电机原理及电力拖动

合集下载

电力拖动的基本原理

电力拖动的基本原理

电力拖动的基本原理电力拖动是指通过电力传动装置将电动机的动力传递给负载,实现负载的运行,其基本原理是利用电磁感应现象。

在电力拖动系统中,电动机是将电能转化为机械能的设备,起到提供动力的作用;而负载则是电动机所驱动的设备,如输送带、机械臂等。

电力拖动的基本原理可简述为:电动机通过电力传动装置传递动力给负载,实现负载的运动。

具体来说,电力拖动的基本原理包括以下几个方面:1. 电动机的工作原理:电动机是利用电能转化为机械能的装置,其工作原理是基于电磁感应。

当电动机通电时,电流通过电动机的线圈时会产生磁场,根据电磁感应的原理,在磁场的作用下会产生力矩,使电动机转动。

2. 电力传动装置的作用:电力传动装置是将电动机的动力传递给负载的装置,通常包括传动轴、传动带(链)、减速器等。

它们的作用是将电动机的转速和转矩转换为负载所要求的转速和转矩,从而使负载能够正常工作。

3. 电动机和负载的匹配:在电力拖动系统中,电动机和负载之间需要进行匹配以实现最佳工作效果。

匹配主要包括转速匹配和转矩匹配。

转速匹配是指电动机的转速要与负载的要求相匹配,而转矩匹配是指电动机的输出转矩要能满足负载的需要。

通过合理的匹配,可以提高电力拖动系统的运行效率和工作质量。

4. 控制系统的作用:电力拖动系统通常还包括一个控制系统,用于控制电动机的工作状态和输出。

控制系统可以实现电动机的启动、停止、正反转以及速度调节等功能,从而适应不同的工作场合和工作要求。

5. 电力输送系统:电力拖动系统中还需要考虑电力的输送问题。

通常使用电缆或导轨进行电力输送,以保证电动机能够正常工作。

总之,电力拖动的基本原理是利用电动机将电能转化为机械能,并通过电力传动装置将动力传递给负载,从而实现负载的运动。

通过合理匹配和控制,可以使电力拖动系统高效、稳定地工作,满足各种工作要求。

电力拖动系统的工作原理与组成结构

电力拖动系统的工作原理与组成结构

电力拖动系统的工作原理与组成结构电力拖动系统是一种常见的机电一体化控制系统,广泛应用于工业生产中。

本文将介绍电力拖动系统的工作原理与组成结构。

一、工作原理1.电力拖动系统采用电力驱动装置,通过电动机将电能转化为机械能,从而实现机械设备的运动。

2.电力拖动系统通过控制电动机的启停、转速、转向等参数,实现对机械设备的精确操控。

3.电力拖动系统的工作原理是基于电动机的产生转矩,在电动机的转动下,通过传动装置将转动力矩传递给被驱动部件,从而实现机械设备的运行。

二、组成结构1.电动机电动机是电力拖动系统的核心部件,通常采用交流电机或直流电机。

它负责将电能转化为机械能,提供驱动力矩。

2.传动装置传动装置是将电动机产生的转动力矩传递给被驱动部件的装置。

常见的传动装置包括齿轮传动、皮带传动、链条传动等。

传动装置的选择应根据具体应用场景和需求进行。

3.控制装置控制装置用于对电动机进行控制,实现对机械设备的精确操控。

控制装置一般由电气控制柜、电气元件组成,包括主控制器、变频器、电力调节器等。

4.监测装置监测装置用于对电力拖动系统的工作状态进行监测和检测,确保系统的安全可靠运行。

常见的监测装置包括温度传感器、压力传感器、转速传感器等。

5.辅助装置辅助装置包括润滑装置、冷却装置、防尘装置等,用于保护电力拖动系统的正常运行,延长其使用寿命。

三、应用范围电力拖动系统广泛应用于机械加工、电力工业、矿山冶金、石油化工等领域。

它的高效性和精确操控性使得机械设备的运行更加稳定和可靠,提高了生产效率。

总结:电力拖动系统是一种电力驱动装置,通过电动机将电能转化为机械能,实现机械设备的精确操控。

其组成结构包括电动机、传动装置、控制装置、监测装置和辅助装置。

电力拖动系统在工业生产中应用广泛,提高了生产效率,推动了工业自动化发展。

注:本文章为阐述电力拖动系统的工作原理与组成结构而编写,未涉及具体技术细节和实际应用案例。

如需更加详细的内容,请参考相关专业书籍或咨询专业人士。

电机拖动与控制原理

电机拖动与控制原理

电机拖动与控制原理
电机拖动是指通过电机来控制物体的运动。

电机通常由电源、定子和转子构成。

当电源给定一定的电压和电流时,电流通过定子线圈,将产生磁场。

定子的磁场会与转子上的永磁体或电极产生相互作用,从而使转子开始转动。

电机拖动的控制原理是通过调节电机的输入电压、电流和频率来控制电机的转速和扭矩。

这可以通过控制电机的电源电压和频率来实现。

常见的电机控制方法有直流电机控制、交流电机控制以及步进电机控制。

直流电机控制常用的方法有电压控制和PWM控制。

电压控制是通过调节电机的输入电压来改变电机的转速和扭矩。

PWM(Pulse Width Modulation)控制是通过调节电压的脉冲
宽度来改变电机的转速和扭矩。

交流电机控制有多种方法,如电压频率控制、矢量控制和矢量空间矢量控制等。

其中,电压频率控制是通过调节电源的电压和频率来控制电机的转速和扭矩。

矢量控制是通过测量电机的电流和位置信息,并根据反馈信号来控制电机的转速和扭矩。

矢量空间矢量控制是一种更高级的控制方法,它可以实现更精确的控制效果。

步进电机控制是通过控制电机的脉冲信号来控制电机的转动角度和速度。

步进电机通常由步进驱动器和控制器组成。

控制器通过产生一系列的脉冲信号来控制步进驱动器,从而使步进电机按照设定的步数和速度进行旋转。

总而言之,电机拖动与控制原理是通过调节电机的输入电压、电流和频率来控制电机的转速和扭矩。

不同类型的电机有不同的控制方法,如直流电机控制、交流电机控制和步进电机控制等。

《电机原理及拖动》课程教学大纲(本科)

《电机原理及拖动》课程教学大纲(本科)

《电机原理及拖动》课程教学大纲课程编号:08100911课程名称:电机原理及拖动英文名称:Theory of Electrical Machine and Electric Power Drive课程类型:学科基础课课程要求:必修学时/学分:96/6 (讲课学时:85实验学时:11上机学时:0)适用专业:自动化一、课程性质与任务电机原理及拖动是自动化专业的一门学科基础课,也是为自动化专业学生将来学习电机拖动控制相关课程及将来从事专业工作打下良好理论基础。

通过本课程的学习,使学生能够生掌握各种常用电机(含变压器)的结构、电磁关系、基础理论知识、基本拖动原理和一般分析方法。

本课程在教学内容方面着重基本知识、基本理论和基本分析方法的讲解;在培养实践能力方面着重实际应用案例的分类和实验过程设计的基本训练,使学生对电机及拖动有一定的了解并具有一定的分析能力。

二、课程与其他课程的联系先修课程:《高等数学》、《大学物理》、《电路原理》,为本课程准备物理量的瞬时值、平均值及有效值的求解方法;建立电磁参量的物理概念、定律及与电路的对应关系;使本课程完成对铁磁材料性质的理解、分析和模型表示;为本课程准备三相交流电的物理量的相位超前和滞后关系、有功及无功概念和功率测量等方面的知识。

后续课程:《直流拖动系统》、《交流拖动系统》、《电机现代控制技术》、《变频器原理与应用》、《计算机控制技术》、《伺服系统》、《数字调速系统》。

本课程为运动控制、电力电子及工业自动控制等专业方向准备电力拖动系统的控制方案的选择、系统的构成及性能分析的基本概念和基本思想。

三、课程教学目标1.通过本课程的学习,了解直流电机、变压器、感应电机及同步电动机的基本结构、各种电机的应用范围;理解电机(含变压器)的工作原理、气隙磁场及其特点、电机主要运行性能指标及电机的额定值含义、拖动系统多轴简化方法及动力学分析方法、电动机调速方式及与其相匹配的负载类型、动态过程惯性及主要物理量变化特点。

电机与电力拖动

电机与电力拖动

电机与电力拖动1. 引言电机是一种将电能转化为机械能的设备,广泛应用于各个领域中。

电力拖动则指的是利用电动机驱动机械设备或系统进行运动或操作的过程。

本文将介绍电机的基本原理以及电力拖动的应用。

2. 电机的基本原理电机是通过电磁感应原理将电能转化为机械能的设备。

其基本原理为根据施加在导体上的电流产生的磁场与外部磁场之间的相互作用,进而产生力或转矩。

电机根据其工作原理的不同可以分为直流电机和交流电机。

直流电机是利用直流电源供电,通过直流电源的正反极性变化来产生旋转运动。

交流电机则是利用交流电源供电,通过交流电源的频率来产生旋转运动。

电机的主要构成部分包括定子和转子。

定子是固定不动的部分,其中包含了产生磁场的线圈。

转子则是可以转动的部分,通过与定子的磁场相互作用来产生力或转矩。

3. 电力拖动的应用电力拖动广泛应用于各个领域,例如工业自动化、交通运输以及家用电器等。

以下列举了几个常见的电力拖动应用:3.1 工业自动化在工业自动化中,电力拖动被广泛应用于各种生产设备和机械系统。

通过电动机驱动,可以实现自动化生产线的运行,提高生产效率和质量。

例如,自动化生产线中的输送带系统就是通过电动机驱动的。

电动机的转动产生的转矩传递给输送带,使其能够带动物料或产品在生产线上移动。

3.2 交通运输电力拖动在交通运输领域中起到了重要作用。

例如,电动汽车就是利用电动机作为动力源来驱动车辆运行。

电动汽车相比传统的内燃机汽车具有环保、高效等优势。

此外,电力拖动还被应用于电动火车、电动船舶等交通工具中,实现了对传统燃油动力的替代。

3.3 家用电器家用电器中的电机和电力拖动也是不可或缺的。

例如,洗衣机、空调、冰箱等家电产品都需要电机来驱动其工作。

电机驱动使得家用电器能够实现自动化、智能化的功能,提高生活质量和舒适度。

4. 总结电机作为将电能转化为机械能的设备,通过电磁感应原理实现了这一转化过程。

电力拖动则是利用电动机驱动机械设备或系统进行运动或操作的过程。

电力拖动基础知识

电力拖动基础知识

电力拖动基础知识电力拖动基础知识引言电力拖动是指利用电动机将动力传递给装置或机械的一种技术。

它在现代工业中起着至关重要的作用,广泛应用于各个行业。

本文将介绍电力拖动的基础知识,包括电动机的工作原理、电力传动系统的组成以及一些常见的应用。

一、电动机的工作原理电动机是电力拖动的核心部件,它将电能转换为机械能,通过轴向动力输出。

电动机的工作原理主要基于电磁感应和洛伦兹力。

1. 电磁感应电磁感应是电动机实现转动的基本原理。

当电流通过电动机的线圈时,会在线圈周围产生磁场。

根据法拉第电磁感应定律,当磁场改变时,会在线圈中产生感应电动势。

这个电动势会与电源电压产生差异,导致电流流经线圈。

差异越大,电流越大。

2. 洛伦兹力电动机实现转动的另一个原理是洛伦兹力。

当线圈中有电流通过时,它在磁场中受到力的作用。

根据右手定则,电流方向与磁场方向之间的关系将决定所受力的方向。

由于线圈的结构,导线受到力的方向相同,这将产生一个力矩,使电机开始旋转。

二、电力传动系统的组成电力传动系统是电力拖动的基础,它由电动机、传动装置和负载组成,各部分通过轴连接。

1. 电动机电动机是传动系统的动力源,它的类型有很多种。

常见的电动机包括直流电动机、交流异步电动机和交流同步电动机。

不同类型的电动机有不同的应用领域和工作原理。

2. 传动装置传动装置用于将电动机的转速和转矩传递给负载。

常见的传动装置包括齿轮传动、皮带传动和链传动。

通过不同的传动装置,可以实现不同的转速和转矩要求。

3. 负载负载是电力传动系统中的目标设备或机械。

它可以是任何需要动力传递的装置,如机床、输送带和风扇。

负载的特点和要求将决定电动机和传动装置的选择。

三、常见的电力拖动应用电力拖动在工业中的应用广泛,以下是一些常见的应用领域:1. 工业生产线工业生产线通常需要大量的电力来驱动各种设备和机械。

电力拖动被广泛应用于各个环节,如输送链、旋转装置和起重机。

2. 交通运输交通运输中的电力拖动主要应用于轨道交通和电动汽车。

电力拖动基本概念

电力拖动基本概念
电力拖动基本概念
目 录
• 电力拖动系统概述 • 电机与电力电子器件 • 控制理论在电力拖动中的应用 • 电力拖动系统设计 • 电力拖动系统的应用实例 • 电力拖动技术的发展趋势与挑战
01
电力拖动系统概述
定义与组成
定义
电力拖动系统是指利用电动机作 为原动机,通过传动装置将动力 传递给工作机构,以实现生产机 械的旋转或直线运动。
确保拖动系统能够高效地完成工作任务,减少能源浪费。
稳定性
保证拖动系统的稳定性,确保生产过程的连续性和可靠性。
设计原则与步骤
安全性
设计应考虑到安全因素,避免设备故障或操作失误可能带来的风险。
经济性
在满足功能需求的前提下,尽量降低成本。
设计原则与步骤
1. 明确设计要求
了解生产工艺、设备规格、运行环境等基本条件,明确设计目标。
生产效率
电力拖动系统的应用提高了工业自 动化生产线的生产效率,减少了人 工干预,降低了生产成本。
电动汽车的电力拖动系统
电动汽车
电动汽车的电力拖动系统由电机、 控制器、电池等部分组成,通过
电机驱动汽车行驶。
节能环保
电动汽车的电力拖动系统具有节 能环保的优点,能够减少燃油消 耗和排放污染物,对改善环境质
晶闸管
用于控制交流电机的启动、停 止和调速,实现交流电动机的 半控或全控。
PWM控制器
用于控制直流电机的速度和方 向,具有高精度和高动态性能
的特点。
03
控制理论在电力拖动中 的应用
控制系统的基本概念
控制系统
由被控对象和控制器组成的闭环系统,用于 实现某种特定的控制目标。
闭环控制系统
控制器与被控对象之间的信号是双向传递的, 存在反馈环节。

电机原理及拖动 复习题(题+答案)

电机原理及拖动 复习题(题+答案)

电机原理及拖动复习题(题+答案)《电机原理及拖动》复习一、名词解释1、绕组元件:是两端分别与两个换向片相连接的单匝或多匝线圈。

2、直流电机的电磁转矩:是指电机在正常运行时,电枢绕组流过电流,这些载流导体在磁场中受力所形成的总转矩。

3、电力拖动系统的过渡过程:就是指拖动系统从一个稳定状态到另一个稳定状态中间的过程。

4、整流变压器:是作为整流装置的电源变压器,用来把电网电压转换成整流装置所需的电压。

��5、能耗制动:能耗制动是指利用转子惯性转动切割磁力线而产生制动转矩,就是说把转子的能量消耗在转子回路的电阻上。

6、第一节距:一个元件两个有效边之间的距离,以所跨槽数表示。

7、直流电机的电枢电动势:是指直流电机正常工作时绕组切割气隙磁通产生的刷间电动势。

��8、电力拖动系统:是由电动机、机械传动机构、生产机械的工作机构、电动机的控制设备以及电源等五部分组成的综合机电装置。

9、变压器的额定容量:是变压器的额定视在功率,三相变压器指的是三相总容量。

10、反接制动:反接制动是利用改变电动机定子绕组的电源相序、产生反向的制动转矩,而迫使电动机迅速停止转动的方法。

二、填空题1、直流电动机改变线圈中电流方向是换向器和电刷完成的。

2、直流发电机把机械能转换成直流电能。

3、他励直流电动机的调速方法有电阻串电阻调速、降低电源电压调速、减弱磁通调速。

《电机原理及拖动》A卷答案第 1 页共 10 页4、三相变压器的原、副绕组都可以接成星形或三角形。

5、国际上规定标志三相变压器高、低压绕组线电势的相位关系用时钟表示法。

6、交流异步电动机的转子绕组有鼠笼型和绕线型两种。

7、定子三相绕组中通过三相对称交流电时在空间会产生旋转磁场。

8、同步电机可分为同步发电机、同步电动机和同步补偿机三类。

9、对于同步发电机,按拖动它的原动机来分有水轮和汽轮发电机等。

�� 10、通常采用平均损耗法、等效电流法、等效转矩法和等效功率法等方法来校验电动机的发热。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绕组连接顺序表:
规定:元件号、元件上层边所在槽号以及该元件首端所接换向片 均相同。 1、2、3……16 —— 表示元件上层所在槽号 1’、2 ’ 、3 ’ ……16 ’ —— 表示元件下层所在槽号
第三节 直流电机的电枢绕组
绕组元件的连接顺序:
第三节 直流电机的电枢绕组
绕组展开图:
第三节 直流电机的电枢绕组
图中: 导体中电流流进 导体中电流流出
电枢磁场的方向由右手定则确定
第四节 直流电机的电枢反应
图中:0点—主极轴线与电枢表面交点
线负荷A 单位长度的安匝数(安培导体数) Ni A a (1-12) D 式中:N 总导体数,ia 导体电流(即支路电流) D 电枢直径 电枢表示任一点到 O点的电枢磁势为: Fax A x (1-13)
式中:B v 每极平均磁密 极距(相邻主极间的距离)
第三节 直流电机的电枢绕组
绕组是连接到换向片上的线圈总称。 绕组分类: 单迭绕组: 后匝端 有效边
前匝端
单匝单迭元件
多匝单迭元件
第三节 直流电机的电枢绕组
单波绕组:
还有复迭、复波绕组,主要对于单迭绕组。
第三节 直流电机的电枢绕组
电机原理及电力拖动
主讲:王击
中南大学信息学院自动化专业
前言
一. 电机及拖动概况 本课程由两部分组成: 第一部分:《电机学》 第二部分:《电力拖动基础》 《电机原理及拖动》是自动化专业的一门重要专业基础课(或技术基础 课),是《自动控制系统》、《工业企业供电》、《电气控制技术》等课 程的基础。
前言
第二节 直流电机的空载磁势
空载磁场:指电机无负载时,由主极励磁绕组通入直流所产生磁场。 一.直流电机磁路、磁通和磁化曲线
一个主极所产生的磁势为:
F N f I f ( N f 匝数,I f 励磁电流)
(占80%以上) 主磁通:
由F所产生的磁通 直流电机空载时的磁势:
(大约20%) 漏磁通:
第一节 直流电机用途、结构及原 理
换向器的作用: 在直流发电机中,换向器将绕组中的交变电势变为电刷间的直流 电势(整流作用)。 电势波形分析: 设导体有效长度为L,速度为V 恒速,由e BLV 可知,e的波形 由磁密B确定。B在气隙空间分布波形为B f ( )、e f ( wt )。
对于各段磁压降可写成: B L H L L Rm s
(1-4)
式中: 磁导、Rm 磁阻、S 导磁体截面积
第二节 直流电机的空载磁势
闭合回路磁势方程:
R N
m
f f
i
(1-5)
由(1-5)式可见,磁通 是励磁电流i f 的函数,即 f ( I f )
第二节 直流电机的空载磁势
主磁通:交链电枢绕组的磁通(参与能量转换) 其路径:气隙 电枢 气隙 相邻磁极
磁轭 气隙
漏磁通:只交链励磁绕组的磁通(不参与能量转换) 主磁路的磁势分析: 设主磁路径如下图所示: 定子磁轭 磁极 气隙 电枢齿 电枢磁轭
第二节 直流电机的空载磁势
第一节 直流电机用途、结构及原 理
三.直流电机的结构
定子部分
由两大部分组成
转子(电枢)部分
(一)定子结构
定子作用:产生磁场,支撑电机及配件。
第一节 直流电机用途、结构及原 理
1.主磁极:产生磁场(成对出现),可以是永久磁场,也可以在极身上 绕绕组,通入直流电产生磁场。

if
主磁极

换向磁极


电机外壳
1.直流发电机: 1 )机械能转换为电能 2)换向器将绕组中的交流变为电刷间的直流 3)发电机中的电势为电势源(e, i同方向) 4)发电机中的转矩为制动力矩,与n( M 外 )相反
第一节 直流电机用途、结构及原 理
2.直流电动机: 1) 将电能转换为机械能 2) 换向器将外加直流转换为绕组中的交流 3) 电动机中的电势为反电势与电流方向相反 4) 电动机中的转矩为拖动力矩,与n同方向
第一节 第二节 第三节 第四节 第五节 第六节 第七节 第八节 直流电机用途、结构及原理 直流电机的空载磁势 直流电机的电枢绕组 直流电机的电枢反应 直流电机的电枢电势与电磁转矩 直流发电机 直流电动机 直流电机换向简介
第一节 直流电机用途、结构及原 理
一.直流发电机的工作特性
发电机是将机械能转换为电能,故必须原动机拖动发电机。
第一节 直流电机用途、结构及原 理
二.直流电动机的工作原理
直流电动机与直流发电机的结构一样,但是直流电动机是将直流 电能转换为机械能的装置,故要加直流电源。 载流导体在磁场中产生电磁力: f BLi 电磁力的方向由左手定则确定:
第一节 直流电机用途、结构及原 理
① 当电枢线圈位于图a时,其等效为下图
一.基本概念
1)极轴线:平分主极成左右两部分的直线。
N S N S
极轴线
几何中性线
第三节 直流电机的电枢绕组
2)几何中性线 相邻两主极的几何分界线。 3)极距
相邻两主极在电枢圆周的长度,用 表,单位为槽:

4)绕组节距
总槽数Z 主极极数2P
( P 磁极对数)
y1 y2
yK
第三节 直流电机的电枢绕组
第一节 直流电机用途、结构及原 理
磁极铁芯:用1~1.5mm低碳钢板冲压而成。 (小型机可用整块铸钢制成) 激磁绕组:用绝缘导线绕制而成。
+
Uf
If
-
s1
N2
N1
s2
磁极N、S相间出现!!
第一节 直流电机用途、结构及原 理
2.换向极:用来改善换向,减少电刷与换向器间的火花,装于两主磁 极间(可以是主极数的一半)换向极绕组匝数少,线径粗。 3.机壳: 固定主磁极,换向极,端盖等,同时又是磁路。用铸钢或 厚钢板制成。 4.电刷装置:接通外电路和电枢电路。
曲线1:气隙磁化曲线因气隙不存在 饱和,故为直线(曲线2的切 线)。 曲线2:刚开始铁芯未饱和,呈直线 关系,随后因铁芯趋于饱和, 呈曲线b 一般K m取1.11 ~ 1.35
第二节 直流电机的空载磁势
二.气隙磁密沿电枢表面分布波形
设电枢表面是光滑的(略去齿槽影响); 同时认为全部磁势降在气隙中(即各处 磁势相等); 气隙磁势磁密的分布波形由下式确定: B N f I f H (1-6)
合成节距y:相邻两串联元件间的距离: y y1 y2 在单迭绕组中y 1。 换向节距yk:同一元件的首尾端在换向器的跨距。
yk (单位不同) y
第三节 直流电机的电枢绕组
二.单迭绕组的绕制
例如:一台直流电机,极数2P=4 Z=S=K=16,试绕制一单迭绕组
计算节矩:y1
Z 16 4 整距绕组 2P 4 在单迭绕组中 y yk 1 y2 y1 y 3

式中: 是常数( 是空气隙) 由( 1 6)式可知B 与气隙长度成反比。
第二节 直流电机的空载磁势
在极轴两边气隙小且大小相差不大
B 最大,各处基本相同。
在靴处气隙显著加大,B 明显减少 B f ( )曲线是个钟形波。 每极下平均磁通 B v L (1-7)
第一节距y1:一个元件两有效边的距离。 Z y1 1 2P y1 整距元件 y1 长距元件 y1 短距元件
通常使用短距元件,因为可节省铜导线,同时有利于改善电 势波形。
第二节距y2:第一个元件的下层边与紧接着串联的第二元件上 层边之间的距离。
第三节 直流电机的电枢绕组
根据磁路第二定律: 总磁势:Fo HL
2 气隙磁势 2 电枢齿磁势 电枢磁轭磁势 2 磁极磁势 定子磁轭磁势 2 H 2 H t Lt H rt Lrt 2 H p L p H st Lst 2 N f I f (两极总磁势) (1-3) 式中:N f 励磁绕组匝数,I f 励磁电流
电阻(电抗):R
电压:U I R
在电路中:
在磁路中:
磁势:F W I
F Um 磁通: Rm F 1 L 磁阻:Rm A 磁压:U m Rm
U I
前言
1) 全电流定律
1
H d L I
H
1 N
当电流方向与积分路径方向符合右手螺旋定则时,其电流为正, 否则为负。
第一节 直流电机用途、结构及原 理
(二)转子结构 转子也称为电枢。 电枢的作用:产生感应电势和电磁转矩是能量转换的枢纽。 (1)转子铁芯: 用0.35~0.5mm相互绝缘的硅钢片制成。 电枢绕组 电枢齿 电枢槽 电枢磁轭
第一节 直流电机用途、结构及原 理
(2)电枢绕组:通过电流感应电势,能量转换的重要部件,是直流电 机的主电路。用高强度绝缘漆包线绕制。 (3)换向器:由相互绝缘的换向片组成。
电刷具体放置方法: 应放在元件轴线与主极轴线重合的元件所接两换向片之间, 且电刷中心线与两换向片中心线重合(即被电刷短路的元件其瞬时 电势为0)。 电枢绕组的电路图:
第四节 直流电机的电枢反应
电枢反应: 电枢磁场对主磁极建立的气隙磁场的影响。 电枢反应 电刷不在几 有交轴电枢反应, 可分为: 何中性线时 还有直轴电枢反应 一.电刷在几何中性线时的电枢磁势和电枢磁场 电刷在几何中性线时—只有交轴电枢反应
换向器的作用:
在直流发电机中,将绕组中交流转为电刷间的直流 在直流电动机中,将电刷间直流转为绕组中的交流
第一节 直流电机用途、结构及原 理
四.直流电机的额定值
额定值:指电机在额定运行状态下各物理的数值
主要有: 1 )额定容量Pe ( w, kw) 输出功率 发电机:PN U N I N ,出线端输出功率 电动机:PN U N I N N 轴上输出功率 2)额定电压:U N (V ) 3)额定电流:I N ( A) 4)额定转速:nN (r / min) 5)额定转矩:M N ( N m, kg m) 6)额定效率: N 直流电机的主要系列:见教材P7页。
相关文档
最新文档