模糊聚类分析在生活中的运用

模糊聚类分析在生活中的运用
模糊聚类分析是一种基于模糊数学技术的数据分析方法,它能够有效地将数据分类,让用户能够更加清楚的获得信息。
自20世纪70年代以来,模糊聚类分析在许多学科和行业中都得到了广泛的应用,其中包括社会学、医学、金融、商业等多个领域。
模糊聚类分析在生活中也有非常多的运用,下面就让我们来看看模糊聚类分析在生活中的运用。
首先,模糊聚类分析在精准医疗领域中有着重要的应用。
例如,数据挖掘技术可以利用模糊聚类分析,从海量的医疗数据中快速分析出病人的病变模式。
对于上述模式的发现,可以帮助医生更有针对性地采取临床治疗方法,为病人提供更加靶向性的治疗,从而提高治疗效果。
其次,模糊聚类分析还在社会调查领域占据了重要的地位。
比如,社会学家可以利用模糊聚类分析对大量的调查结果进行分析,对社会现象进行归纳概括,分出不同的群体,如性别、年龄等。
这有助于社会学家们把握社会现象的发展趋势,从而更好地为政府提供决策依据,给社会发展提供建议。
此外,模糊聚类分析还在智能推荐系统中得到了广泛的运用。
比如,当我们在电商网站上购买商品时,模糊聚类分析可以根据用户的浏览记录、购买记录等进行分析,为用户推荐商品,从而提高购买效率。
以上就是模糊聚类分析在生活中的运用。
可以看出,模糊聚类分
析是一种强大的数据分析工具,能够有效地提取出大量的信息,为各个领域的发展提供有力的支撑。
未来,模糊聚类分析将在更多领域发挥作用,为人类社会作出更大的贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
姓名:于一发学号:XXXX105XXXX2 班级:07信息聚类分析在现实中的应用
随着生产技术和科学的发展,人类的认识不断加深,分类越来越细,要求也越来越高,光凭经验和专业知识是不能确切分类的,往往需要定量和定性的分析结合起来去分类,于是工具逐渐被引进分类学中,形成了数值分类学。
后来随着多元分析的引进,聚类分析逐渐从数值分类学中脱离出来形成一个相对独立的分支。
一、聚类分析的定义:
聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。
聚类分析的目标就是在相似的基础上收集数据来分类。
聚类源于很多领域,包括数学,计算机科学,统计学,生物学和经济学。
在不同的应用领域,很多聚类技术都得到了发展,这些技术方法被用作描述数据,衡量不同数据源间的相似性,以及把数据源分类到不同的簇中。
从统计学的观点看,聚类分析是通过数据建模简化数据的一种方法。
传统的统计聚类分析方法包括系统聚类法、分解法、加入法、动态聚类法、有序样品聚类、有重叠聚类和模糊聚类等。
采用k-均值、k-中心点等算法的聚类分析工具已被加入到许多著名的统计分析软件包中,如SPSS、SAS 等。
从机器学习的角度讲,簇相当于隐藏模式。
聚类是搜索簇的无监督学习过程。
与分类不同,无监督学习不依赖预先定义的类或带类标记的训练实例,需要由聚类学习算法自动确定标记,而分类学习的实例或数据对象有类别标记。
聚类是观察式学习,而不是示例式的学习。
二、聚类分析的应用:
聚类分析师数据挖掘中一种常用的技术,在实践中可以多角度应用于市场分析,为市场营销战略和策略的制定提供科学合理的参考。
主要介绍其在市场分析中的应用,并且我们从客户细分、实验市场选择、抽样方案设计、销售篇区确定、市场机会研究五个方面探讨聚类分析在市场分析中的具体应用。
(1)在客户细分中的应用:
消费同一种类的商品或服务时,不同的客户有不同的消费特点,通过研究这些特点,企业可以制定出不同的营销组合,从而获取最大的消费者剩余,这就是客户细分的主要目的。
常用的客户分类方法主要有三类:经验描述法,由决策者根据经验对客户进行类别划分;传统统计法,根据客户属性特征的简单统计来划分客户类别;非传统统计方法,即基于人工智能技术的非数值方法。
聚类分析法兼有后两类方法的特点,能够有效完成客户细分的过程。
例如,客户的购买动机一般由需要、认知、学习等内因和文化、社会、家庭、小群体、参考群体等外因共同决定。
要按购买动机的不同来划分客户时,可以把前述因素作为分析变量,并将所有目标客户每一个分析变量的指标值量化出来,再运用聚类分析法进行分类。
在指标值量化时如果遇到一些定性的指标值,可以用一些定性数据定量化的方法加以转化,如模糊评价法等。
除此之外,可以将客户满意度水平和重复购买机会大小作为属性进行分类;还可以在区分客户之间差异性的问题上纳入一套新的分类法,将客户的差异性变量划分为五类:产品利益、
客户之间的相互作用力、选择障碍、议价能力和收益率,依据这些分析变量聚类得到的归类,可以为企业制定营销决策提供有益参考。
以上分析的共同点在于都是依据多个变量进行分类,这正好符合聚类分析法解决问题的特点;不同点在于从不同的角度寻求分析变量,为某一方面的决策提供参考,这正是聚类分析法在客户细分问题中运用范围广的体现。
(2)在实验市场选择中的应用:
实验调查法是市场调查中一种有效的一手资料收集方法,主要用于市场销售实验,即所谓的市场测试。
通过小规模的实验性改变,以观察客户对产品或服务的反应,从而分析该改变是否值得在大范围内推广。
实验调查法最常用的领域有:市场饱和度测试。
市场饱和度反映市场的潜在购买力,是市场营销战略和策略决策的重要参考指标。
企业通常通过将消费者购买产品或服务的各种决定因素(如价格等)降到最低限度的方法来测试市场饱和度。
或者在出现滞销时,企业投放类似的新产品或服务到特定的市场,以测试市场是否真正达到饱和,是否具有潜在的购买力。
前述两种措施由于利益和风险的原因,不可能在企业覆盖的所有市场中实施,只能选择合适的实验市场和对照市场加以测试,得到近似的市场饱和度;产品的价格实验。
这种实验往往将新定价的产品投放市场,对顾客的态度和反应进行测试,了解顾客对这种价格的是否接受或接受程度;新产品上市实验。
波士顿矩阵研究的企业产品生命周期图表明,企业为了生存和发展往往要不断开发新产品,并使之向明星产品和金牛产品顺利过渡。
然而新产品投放市场后的失败率却很高,大致为66%到90%。
因而为了降低新产品的失败率,在产品大规模上市前,运用实验调查法对新产品的各方面(外观设计、性能、广告和推广营销组合等)进行实验是非常有必要的。
(3)在销售片区确定中的应用
销售片区的确定和片区经理的任命在企业的市场营销中发挥着重要的作用。
只有合理地将企业所拥有的子市场归成几个大的片区,才能有效地制定符合片区特点的市场营销战略和策略,并任命合适的片区经理。
聚类分析在这个过程中的应用可以通过一个例子来说明。
某公司在全国有20个子市场,每个市场在人口数量、人均可支配收入、地区零售总额、该公司某种商品的销售量等变量上有不同的指标值。
以上变量都是决定市场需求量的主要因素。
把这些变量作为聚类变量,结合决策者的主观愿望和相关统计软件提供的客观标准,接下来就可以针对不同的片区制定合理的战略和策略,并任命合适的片区经理了。
(4)在市场机会研究中的应用
企业制定市场营销战略时,弄清在同一市场中哪些企业是直接竞争者,哪些是间接竞争者是非常关键的一个环节。
要解决这个问题,企业首先可以通过市场调查,获取自己和所有主要竞争者在品牌方面的第一提及知名度、提示前知名度和提示后知名度的指标值,将它们作为聚类分析的变量,这样便可以将企业和竞争对手的产品或品牌归类。