中考数学专题复习练习卷 整式及其运算
专题02 整式及其运算(共37题)(原卷版)-学易金卷:2023年中考数学真题分项汇编(全国通用)

专题02整式及其运算(37题)一、单选题1.(2023·宁夏·统考中考真题)下列计算正确的是()A .532a a -=B .632a a a ÷=C .()222a b a b -=-D .()3263a b a b =2.(2023·四川德阳·统考中考真题)已知3x y =,则13x +=()A .yB .1y+C .3y+D .3y3.(2023·四川德阳·统考中考真题)在“点燃我的梦想,数学皆有可衡”数学创新设计活动中,“智多星”小强设计了一个数学探究活动:对依次排列的两个整式m ,n 按如下规律进行操作:第1次操作后得到整式串m ,n ,n m -;第2次操作后得到整式串m ,n ,n m -,m -;第3次操作后…其操作规则为:每次操作增加的项,都是用上一次操作得到的最末项减去其前一项的差,小强将这个活动命名为“回头差”游戏.则该“回头差”游戏第2023次操作后得到的整式中各项之和是()A .m n+B .mC .n m-D .2n4.(2023·四川雅安·统考中考真题)若2210m m +-=.则2243m m +-的值是()A .1-B .5-C .5D .3-5.(2023·四川雅安·统考中考真题)下列运算正确的是()A .235a b ab+=B .()325a a =C .248a a a ⋅=D .32a a a ÷=6.(2023·湖南·统考中考真题)下列计算正确的是()A .235x x x ×=B .()336x x =C .()211x x x +=+D .()222141a a -=-7.(2023·山东泰安·统考中考真题)下列运算正确的是()A .235a b ab +=B .222()a b a b -=-C .()3235ab a b =D .()3253412a a a⋅-=-8.(2023·吉林长春·统考中考真题)下列运算正确的是()A .32a a a-=B .23a a a ⋅=C .()325a a =D .623a a a ÷=S S>B.A.1212.(2023·江苏徐州·统考中考真题)下列运算正确的是(A.236a a a⋅=B.13.(2023·辽宁·统考中考真题)下列运算正确的是(A.23+=B.a a a2314.(2023·湖北鄂州·统考中考真题)下列运算正确的是(A.235+=B.a a a18.(2023·江苏无锡·统考中考真题)下列运算正确的是()A .236a a a ⨯=B .235a a a +=C .22(2)4a a -=-D .642a a a ÷=19.(2023·河北·统考中考真题)代数式7x -的意义可以是()A .7-与x 的和B .7-与x 的差C .7-与x 的积D .7-与x 的商20.(2023·辽宁营口·统考中考真题)下列计算结果正确的是()A .3332a a a ⋅=B .222853a a a -=C .824a a a ÷=D .()32639a a -=-21.(2023·山东东营·统考中考真题)下列运算结果正确的是()A .339x x x ⋅=B .336235x x x +=C .()32626x x =D .()()2232349x x x+-=-22.(2023·四川巴中·统考中考真题)我国南宋时期数学家杨辉于1261年写下的《详解九章算法》,书中记载的图表给出了()n a b +展开式的系数规律.10()1a b +=111()a b a b +=+121222()2a b a ab b +=++1331+=+++33223()33a b a a b ab b 当代数式432125410881x x x x -+-+的值为1时,则x 的值为()A .2B .4-C .2或4D .2或4-23.(2023·四川巴中·统考中考真题)若x 满足2350x x +-=,则代数式2263x x +-的值为()A .5B .7C .10D .13-24.(2023·河北·统考中考真题)光年是天文学上的一种距离单位,一光年是指光在一年内走过的路程,约等于129.4610km ⨯.下列正确的是()A .12119.4610109.4610⨯-=⨯B .12129.46100.46910⨯-=⨯C .129.4610⨯是一个12位数D .129.4610⨯是一个13位数二、填空题三、解答题33.(2023·甘肃兰州·统考中考真题)计算:()()()2234x y x y y y +---.34.(2023·河北·统考中考真题)现有甲、乙、丙三种矩形卡片各若干张,卡片的边长如图1所示(1)a >.某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙),如图2和图3,其面积分别为12,S S .(1)请用含a 的式子分别表示12,S S ;当2a =时,求12S S +的值;(2)比较1S 与2S 的大小,并说明理由.。
中考数学复习《整式的加减》专题训练-附带参考答案

中考数学复习《整式的加减》专题训练-附带参考答案一、选择题1.下列代数式中:1x ,2x+y,13a2b,x−yπ,5y4x,0整式有()A.3个B.4个C.5个D.2个2.单项式−4xy2的系数为()A.4 B.2 C.-2 D.-43.下列各选项中的两个式子,属于同类项的是()A.−a2b与ab2B.3xy与−4yx C.3a2b与3a2c D.−3xy与xyz4.对于多项式−3x−2xy2−1,下列说法中,正确的是()A.一次项系数是3 B.最高次项是2xy2C.常数项是-1 D.是四次三项式5.要使关于x,y的多项式4x+7y+3−ky+2k不含y项,则k的值是()A.0 B.7 C.72D.−76.长方形的长是3a,宽是2a−b,则长方形的周长是().A.10a−2b B.10a+2b C.6a−2b D.10a−b7.下列运算中,正确的是()A.4m−m=3B.−2(m−n)=−2m+2nC.3(m−n)=3m−n D.−4(m+n)=−4m+4n8.已知关于x的多项式mx2−mx−2与3x2+mx+m的和是单项式,则代数式m2−4m+4的值是()A.0 B.2或-3 C.25 D.25或0二、填空题9.代数式xy3z2−3mn+1是次三项式.10.把多项式2ab2−5a2b−7+a3b3按字母b的降幂排列,排在第三项的是;11.若5a4b与2a2x b y是同类项,则x2−y=.12.已知M=−m2+3m−4,N=2m2−5m+8则M+2N=.13.已知a2+2ab=−2,ab−b2=−4则2a2+72ab+12b2的值为.三、解答题14.化简:(1)5a2+2ab−4a2−3ab(2)2x2−[3(−53x2+23xy)−(xy−3x2)]+2xy15.先化简,再求值:12x−2(x−13y2)+(−32x+13y2),其中x=23,y=−2.16.若关于x、y的多项式(mx2 +2xy-x)与(3x2-2nxy+3y)的差不含二次项,求n m的值.17.已知多项式−3x2y m−1+x3y−3x4−1与单项式2x4y的次数相同.(1)求m的值;(2)把这个多项式按x的降幂排列.18.已知A=2x2+xy+3y−1,B=x2−xy.(1)当x=−1,y=3时,求A−2B的值;(2)若3A−6B的值与y的值无关,求x的值.参考答案1.B2.D3.B4.C5.B6.A7.B8.D9.六10.-5a2b11.312.3m2−7m+1213.-214.(1)解:原式=5a2−4a2+2ab−3ab=a2−ab(2)解:原式=2x2−(−5x2+2xy−xy+3x2)+2xy =2x2−(−2x2+xy)+2xy=2x2+2x2−xy+2xy=4x2+xy15.解:原式=12 x﹣2x +23y2−32x+13y2=﹣3x+y2当x =23,y=﹣2时,原式= −3×23+(−2)2 =-2+4=2.16.解:原式= (m- 3)x2+(2+2n)xy-x- 3y,由题意,得m-3 = 0,2+2n = 0∴m = 3,n =-1,∴n m= (-1)3=- 117.(1)解:单项式2x4y是五次单项式可知该多项式是五次四项式所以2+m−1=5解得m=4;(2)解:按x的降幂排列为-3x4+x3y-3x2y3-1.18.(1)解:A−2B=2x2+xy+3y−1−2x2+2xy=3xy+3y−1把x=−1,y=3代入得3×(−1)×3+3×3−1=−1(2)解:3A−6B=3(A−2B)=9xy+9y−3=9y(x+1)−3当x =-1时,原式的值与无关,且值为-3。
中考数学复习《整式及其运算》练习题含答案

中考数学复习 整式及其运算一、选择题1.计算a·a 2的结果是( D )A .aB .a 2C .2a 2D .a 32.下列计算正确的是( C )A .3a 2+2a 3=5a 5B .a +2a =2a 2C .2a ·3a 2=6a 3D .(mn 2)3=mn 63.下列计算正确的是( D )A .(a +2)(a -2)=a 2-2B .(a +1)(a -2)=a 2+a -2C .(a +b )2=a 2+b 2D .(a -b )2=a 2-2ab +b 24.由于受禽流感H7N9的影响,我市某城区今年2月份鸡的价格比1月份下降a %,3月份比2月份下降b %,已知1月份鸡的价格为24元/千克,设3月份鸡的价格为m 元/千克,则( D )A .m =24(1-a %-b %)B .m =24(1-a %)b %C .m =24-a %-b %D .m =24(1-a %)(1-b %)【解析】可得2月份鸡的价格为24(1-a %),再由3月份比2月份下降b %,即可得三月份鸡的价格为24(1-a %)(1-b %).故选D.5.按如图所示的程序计算,若开始输入n 的值为1,则最后输出的结果是( C )A .3B .15C .42D .63【解析】将n =1代入得:n (n +1)=2<15,将n =2代入得:2(2+1)=6<15.将n =6代入得:6×(6+1)=42>15,即输出42,故选C.6.已知M =29a -1,N =a 2-79a (a 为任意实数),则M ,N 的大小关系为( A )A.M<N B.M=NC.M>N D.不能确定【解析】将M与N代入N-M中,利用完全平方公式变形后,根据完全平方式恒大于等于0得到差为正数,即可判断出大小.N-M=a2-a+1=(a-12+34>0,∴N>M,即M2)<N.故选A.二、填空题7.分解因式:mx2-4m=__m(x+2)(x-2)__.8.已知a2+a=1,则代数式3-a-a2的值为__2__.【解析】∵a2+a=1,∴原式=3-(a+a2)=3-1=2.9.在一次大型考试中,某考点设有60个考场,考场号设为01~60号,相应的有60个监考组,组数序号记为1~60号,每场考前在监考组号1~60中随机抽取一个,被抽到的号对应的监考组就到01号考场监考,其他监考组就依次按序号往后类推,例如:某次抽取到的号码为8号,则第8监考组到01号考场监考,第9监考组到02号考场监考,…,依次按序类推.现抽得的号码为22号,试问第a(1≤a≤21)监考组应到__(a+39)__号考场监考.(用含a的代数式表示)【解析】由于22号监考1考场;23号监考2考场,依此类推……序号1......a......212223 (60)考场1考场2考场……39考场所以60号监考39考场,1号监考40考场,……依此类推a号监考(a+39)考场.10.已知x-y=7,xy=2,则x2+y2的值为__53__.【解析】x2+y2=(x-y)2+2xy=49+4=53.11.一个大正方形和四个全等的小正方形按图①②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是__ab__.(用含a,b的代数式表示)【解析】设小正方形边长为x,则a-b=4x,大正方形边长为a-2x,②中阴影面积S =(a-2x)2-4x2=a2-4ax=a(a-4x)=ab.三、解答题12.化简:(a +2b )(a -2b )-12b (a -8b ). 解:原式=a 2-4b 2-12ab +4b 2=a 2-12ab13.已知x 2+x -5=0,求代数式(x -1)2-x (x -3)+(x +2)(x -2)的值.解:原式=x 2-2x +1-x 2+3x +x 2-4=x 2+x -3,因为x 2+x -5=0,所以x 2+x =5,所以原式=5-3=214.已知4x =3y ,求代数式(x -2y)2-(x -y)(x +y)-2y 2的值.解:(x -2y )2-(x -y )(x +y )-2y 2=x 2-4xy +4y 2-(x 2-y 2)-2y 2=-4xy +3y 2=-y (4x -3y ).∵4x =3y ,∴原式=015.给出三个整式a 2,b 2和2ab .(1)当a =3,b =4时,求a 2+b 2+2ab 的值;(2)在上面的三个整式中任意选择两个整式进行加法或减法运算,使所得的多项式能够因式分解.请写出你所选的式子及因式分解的过程.解:(1)当a =3,b =4时,a 2+b 2+2ab =(a +b )2=49(2)答案不唯一,例如:若选a 2,b 2,则a 2-b 2=(a +b )(a -b );若选a 2,2ab ,则a 2±2ab =a (a±2b )16.对任意一个三位数n ,如果n 满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F (n ).例如n =123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F (123)=6.(1)计算:F (243),F (617);(2)若s ,t 都是“相异数”,其中s =100x +32,t =150+y (1≤x ≤9,1≤y ≤9,x ,y 都是正整数),规定:k =F (s )F (t ),当F (s )+F (t )=18时,求k 的最大值. 解:(1)F (243)=(423+342+234)÷111=9;F (617)=(167+716+671)÷111=14 (2)∵s ,t 都是“相异数”,s =100x +32,t =150+y ,∴F (s )=(302+10x +230+x +100x +23)÷111=x +5,F (t )=(510+y +100y +51+105+10y )÷111=y +6.∵F (t )+F (s )=18,∴x +5+y +6=x +y +11=18,∴x +y =7.∵1≤x ≤9,1≤y ≤9,且x ,y 都是正整数,∴⎩⎪⎨⎪⎧x =1,y =6或⎩⎪⎨⎪⎧x =2,y =5或⎩⎪⎨⎪⎧x =3,y =4或⎩⎪⎨⎪⎧x =4,y =3或⎩⎪⎨⎪⎧x =5,y =2或⎩⎪⎨⎪⎧x =6,y =1.∵s 是“相异数”,∴x ≠2,x ≠3.∵t 是“相异数”,∴y ≠1,y ≠5,∴⎩⎪⎨⎪⎧x =1,y =6或⎩⎪⎨⎪⎧x =4,y =3或⎩⎪⎨⎪⎧x =5,y =2,∴⎩⎪⎨⎪⎧F (s )=6,F (t )=12或⎩⎪⎨⎪⎧F (s )=9,F (t )=9或⎩⎪⎨⎪⎧F (s )=10,F (t )=8,∴k =F (s )F (t )=12或k =F (s )F (t )=1或k =F (s )F (t )=54,∴k 的最大值为54.。
2023年中考数学整式的运算与因式分解专项练习题含答案及知识回顾

2023 年中考数学 ---- 整式的运算与因式分解专项练习题(含答案)及知识回顾专项练习题1、(2022•湖北)先化简,再求值:4xy﹣2xy﹣(﹣3xy),其中x=2,y=﹣1.【分析】先去括号,再合并同类项,然后把x,y 的值代入化简后的式子进行计算即可解答.【解答】解:4xy﹣2xy﹣(﹣3xy)=4xy﹣2xy+3xy=5xy,当x=2,y=﹣1 时,原式=5×2×(﹣1)=﹣10.2、(2022•盐城)先化简,再求值:(x+4)(x﹣4)+(x﹣3)2,其中x2﹣3x+1=0.【分析】根据平方差公式、完全平方公式、合并同类项法则把原式化简,整体代入即可.【解答】解:原式=x2﹣16+x2﹣6x+9=2x2﹣6x﹣7,∵x2﹣3x+1=0,∴x2﹣3x=﹣1,∴2x2﹣6x=﹣2,∴原式=﹣2﹣7=﹣9.3、(2022•长春)先化简,再求值:(2+a)(2﹣a)+a(a+1),其中a=﹣4.2【分析】先去括号,再合并同类项,然后把a 的值代入化简后的式子进行计算即可解答.【解答】解:(2+a)(2﹣a)+a(a+1)=4﹣a2+a2+a=4+a,当a=﹣4 时,原式=4+﹣4=.4、(2022•北京)已知x2+2x﹣2=0,求代数式x(x+2)+(x+1)2 的值.【分析】先去括号,再合并同类项,然后把x2+2x=2 代入化简后的式子进行计算即可解答.【解答】解:x(x+2)+(x+1)2=x2+2x+x2+2x+1=2x2+4x+1,∵x2+2x﹣2=0,∴x2+2x=2,∴当x2+2x=2 时,原式=2(x2+2x)+1=2×2+1=4+1=5.5、(2022•广西)先化简,再求值:(x+y)(x﹣y)+(xy2﹣2xy)÷x,其中x=1,y=1.2【分析】根据平方差公式和多项式除以单项式,可以将题目中的式子化简,然后将x、y 的值代入化简后的式子计算即可.【解答】解:(x+y)(x﹣y)+(xy2﹣2xy)÷x=x2﹣y2+y2﹣2y=x2﹣2y,当x=1,y=时,原式=12﹣2×=0.6、(2022•衡阳)先化简,再求值.(a+b)(a﹣b)+b(2a+b),其中a=1,b=﹣2.【分析】根据平方差公式以及单项式乘多项式的运算法则化简后,再把a=1,b=﹣2 代入计算即可.【解答】解:(a+b)(a﹣b)+b(2a+b)=a2﹣b2+2ab+b2=a2+2ab,将a=1,b=﹣2 代入上式得:原式=12+2×1×(﹣2)=1﹣4=﹣3.7、(2022•丽水)先化简,再求值:(1+x)(1﹣x)+x(x+2),其中x=1 .2【分析】先根据平方差公式和单项式乘多项式的运算法则化简,再把x=代入计算即可.【解答】解:(1+x)(1﹣x)+x(x+2)=1﹣x2+x2+2x=1+2x,当x=时,原式=1+ =1+1=2.8、(2022•南充)先化简,再求值:(x+2)(3x﹣2)﹣2x(x+2),其中x=【分析】提取公因式x+2,再利用平方差公式计算,再代入计算.【解答】解:原式=(x+2)(3x﹣2﹣2x)=(x+2)(x﹣2)=x2﹣4,当x=﹣1 时,﹣1.33 12 原式=(﹣1)2﹣4=﹣2.9、(2022•安顺)(1)计算:(﹣1)2+(π﹣3.14)0+2sin60°+|1﹣|﹣ .(2)先化简,再求值:(x +3)2+(x +3)(x ﹣3)﹣2x (x +1),其中 x = 1.2【分析】(1)先化简各式,然后再进行计算即可解答;(2)先去括号,再合并同类项,然后把 x 的值代入化简后的式子,进行计算即可解答. 【解答】解:(1)(﹣1)2+(π﹣3.14)0+2sin60°+|1﹣|﹣=1+1+2×+﹣1﹣2=2++﹣1﹣2=1;(2)(x +3)2+(x +3)(x ﹣3)﹣2x (x +1) =x 2+6x +9+x 2﹣9﹣2x 2﹣2x =4x ,当 x =时,原式=4×=2.10、(2022•岳阳)已知 a 2﹣2a +1=0,求代数式 a (a ﹣4)+(a +1)(a ﹣1)+1 的值. 【分析】先化简所求的式子,再结合已知求解即可. 【解答】解:a (a ﹣4)+(a +1)(a ﹣1)+1 =a 2﹣4a +a 2﹣1+1 =2a 2﹣4a =2(a 2﹣2a ), ∵a 2﹣2a +1=0, ∴a 2﹣2a =﹣1,∴原式=2×(﹣1)=﹣2.11、(2022•苏州)已知 3x2﹣2x﹣3=0,求(x﹣1)2+x(x+23)的值.【分析】直接利用整式的混合运算法则化简,进而合并同类项,再结合已知代入得出答案.【解答】解:原式=x2﹣2x+1+x2+x=2x2﹣x+1,∵3x2﹣2x﹣3=0,∴x2﹣x=1,∴原式=2(x2﹣x)+1=2×1+1=3.12、(2022•荆门)已知x+1x=3,求下列各式的值:(1)(x﹣1 )2;x (2)x4+ 1 .x4【分析】(1)利用完全平方公式的特征得到:(a﹣b)2=(a+b)2﹣4ab,用上述关系式解答即可;(2)将式子用完全平方公式的特征变形后,利用整体代入的方法解答即可.【解答】解:(1)∵=,∴===﹣4x•本课结束。
中考数学总复习《整式的加减》专项测试卷-附带参考答案

中考数学总复习《整式的加减》专项测试卷-附带参考答案(测试时间60分钟满分100分)学校:___________姓名:___________班级:___________考号:___________一、选择题(共8题,共40分)1.用正三角形、正四边形和正六边形按如图所示的规律拼图案,则第n个图案中正三角形的个数为( )A.2n+1B.3n+2C.4n+2D.4n−22.根据如图所示的计算程序,若输入的值x=−3,则输出y的值为( )A.−2B.−8C.10D.133.“比a的2倍大1的数”,列式表示是( )A.2(a+1)B.2(a−1)C.2a+1D.2a−14.一个两位数,十位上的数字是x,个位上的数字是y,这个两位数用代数式表示为( )A.xy B.x+y C.10y+x D.10x+y 5.单项式−xy3z4的系数及次数分别是( )A.系数是0,次数是7B.系数是1,次数是8C.系数是−1,次数是7D.系数是−1,次数是86.根据以下程序,当输入x=−2时,输出结果为( )A.−5B.−2C.0D.37.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是( )A.84B.336C.452D.5108.下列各式中,不是整式的是( )A.6xy B.yxC.x+9D.4二、填空题(共5题,共15分)9...如果m和n互为相反数,那么化简(3m−n)−(m−3n)的结果是.10.已知21×2=21+2,32×3=32+3,43×4=43+4⋯若ab×10=ab+10(a,b都是正整数),则a+b的最小值是.11. (−√9)2的平方根是x,64的立方根是y,则x+y的值为.12.写出一个单项式,使得它与多项式m+2n的和为单项式:.13.如果关于x的多项式ax2−abx+b与bx2+abx+2a的和是一个单项式,那么a 与b的关系是.三、解答题(共3题,共45分)14.座钟的摆针摆动一个来回所需的时间称为一个周期,其计算公式为T=2π√lg,其中T(s)表示周期,l(m)表示摆长,g取9.8m/s2,假如一台座钟摆针的摆长为0.5m,它每摆动一个来回发出一次滴答声,那么在1min内,该座钟大约发出了多少次滴答声?(π取3.14)15.现有大小两艘轮船,小船每天运x吨货物,大船比小船每天多运10吨货物,现在让大船完成运送100吨货物的任务,小船完成运送80吨货物的任务.(1) 分别写出大船、小船完成任务用的时间;(2) 试说明哪艘轮船完成任务用的时间少.16.已知两个关于x,y的单项式mx3a−4y3与−2nx a+2y3是同类项(其中xy≠0).(1) 求a的值;(2) 如果它们的和为零,求(2m−4n−1)2021的值.参考答案1. 【答案】C2. 【答案】C3. 【答案】C4. 【答案】D5. 【答案】D6. 【答案】B7. 【答案】C8. 【答案】B9. 【答案】−110. 【答案】1911. 【答案】1或712. 【答案】−m13. 【答案】a=−b或b=−2a14. 【答案】将l=0.5m,g=9.8m/s2代入T=2π√lg 中,得T=2π√0.59.8≈1.42(s)于是60T =601.42≈42(次).答:在1min内,该座钟大约发出了42次滴答声.15. 【答案】(1) 大船完成任务用的时间为100x+10天,小船完成任务用的时间为80x天.(2) 100x+10−80x=20x−800x(x+10)=20(x−40)x(x+10)(天)因为x>0,所以x+10>0,所以当x>40时20(x−40)x(x+10)>0,即100x+10>80x,小船所用时间少;当x=40时20(x−40)x(x+10)=0,即100x+10=80x,两船所用时间相同;当x<40时20(x−40)x(x+10)<0,即100x+10<80x,大船所用时间少.16. 【答案】(1) 由题意得3a−4=a+2解得a=3.(2) 由题意得m−2n=0∴2m−4n=0∴(2m−4n−1)2021=(−1)2021=−1.。
初三整式计算试题及答案

初三整式计算试题及答案一、选择题(每题3分,共15分)1. 下列整式中,同类项是()。
A. 3x^2y 和 5xy^2B. 6xy 和 6x^2yC. 3x^2 和 5x^2D. 4a^2b 和 4ab^2答案:C2. 合并同类项 2x^2 - 3x^2 + 4x^2 的结果是()。
A. 3x^2B. -x^2C. 0D. -5x^2答案:A3. 计算 (3x^2 - 2x + 1) - (x^2 - 4x + 3) 的结果是()。
A. 2x^2 + 2x - 2B. 2x^2 - 2x + 2C. 2x^2 + 2x + 2D. 2x^2 - 2x - 2答案:B4. 整式 4x^2 - 3x + 2 与 5x^2 + 6x - 7 的和是()。
A. 9x^2 + 3x - 5B. 9x^2 + 3x + 5C. 9x^2 + 9x - 5D. 9x^2 - 3x - 5答案:A5. 整式 2x^3 - 3x^2 + 5x - 7 与 -x^3 + 2x^2 - 4x + 8 的差是()。
A. x^3 - 5x^2 + 9x - 15B. x^3 - 5x^2 - 9x + 1C. x^3 - 5x^2 + 9x + 1D. x^3 - 5x^2 - 9x - 15答案:A二、填空题(每题4分,共20分)6. 合并同类项 5a^2b - 2ab^2 + 3ab^2 - 4a^2b 的结果是 _______。
答案:ab^2 - a^2b7. 计算 (2x - 3)^2 的结果是 _______。
答案:4x^2 - 12x + 98. 计算 (x + 2)(x - 2) 的结果是 _______。
答案:x^2 - 49. 计算 (3x + 4)(2x - 1) 的结果是 _______。
答案:6x^2 + 2x - 4x - 4 = 6x^2 - 2x - 410. 计算 (x^2 - 3x + 2)(x^2 + 3x - 2) 的结果是 _______。
数学中考专题复习卷:整式(含解析)

整式一、选择题1.下列运算中,正确的是()A.x3+x3=x6B.x3·x9=x27C.(x2)3=x5D.x x2=x-12.计算结果正确的是()A.B.C.D.3.下列各式能用平方差公式计算的是()A. B.C. D.4.计算(a-3)2的结果是()A. a2+9B. a2+6a +9C. a2-6a+9D. a2-95.如图,4块完全相同的长方形围成一个正方形. 图中阴影部分的面积可以用不同的代数式进行表示,由此能验证的等式是()A.B.C.D.6.下列四个式子:①4x2y5÷xy=xy4;②16a6b4c÷8a3b2=2a2b2c;③9x8y2÷3x2y=3x6y;④(12m3+8m2-4m)÷(-2m)=-6m2+4m-2.其中正确的有( )A.0个B.1个C.2个D.3个7.下列等式成立的是()A. 2﹣1=﹣2B. (a2)3=a5 C. a6÷a3=a2D. ﹣2(x﹣1)=﹣2x+28.计算(x+1)(x+2)的结果为()A. x2+2B. x2+3x+2C. x2+3x+3D. x2+2x+29.若3×9m×27m=321,则m的值是( )A. 3B. 4C. 5D. 610.下列各式中,结果为x3-2x2y+xy2的是( )A.x(x+y)(x-y)B.x(x2+2xy+y2)C.x(x+y)2D.x(x-y)211.一个长方体的长、宽、高分别为5x-3,4x和2x,则它的体积等于( )A.(5x-3)·4x·2x=20x3-12x2B.·4x·2x=4x2C.(5x-3)·4x·2x=40x3-24x2D.(5x-3)·4x=20x2-12x12.下面是小林做的4道作业题:(1)2ab+3ab=5ab;(2)2ab﹣3ab=﹣ab;(3)2ab﹣3ab=6ab;(4)2ab÷3ab= .做对一题得2分,则他共得到()A. 2分B. 4分C. 6分D. 8分二、填空题13.计算:=________.14.计算: =________15.已知,,则的值是________16.如果(x+1)(x+m)的乘积中不含x的一次项,则m的值为________17.若x2﹣mx﹣15=(x+3)(x+n),则n m的值为________.18.若把代数式化为的形式,其中、为常数,则________19.若M=(x-3)(x-5),N=(x-2)(x-6),则M与N的关系为________20.已知a﹣=3,那么a2+ =________.21.若单项式﹣3x4a﹣b y2与3x3y a+b是同类项,则这两个单项式的积为________.22.若4x2+mx+1是一个完全平方式,则常数m的值是________.三、解答题23. (1)计算(x-2)2-x(x+1)(2)先化简:,再求出当m=-2时原式的值。
中考数学总复习《整式的乘法》专项提升训练(带有答案)

中考数学总复习《整式的乘法》专项提升训练(带有答案)学校:___________班级:___________姓名:___________考号:___________一、选择题1.计算a •a 2的结果是( )A .a 3B .a 2C .3aD .2a 22.如果a 2n ﹣1a n+5=a 16,那么n 的值为( )A.3B.4C.5D.63.计算(-a 3)2的结果是( )A.-a 5B.a 5C.a 6D.-a 64.如果3a =5,3b =10,那么9a ﹣b 的值为( ) A.12 B.14 C.18D.不能确定 5.下列运算错误的是( )A.-m 2·m 3=-m 5B.-x 2+2x 2=x 2C.(-a 3b)2=a 6b 2D.-2x(x-y)=-2x 2-2xy6.若x+y=2,xy=-2 ,则(1-x)(1-y)的值是( ) A.-1 B.1 C.5 D.-37.如图所示,从边长为a 的大正方形中挖去一个边长是b 的小正方形,小明将图a 中的阴影部分拼成了一个如图b 所示的长方形,这一过程可以验证( )A.a 2+b 2﹣2ab=(a ﹣b)2B.a 2+b 2+2ab=(a+b)2C.2a 2﹣3ab+b 2=(2a ﹣b)(a ﹣b)D.a 2﹣b 2=(a+b)(a ﹣b)8.若4x 2+kx +25=(2x +a)2,则k +a 的值可以是( )A.﹣25B.﹣15C.15D.209.计算20222﹣2021×2023的结果是( )A.1B.﹣1C.2D.﹣210.观察下列各式及其展开式:(a +b)2=a 2+2ab +b 2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)10的展开式第三项的系数是( )A.36B.45C.55D.66二、填空题11.已知39m•27m=36,则m=________.12.若(mx3)·(2x k)=﹣8x18,则适合此等式的m=______,k=_____.13.如图是一个L形钢条的截面,它的面积为________14.如图,两个正方形边长分别为a、b,如果a+b=7,ab=13,则阴影部分的面积为.15.已知x2+2x=3,则代数式(x+1)2﹣(x+2)(x﹣2)+x2的值为_____.16.化简:6(7+1)(72+1)(74+1)(78+1)+1= .三、解答题17.化简:(x+3)(x+4)﹣x(x﹣1)18.化简:(a+2b)(3a﹣b)﹣(2a﹣b)(a+6b)19.化简:(x﹣6)(x+4)+(3x+2)(2﹣3x)20.化简:(3a+2b)(2a-3b)-(a-2b)(2a-b).21.先化简,再求值:[(x+2y)2﹣(x+y)(x﹣y)﹣5y2]÷2x,其中x=﹣2,y=1 2.22.已知(x2+px+8)(x2-3x+q)的展开式中不含x2和x3项,求p,q的值.23.已知a+b=7,ab=12.求:(1)a2+b2;(2)(a-b)2的值.24.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20这三个数都是神秘数.(1)28和2012这两个数是神秘数吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(取正数)是神秘数吗?为什么?25.阅读材料:把形ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫配方法.配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2.请根据阅读材料解决下列问题:(1)填空:a2﹣4a+4= .(2)若a2+2a+b2﹣6b+10=0,求a+b的值.(3)若a、b、c分别是△ABC的三边,且a2+4b2+c2﹣2ab﹣6b﹣2c+4=0,试判断△ABC 的形状,并说明理由.参考答案1.A2.B3.C4.B5.D6.D7.D8.A9.A10.B11.答案为:12 .12.答案为:﹣4,15.13.答案为:ac+bc-c2.14.答案为:515.答案为:816.答案为:73217.原式=8x+12.18.原式=4x2+4x+1﹣y219.原式=x2﹣2x﹣24+4﹣9x2=﹣8x2﹣2x﹣20.20.原式=4a2-8b2.21.解:原式=(x2+4xy+4y2﹣x2+y2﹣5y2)÷2x=4xy÷2x=2y当x=﹣2,y=12时,原式=1.22.解:(x2+px+8)(x2-3x+q)=x4-3x3+qx2+px3-3px2+pqx+8x2-24x+8q=x4+(p-3)x3+(q-3p+8)x2+(pq-24)x+8q.[来源:学科网] 因为展开式中不含x2和x3项所以p-3=0,q-3p+8=0解得p=3,q=1.23.解:(1)a2+b2=(a+b)2-2ab=72-2×12=49-24=25;(2)(a-b)2=(a+b)2-4ab=72-4×12=49-48=1.24.解:(1)28和2012都是神秘数;(2)这两个连续偶数构造的神秘数是4的倍数;(3)两个连续奇数的平方差不是神秘数.25.解:(1)∵a2﹣4a+4=(a﹣2)2,故答案为:(a﹣2)2;(2)∵a2+2a+b2﹣6b+10=0∴(a+1)2+(b﹣3)2=0∴a=﹣1,b=3∴a+b=2;(3)△ABC为等边三角形.理由如下:∵a2+4b2+c2﹣2ab﹣6b﹣2c+4=0∴(a﹣b)2+(c﹣1)2+3(b﹣1)2=0∴a﹣b=0,c﹣1=0,b﹣1=0∴a=b=c=1∴△ABC为等边三角形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整式及其运算
一、选择题
1.下列计算正确的是()
A .523a a a =+
B .623a a a =⋅ C. 632)(a a = D .236a a a =÷
【答案】C.
【解析】
试题分析:依据合并同类项法则、同底数幂的乘法法则、幂的乘方、同底数幂的除法法则进行判断即可.
A .a 3与a 2不是同类项不能合并,故A 错误;
B .a 3•a 2=a 5,故B 错误;
C .(a 2)3=a 6,故C 正确;
D .a 6÷a 3=a 2,故D 错误.
故选C .
2.计算()22ab 的结果是( )
A .23ab
B .6ab C. 35a b D .36a b
【答案】D.
【解析】
试题解析:原式=a 3b 6,
故选D.
3.已知2-4=7m m ,则代数式22-8-13m m 的值为:
A. 3
B. 2
C. 1
D. 0
【答案】C .
【解析】
试题分析:∵2m 2-8m-13=2(m 2-4m )-13,m 2-4m=7,
∴2m 2-8m-13=14-13=1;
故选C 。
考点:整体思想.
4. 下列运算正确的是( )
A .a 3+a 2=a 5
B .a 3÷a 2=a
C .a 3a 2=a 6
D .(a 3)2=a 9
【答案】B.
5.下列运算正确的有( )
A .54ab ab -=
B .()32
6a a = C . ()222a b a b -=- D 3=± 【答案】B .
6.在式子1x ,2x+5y ,0.9,﹣2a ,﹣3x 2y , 13
x + 中,单项式的个数是( ) A. 5个 B. 4个 C. 3个 D. 2个
【答案】C .
【解析】
试题分析:根据单项式定义:单项式是值数字或字母的乘积.所以式子中单项式有:0.9, −2a, −3x²y,共3个, 故选:C.
考点:单项式.
7.下列计算正确的是( )
A .3332b b b =
B .()()2
224a a a +-=- C .()326ab ab = D .()()8745412a b a b a b ---=-
【答案】B
【解析】
试题分析:A 、原式=b 6,不符合题意;
B 、原式=a 2﹣4,符合题意;
C 、原式=a 3b 6,不符合题意;
D 、原式=8a ﹣7b ﹣4a+5b=4a ﹣2b ,不符合题意,
故选B
8. 由于受97N H 禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降%a ,3月份比2月份下降%b ,已知1月份鸡的价格为24元/千克,设3月份鸡的价格为m 元/千克,则()
A .%)%1(24b a m --=
B .%%)1(24b a m -=
C. %%24b a m --= D .%)1%)(1(24b a m --=
【答案】D .
试题分析:今年2月份鸡的价格比1月份下降a%,1月份鸡的价格为24元/千克,可得2月份鸡的价格为24(1﹣a%),再由3月份比2月份下降b%,即可得三月份鸡的价格为24(1﹣a%)(1﹣b%),故选D .
二、填空题
9.若关于x 的二次三项式412++ax x 是完全平方式,则a 的值是 . 【答案】±1
10.计算:2a ﹒a 2= .
【答案】2a 3
【解析】
试题分析:2a ﹒a 2=2a 3. 11.已知10,8a b a b +=-=,则22a b -= .
【答案】80.
【解析】
试题解析:∵(a+b )(a-b )=a 2-b 2,
∴a 2-b 2=10×8=80.
12.如果m 是最大的负整数,n 是绝对值最小的有理数,c 是倒数等于它本身的自然数,那么代数式m xx +xxn+c xx 的值为
【答案】0
【解析】
试题解析:由题意可知:m=﹣1,n=0,c=1
∴原式=(﹣1)xx +xx ×0+1xx =0
13.如图,从边长为(a+3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠无缝隙),则拼成的长方形的另一边长是 .
【答案】a+6.
【解析】
试题解析:拼成的长方形的面积=(a+3)2﹣32,
=(a+3+3)(a+3﹣3),
=a (a+6),
∵拼成的长方形一边长为a ,
∴另一边长是a+6.
三、解答题
14.先化简,再求值: ()()()2233a b ab b a a -÷+-+,其中1,2a b ==.
【答案】原式9ab =-+=7.
15.先化简,再求值:22b +(a +b )( a -2b )-(a -2)b ,其中a =-3, b = 12. 【答案】ab-b 2 ; 74-
; 【解析】
试题分析:先根据整式的乘法进行计算,再合并同类项,最后代入求值. 试题解析:原式=2b 2+a 2-2ab+ab-2b 2-(a 2-2ab+b 2)
=ab-b 2 ;
当a=-3,b= 12
时, 原式= 2ab b -
74
=-; 16.计算;
(1)﹣|﹣3|+(﹣4)×2﹣1;
(2)(x+1)2+x (x ﹣2)﹣(x+1)(x ﹣1)
【答案】(1)-1;(2)22x +.
感谢您的支持,我们会努力把内容做得更好!。