遗传图谱

合集下载

分子标记与遗传图谱

分子标记与遗传图谱

分子标记与遗传图谱AFLP的原理是基于PCR技术扩增基因组DNA限制性片段,基因组DNA先用限制性内切酶切割,然后将双链接头连接到DNA片段的末端,接头序列和相邻的限制性位点序列作为引物结合位点。

限制性片段用二种酶切割产生,一种是罕见切割酶,一种是常用切割酶。

选择特定的片段进行PCR扩增,由于在所有的限制性片段两端加上带有特定序列的“接头”,用与接头互补的但3’端有几个随机选择的核苷酸的引物进行特异PCR扩增,只有那些与3’端严格配对的片段才能得到扩增。

再在有高分辨力的测序胶上分开这些扩增产物,用放射性法、荧光法或银染染色法均可检测之。

该技术包括三个步骤: DNA被限制性内切酶切割,然后与AFLP聚核苷酸接头 adapter 连接;利用PCR方法,通过变性、退火、延伸循环,选择性扩增成套的限制性片段,经过多次循环,可使目的序列扩增到0.5~1μg;利用聚丙烯酰胺凝胶电泳分离扩增的DNA片段。

利用一套特别的引物在不需要知道DNA序列的情况下,可在一次单个反应中检测到大量的片段。

由于AFLP扩增可使某一品种出现特定的DNA 谱带,而在另一品种中可能无此谱带产生;这种通过引物诱导及DNA扩增后得到的DNA多态性可作为一种分子标记;所以说AFLP技术是一种新的而且有很大功能的DNA指纹技术。

简单序列长度多态性 Simple Sequence Length Polymorphisms,SSLP 限制性片断长度或PCR产物长度因为小卫星或微卫星随机重复数量的变化形成的差异。

SSLP具有多等位性,有两种SSLP常用于作图:小卫星序列:又称可变串联重复,其重复单位为数十个核苷酸。

微卫星序列:或简单重复序列,其重复单位为1-6个核苷酸,由10-50个重复单位串联组成。

微卫星序列的应用比小卫星序列的应用普遍的多,原因有二:小卫星序列大多集中在染色体的端部;而微卫星序列在整个基因组中分布广密度高;微卫星序列PCR分析:PCR扩增的DNA长度少于300bp时,反应既快速又精确。

《遗传学图谱》课件

《遗传学图谱》课件

随意交配、自交和杂交
探索随意交配、自交和杂交的作用以及它们在遗传学研究中的应用。
孟德尔的遗传学定律
学习奥地利生物学家格雷戈尔·约翰·孟德尔的遗传学实验和三大基本遗传定律。
遗传变异和基因突变
探索基因变异和基因突变的类型、原因以及对个体和种群的影响。
选择和遗传漂变
了解选择和遗传漂变如何塑造种群的遗传构成,并对进化产生重要影响。
遗传学研究中的实验设计
了解进行遗传学研究时常用的实验设计和方法,以及它们的优缺点。
遗传学模型和统计学方法
介绍遗传学研究中常用的模型和统计学方法,以帮助这是《遗传学图谱》的PPT课件,将为您介绍遗传学的基本概念和应用。让我 们开始探索这个激动人心而又充满潜力的科学领域吧!
遗传学图谱概述
本节将简要介绍遗传学的概念和研究对象,以及遗传学在科学领域中的重要 性。
遗传定位和遗传映射
了解如何通过遗传定位和遗传映射技术来寻找和确定基因在染色体上的位置。

遗传图谱例

遗传图谱例

病男孩的概率是
。1/12
②接上题,若Ⅱ-2不携带该遗传病的致病基因,且Ⅲ-4及其
配偶都为表现型正常的白化病基因携带者,则III-4及其配
偶生一个只患一种病的孩子的概率是 5/16 。
这两个亲本的基因型可能是bbzdzdbbzdw还可能是4若d为隐性纯合致死基因zdw也是纯合致死基因型zd的雌雄配子均有活性则该种蛾中结黄茧的基因型有种若此蛾类的某一种群中开始时雌雄比例为11b和b的频率比为d和d的频率比为31则该群体自由交配一代后所有存活子代中结黄茧的个体占14图1为某单基因遗传病待完善系谱图
(4)若d为隐性纯合致死基因(ZdW也是纯合致死基 因型,Zd的雌雄配子均有活性),则该种蛾中结
黄茧的基因型有 3 种,若此蛾类的某一种
群中开始时雌雄比例为1∶1, B和b的频率比为 1∶1, D和d的频率比为3∶1,则该群体自由交
配一代后,所有存活子代中结黄茧的个体占1/4
图1为某单基因遗传病待完善系谱图。请据图及假设回答(显、隐性基因分别
该遗传病的致病基因,则该病的遗传方式为 常或X染色体。显性遗传
2.根据假设推断基因型。 ①按假设四,Ⅲ-1的基因型是
aa或XaY
;若该病是多指,
且Ⅱ-2也是患者,则Ⅲ-3的基因型是
型是 AA或A。a
Aa
,Ⅱ-3的基因
②按假设三,若Ⅱ-1, Ⅲ-1也是患者,则Ⅰ-1的基因型是
AA或Aa或。XAXa
③按假设四,且该病是多指,色觉正常的Ⅲ-3与一个“正常女
所占比例为 1/3 。 ③在子代中,纯合灰身红眼雌蝇占全部子代的比例
为 1/16 ,杂合灰身红眼雌蝇占全部子代的比例
为 5/16 。
(2)已知果蝇的直毛与非直毛是一对等位基因。 若实验室有 纯合的直毛和非直毛雌、雄果蝇亲本,你能否通过一代杂交 试验确定这对等位基因是位于常染色体上还是X染色体上?请 说明推导过程。

遗传图谱分析知识点高中

遗传图谱分析知识点高中

遗传图谱分析知识点高中遗传图谱分析是遗传学的重要分支之一,通过研究遗传图谱可以了解物种的遗传特征、遗传规律以及遗传疾病的发生机制。

在高中生物学教学中,遗传图谱分析是一个重要的知识点。

本文将以“Step by Step”思维,分步介绍高中生物学中的遗传图谱分析知识点。

第一步:了解遗传图谱的定义和作用遗传图谱是指根据遗传分析结果所绘制的图形,用于展示不同基因之间的遗传关系。

遗传图谱可以帮助我们了解基因的位置、相对距离以及遗传力度。

通过分析遗传图谱,我们可以推测基因的遗传模式,预测后代的遗传特征,甚至研究遗传疾病的发生机制。

第二步:了解常见的遗传图谱类型在高中生物学中,常见的遗传图谱类型有连锁图谱和物理图谱。

连锁图谱是通过分析遗传交联事件的频率和程度来确定基因的相对位置和距离关系。

物理图谱是通过测量基因在染色体上的实际距离来确定基因的位置。

第三步:学习连锁图谱的构建方法连锁图谱的构建是遗传图谱分析的重要内容之一。

连锁图谱的构建基于基因互相遗传联锁的现象,即位于同一染色体上的基因在遗传上具有较高的连锁性。

通过研究基因的连锁性,可以推测基因的相对位置和距离。

在构建连锁图谱时,我们可以利用重组频率(recombination frequency)来评估基因之间的连锁程度。

重组频率越高,表示基因之间的连锁程度越低,相对距离越远;反之,重组频率越低,连锁程度越高,相对距离越近。

第四步:学习物理图谱的构建方法物理图谱的构建是通过测量基因在染色体上的实际距离来确定基因的位置。

常用的物理图谱构建方法有两种:聚合物链反应(PCR)和DNA测序。

聚合物链反应是一种常用的DNA复制技术,可以通过扩增特定基因片段来确定基因的位置。

DNA测序则是通过测量DNA序列的碱基顺序来确定基因的位置。

第五步:了解遗传图谱分析在遗传疾病研究中的应用遗传图谱分析在遗传疾病研究中发挥着重要的作用。

通过研究遗传图谱,科学家可以确定某些遗传疾病的基因位置,并进一步研究其发生机制。

遗传图谱绘制及其在种群遗传分析中的应用

遗传图谱绘制及其在种群遗传分析中的应用

遗传图谱绘制及其在种群遗传分析中的应用遗传图谱是绘制个体或种群基因组的一种图形化表示方法。

遗传图谱可以揭示基因之间的相互关系,帮助科学家理解和研究遗传信息传递的方式。

在种群遗传学中,遗传图谱的绘制和分析可以提供有关种群遗传结构、基因流动和基因多样性等重要信息,对于保护和管理野生物种以及推动农作物育种具有重要意义。

遗传图谱的绘制通常基于分子标记技术,如DNA分子标记和SNP分析。

DNA分子标记可以帮助科学家识别基因组上具有特定遗传差异的位点,从而绘制出遗传图谱。

通过对多个个体或种群的DNA样本进行分析,我们可以得到一个具有多个位点和多个个体的遗传图谱。

在绘制遗传图谱时,首先需要选择合适的标记技术。

常用的标记技术包括PCR-RFLP、SSR、AFLP和SNP等。

每种标记技术都有其优点和限制,因此在选择标记技术时需要充分考虑研究目的和样本特点。

其次,需要选择合适的个体或种群进行样本收集。

在种群遗传分析中,样本的选择是至关重要的。

一般来说,样本应该具有代表性,包括来自不同地理区域或群体的个体。

此外,样本的数量也是影响遗传图谱绘制的重要因素,较大的样本数量可以提供更准确和可靠的结果。

一旦获得了样本,就可以通过分子标记技术对其进行分析。

例如,可以使用聚合酶链反应(PCR)扩增位点DNA,并使用限制性内切酶(RFLP)或测序等方法对扩增产物进行检测。

通过将多个位点的数据组合起来,就可以绘制出遗传图谱。

绘制好的遗传图谱可以用来研究种群的遗传结构和基因流动。

遗传结构是指种群中不同个体之间的遗传联系和分离程度。

遗传图谱可以帮助我们判断不同个体或群体之间的遗传距离,揭示种群的遗传联系和分离情况。

此外,遗传图谱还可以用来分析种群的基因流动,即不同个体或群体之间基因交换的程度。

基因流动对于种群的遗传多样性和适应力具有重要影响,因此对基因流动的研究在物种保护和育种中十分重要。

除了研究种群遗传结构和基因流动外,遗传图谱还可以用来评估种群的遗传多样性。

遗传标记基因图谱解析

遗传标记基因图谱解析
细胞杂交又称细胞融合,是将来源不同的两种细胞融合成 一个新细胞。大多数体细胞杂交是用人的细胞与小鼠、大
鼠或仓鼠的体细胞进行杂交产生杂种细胞。杂种细胞含有
双亲不同的染色体,但会在其繁殖过程中,保留啮齿类一 方的染色体而逐渐丢失人类的染色体,最后只剩一条或几 条。这种仅保留少数甚至一条人染色体的杂种细胞正是进 行基因连锁分析和基因定位的有用材料
个体表型性状组合类型 ① ② ③ ④ ⑤ ⑥ ec + + + sc cv ec sc + + + cv + sc + ec + cv 个体数量 810 828 62 88 89 103
根据这些数据和重组频率公式可计算出每两个基因之间的互换值:
62 88 ec — sc互换值= 100% 7.6% (810 828 89 103) (62 88)
( 5 )对标记基因型数据进行连锁分析, 构建标记连锁图

设计大量的已知连锁基因个体的杂交试 验; 获得的 F1 再同纯隐性个体测交计算重组 频率;


以重组频率的 1% 作为 1 个摩尔根单位 (即1cM)将基因定位在一条直线上。
杂交:♀ec++/ec++ × ♂+sccv/Y ↓ ♀ec++/+sccv ♂ec++/Y 测交:♀ec++/+sccv×♂ecsccv/Y ↓
例如我们根据试验得出如下结果:
人的 标记 基因 人的 染色 体
α β γ ε 1 2 3
A + — + + — + —
B — + — + + — —

遗传图谱基本讲解教案

遗传图谱基本讲解教案

遗传图谱基本讲解教案教案标题:遗传图谱基本讲解一、教学目标1. 了解遗传图谱的基本概念和作用。

2. 掌握遗传图谱的绘制方法和解读技巧。

3. 能够运用遗传图谱分析家族遗传病的传播规律。

二、教学重点和难点重点:遗传图谱的基本概念和绘制方法。

难点:遗传图谱的解读技巧和家族遗传病的分析。

三、教学内容1. 遗传图谱的概念和作用- 介绍遗传图谱是用来表示家族成员间遗传关系的图表,可以帮助分析家族遗传病的传播规律。

2. 遗传图谱的绘制方法- 讲解遗传图谱的绘制规则和符号表示方法,包括正常基因和突变基因的表示,遗传关系的连接线等。

3. 遗传图谱的解读技巧- 演示如何根据遗传图谱分析家族遗传病的传播规律,包括常见的单基因遗传病和复杂遗传病的分析方法。

4. 案例分析- 结合实际案例,让学生运用所学知识绘制遗传图谱并进行解读,加深理解。

四、教学过程1. 导入:通过提问或展示相关图片引入遗传图谱的概念。

2. 讲解:介绍遗传图谱的概念、作用和绘制方法,重点讲解遗传图谱的符号表示和绘制规则。

3. 演示:老师演示如何绘制和解读遗传图谱,让学生跟随操作。

4. 练习:让学生结合案例进行绘制和解读遗传图谱,并进行讨论和交流。

5. 总结:总结遗传图谱的基本知识和应用技巧,强化重点和难点。

五、教学资源1. 教材:相关遗传学教材和资料。

2. 图表:展示遗传图谱的示例和案例。

3. 多媒体设备:用于演示和案例分析。

六、教学评价1. 课堂练习:观察学生在课堂练习中的绘制和解读遗传图谱的能力。

2. 作业评定:布置相关作业,检查学生对遗传图谱的掌握情况。

3. 学习反馈:听取学生对本节课的学习感受和建议,及时调整教学方法和内容。

七、教学反思根据学生的学习情况和反馈意见,及时调整教学内容和方法,不断提高教学效果。

第5篇 遗传图谱

第5篇 遗传图谱

第5章遗传图谱遗传图谱是应用遗传学技术构建能显示基因以及其它序列特征在基因组上的位置的图。

遗传学技术包括杂交育种实验、人类家族的系谱分析。

1 遗传图谱的标记1.1 基因基因是首先被使用的标记。

最初的遗传图谱是在20世纪初对果蝇等生物构建的,使用基因作为标记。

一个遗传性状必须以两种替换形式或表型存在才能用于遗传学分析。

如孟德尔首先研究的豌豆茎的高或矮。

每种表型是由相应基因的不同等位基因所决定的。

起初只有那些能通过视觉区分的基因表型能用于研究。

比如,第一张果蝇遗传图显示了负责身体颜色、眼睛颜色、翅膀形态等基因的位置,这些表型都可在低倍显微镜下或肉眼观察果蝇而看到。

早期觉得这种方法很精确,但遗传学家们很快发现,只有有限的几种可见表型的遗传可用于研究,而在许多情况下,由于不止一个基因影响一个物理特征,分析起来并不太容易。

例如,到1922年,有超过50个基因被定位在4条果蝇染色体上,而其中9个基因负责眼睛的颜色,想在此领域有所贡献的每一个初涉者必须首先学会辨别果蝇眼睛的颜色是红、淡红、朱红、石榴石红、康乃馨色、肉桂色、深褐色、猩红色或深红色。

为了使基因图更加全面,有必要找到一些比可见的性状更多、更明确而且更简单的性状。

解决的方法是应用生物化学方法区分表型。

这对于微生物与人类尤为重要。

细菌与酵母只有为数很少的可见性状,因此这类生物的基因作图只能依赖于生化表型。

人类以血液分型为代表的生化标记研究从20世纪20年代就开始了。

血液分型研究不仅包括如ABO系统的标准血型,还有血清蛋白以及人类白细胞抗原(HLA系统)等免疫蛋白的等位基因可变体。

这些标记相对于可见表型的一个巨大优点是其相关基因往往为复等位基因。

HLA-DRB1基因至少有59个等位基因,而HLA-B至少有60个。

这正是与人类基因作图相关的。

与在果蝇或小鼠等生物中建立的杂交实验不同,人类基因遗传的数据只能通过检查一个家族中各成员的表型来获得。

如果对所研究的基因而言,所有的家族成员都为纯合子,就得不到有用的信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“生物图表题”——遗传系谱图
1.某种遗传病受一对等位基因控制,下图为该遗传病的系谱图。

下列叙述正确的是
A.该病为伴X染色体隐性遗传病,Ⅱ1为纯合子
B.该病为伴X染色体显性遗传病,Ⅱ4为纯合子
C.该病为常染色体隐性遗传病,Ⅲ2为杂合子
D.该病为常染色体显性遗传病,Ⅱ3为纯合子
2.以下为遗传系谱图,2号个体无甲病致病基因。

对有关说法,正确的是
A.甲病不可能是X隐性遗传病
B.乙病是X显性遗传病
C.患乙病的男性多于女性
D.1号和2号所生的孩子可能患甲病
3.右图所示遗传系谱中有甲(基因为D、d)、乙(基
因为E、e)两种遗传病,其中一种为红绿色盲症。


列有关叙述中正确的是
A.甲病为色盲症,乙病基因位于Y染色体上
B.Ⅱ7和Ⅱ8生一两病兼发的男孩的概率为1/9
C.Ⅱ6的基因型为DdX E X e
D.若Ⅲ11和Ⅲ12婚配,则生出病孩的概率高达100%
4、有两种罕见的家族遗传病,它们的致病基因分别位于常染色体和性染色体上。

一种先天代谢病称为黑尿病(A,a),病人的尿在空气中一段时间后,就会变黑。

另一种因缺少珐琅质而牙齿为棕色(B,b)。

如图为一家族遗传图谱。

(1)棕色牙齿是______染
色体、____性遗传病。

(2)写出3号个体可能的
基因型:________。

7号个
体基因型可能有____种。

(3)若10号个体和14号
个体结婚,生育一个棕色
牙齿的女儿概率是___。

(4)假设某地区人群中每10000人当中有1个黑尿病患者,每1000个男性中有3个棕色牙齿。

若10号个体与该地一个表现正常的男子结婚,则他们生育一个棕色牙齿有黑尿病的孩子的概率是_________。

5.下图是一色盲的遗传系谱:
(1) 14号成员是色盲患者,致病基因是由第一
代中的某个体传递来的。

用成员的编号和“→”写出色
盲基因的传递途径:_________。

(2)若成员7与8再生一个孩子,是色盲男孩的概率
为________,是色盲女孩的概率为________。

6.下图是一个家庭的遗传谱系(色觉正常为B ,肤色正
常为A ),请回答:
(1)1号的基因型是______________。

(2)若11号和12号婚配,后代中患色盲的概率为_________。

同时患两种病的概率为___________。

(3)若11号和12号婚配,生育子女中有病孩子的概率为_______;只患白化病(不含既色盲又白化的患者)的概率为___________。

7.下图是A 、B 两种不同遗传病的家系图。

调查发现,患B 病的女性远远多于男性,据图回答。

(1)A 病是由 染色体上的 性基因控制的遗传病,判断的理由是 。

(2)假如⑥与⑨号结婚。

生下患病孩子的几率是 。

(3)如果③号与一正常男性结婚,从优生角度分析,你认为最好生男孩还是女孩,为什么?
8.图是某家族遗传系谱图。

请据图回答下列问题:
(1)该病的致病基因在 染色体上,是 性遗
传病。

I II
III 图注: ——仅患A 病的男性;A B 病的女
A 、
B 两种病的女性。

(2)I--2和Ⅱ--3的基因型相同的概率是。

(3)Ⅱ--2的基因型可能是。

(4)Ⅲ--2的基因型可能是。

(5)Ⅲ--2若和一携带致病基因的女子结婚,生育出患病女孩的概率是。

9.下图5—20表示的是甲、乙两种遗传病的发病情况。

请分析回答:
(1)甲遗传病最可能的遗传方式是;乙遗传病最可能的遗传方式是。

请从下列选项中选择:①x染色体显性②x染色体隐性③细胞质遗传
④常染色体显性⑤常染色体隐性⑥伴Y遗传
(2)如果患甲病家庭的16号个体和患乙病家庭的18号个体婚配,预计后代会出现的可能情况为,其中两病兼得的可能性是
(3)如果患甲病家庭中的19号和患乙病家庭的18号个体婚配,预计后代会出现的可能情况为,其中两病兼得的可能性是——。

10.下是患甲病(显性基因为A,隐性基因为a)和乙病(显性基因为B,隐性基因为b)两种遗传病的系谱图。

请据图回答:
(1)甲病的遗传方式是
(2)若Ⅱ3和Ⅱ8两者的家庭均无乙病史,则乙病的遗传方式是。

(3)Ⅲll和Ⅲ9。

分别与正常男性结婚,她们怀孕后到医院进行遗传咨询,了解到若在妊娠早期对胎儿脱屑进行检查,可判断后代是否会患这两种病
①Ⅲ11采取下列哪种措施(填序号),原因是
②Ⅲ9采取原因是
A.染色体数目检测B.基因检测C.性别检测D.无需进行上述检测
(4)若Ⅲ9与Ⅲ12违法结婚,子女中患病的可能性是——
11.下图是具有两种遗传病的家族系谱。

设甲病显性基因为A,隐性基因为a;乙病显性基因为B,隐性基因为b。

若Ⅱ一7为纯合体,请据图回答:
(1)甲病是致病基因位于染色体上的性遗传病,乙病是致病基因位于染色体上的性遗传病。

(2)Ⅱ一5的基因型可能是,Ⅲ一8的基因型是。

(3)Ⅲ一10是纯合体的概率是。

(4)假设Ⅲ一10与Ⅲ一9结婚,生下正常男孩的概率是。

(5)该系谱图中,属于Ⅱ一4的旁系血亲有。

12.下图为白化病(A_a)和色盲(B—b)两种遗传病的家族系谱图.请回答:
(1)写出下列个体可能的基因型
I2,Ⅲ9 ,Ⅲ11
(2)写出殖Ⅲ10产生的卵细胞可能的基因型为
(3)若Ⅲ8与Ⅲ11结婚,生育一个患白化病孩子的概率为,生育一个患白化病但色觉正常孩子的概率为假设某地区人群中10000人当中有一个白化病患者,若Ⅲ8与该地一个表现正常的男子结婚,则他们生育一患白化病男孩的概率为。

(4)目前已发现的人类遗传病有数千种,遗传病产生的根本原因是。

13.下图是患甲病(显性基因为A,隐性基因为a)和乙病(显性基因为B.隐性基因为b)两种遗传病的系谱图。

据图回答:
(1)甲病致病基因位于,染色体上,为
性基因。

从系谱图上可以看出,甲病的遗传特点是子代患病,则亲代之一必。

(2)假设Ⅱ1不是乙病基因的携带者,则乙病的致病
基因位于染色体上。

Ⅲ2的基因型
为。

假设Ⅲ1和Ⅲ5结婚生了一个男孩,则该
男孩患一种病的几率为,
14. 为了说明近亲结婚的危害性.某医生向学员分析
讲解了下列有白化病和色盲两种遗传病的家族系谱图
(如图所示).设白化病的致病基因为a,色盲的致病基
因为b 请回答:
(1)写出下列个体可能的基因型:
Ⅲ8:;Ⅲ10:。

(2)若Ⅲ8与Ⅲ10结婚,生育下的子女只患白化病或色盲一种遗传病的概率是,同时患两种遗传病的概率是。

(3)若皿9和Ⅲ7结婚,子女中可能患的遗传病是,发病的概率是。

答案1 C 2A 3C 4答案:(1)X 显(2)AaX B Y 2 (3) 1/4 (4)1/4
5答案:(1)1→4→8→14(2)1/4 0
6 (1)AaX B X b(2)1/4 1/36 (3)1/3 1/12
7答案:(1)常显患A病的④和⑤生下不患A病的⑧(2)5/6
(3)生男孩和女孩都一样因为男和女患病的几率一样,均为3/8
8答案:(1)常染色体隐性(2) 100%(3) Aa (4) Aa或AA (5)1/12
9答案:(1)③⑥(2) 如果是男孩患甲乙两种病如果是女孩患甲病不患乙病1/2 (3) 如果是男孩患乙病如果是女孩不患病0
10答案:(1) 常染色体显性(2)伴X隐性(3) D Ⅲ11的基因型为aa X B X B
与正常男子结婚孩子都正常B和C Ⅲ9 可能的基因性为aa X B X b aa X B X B,与正常男子结婚,所生女孩均正常,男孩有可能患病(就可以用基因检测)(4) 17/24
11答案:(1) 常染色体显性常染色体隐性(2) aaBB或aaBb AaBb (3) 2/3 (4) 5/12 (5) Ⅱ一5 Ⅱ一6 Ⅲ一10
12答案:(1) Aa X b Y 、AA X b Y aaX b X b Aa X B Y 、AA X B Y
(2) A X B、AX b、a X b、a X B
(3) 1/3 1/4 1/200(4) 遗传物质的改变(基因突变、染色体变异)
13答案:(1)常显患病(2)X AaX b Y 1/4
14答案:(1) aaX B X B或aaX B X b AAX b Y Aa X b Y (2) 5/121/ 12 (3) 白化病和色盲5/12。

相关文档
最新文档