应用数学基础分章习题答案 第二章

合集下载

初中七年级数学上册第二章知识点及习题

初中七年级数学上册第二章知识点及习题

初中七年级数学上册第二章知识点及习题第二章整式的加减一、单项式、多项式、整式的概念单项式:由数与字母的乘积组成的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

多项式:几个单项式的和叫做多项式。

整式:单项式与多项式统称整式。

二、单项式的系数和次数1、单项式的系数:单项式中的数字因数及性质符号叫做单项式的系数。

如果一个单项式,只含有数字因数,是正数的单项式系数为1,是负数的单项式系数为—1。

2、单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。

3、单项式的表示形式:(1)数与字母的乘积这样的代数式叫做单项式(2)单个字母也是单项式。

(3)单个的数是单项式(4)字母与字母相乘成为单项式(5)数与数相乘称为单项式三、多项式的项、常数项、次数在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫常数项,多项式中次数最高项的次数,就是这个多项式的次数。

一个多项式有几项就叫做几项式。

多项式中的符号,看作各项的性质符号。

一元N 次多项式最多N+1项。

四、多项式的排列:1、把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。

2、把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。

由于多项式是几个单项式的和,所以可以用加法的运算定律,来交换各项的位置,而保持原多项式的值不变。

为了便于多项式的计算,通常总是把一个多项式,按照一定的顺序,整理成整洁简单的形式,这就是多项式的排列。

※在做多项式的排列的题时注意:(1) 由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。

(2) 有两个或两个以上字母的多项式,排列时,要注意: a 、先确认按照哪个字母的指数来排列。

b 、确定按这个字母向里排列,还是向外排列。

五、同类项的概念:所含字母相同,并且相同字母的指数也相同的项叫做同类项,所有常数项都是同类项。

应用数学基础 第二章-矩阵的相似标准形

应用数学基础 第二章-矩阵的相似标准形

记 f(x)= x n+ a1 x n-1 + + an-1 x + an,则 f(A)= A n+ a1 A n-1 + + an-1 A + an E
若 f()为的特征多项式,则 f(A)=0 .
( p60 Th2.11, Hamilton-Cayley定理 )
函数矩阵: 元素是函数的矩阵 多项式矩阵或-矩阵: 元素是的多项式的矩阵 如:方阵的A特征矩阵 E – A Note:多项式矩阵可以写成以矩阵为系数的多项式
Hint: 初等因子为 – 2,( + 1)2
cf. Mathematica示例 cf. Mathematica
例2.9 求矩阵A的Jö rdan标准形,其中
Hint: A1, A2初等因子分别为 i和 – 2,( – 1)2
示 例
19
§2.3 三、有理标准形
对任意的ni 次多项式 ()= 它的相伴矩阵Ci 定义为
特征值: f()= 0的根,即使 E – A为退化矩阵的数 特征向量:( E – A)X = 0的非零解 (为特征值) 谱:全部特征值的集合,记作(A)
有关特征值与特征向量的几个结论
2
§2.1-1
方阵的特征矩阵
矩阵多项式:以方阵 A代入一个多项式 f(x)的值,或者 说是 f(x)在 x = A处的值
15
§2.3 矩阵的相似标准形
一、矩阵相似的充分必要条件 定义2.8 设A, BCnn ,若存在可逆矩阵P Cnn ,使 P -1 A P = B , 则称A与B相似, 记作AB. 称 AB= P -1AP为相似变换, 称P为相似变换矩阵. 定理2.7 A, BCnn, A ~ B E – A E – B. Key

微积分及其应用第二章习题解答

微积分及其应用第二章习题解答
则由介值定理可知至少存在 使得
(4)已知函数 连续,求参数a,b.
解(1)要使 在 处连续,则
又由于
从而
(2)由于 是个分段函数,要使 连续,只需证明 在 处连续,即
又由于

(3)由于 是个分段函数,要使 连续,只需证明 在 处连续,即
又由于

(4)由于 是个分段函数,要使 连续,只需证明 在 处连续,即
又由于

2寻找下列函数的可去间断点,并修改或补充间断点处函数值使其连续.
证明,令 易见 在区间 上连续,且
则由根值存在定理可知存在 使得 即证方程 有非零根
5证明方程 至少有一个正根.
证明令 易见 在区间 上连续,且
则由根值存在定理可知存在 使得 即证方程 至少有一个正根.
复习题二
1已知 ,证明 .
证明:由于 ,即对任给的 当 时,有
则对上面给定的 当 时,有
即证 .
2设 ,在极限过程 下,当a,b为何值时 为无穷小?a,b为何值时 为无穷大?
(3)由于 ,函数仅在 处没有定义,且
故只需令 即可使函数在 处连续.
(4)由于 ,函数仅在 处没有定义,且
故只需令 即可使函数在 处连续.
3计算下列极限:
(1) ;(2) ;
(3) ;(4) ;
(5) ;(6) ;
(7) ;
解(1)
(2)令 则 则
(3)
(4)
(5)
(6)
(7)
4证明方程 有非零根.
(3)
解:(1)易见 故 或 时,函数为无穷小.
故 时,函数为无穷大.
(2)易见 故 , 时函数为无穷小.
(3) 故 时函数为无穷小.

高等数学课后习题答案第二章

高等数学课后习题答案第二章
1
=
1 4
1 tan
x 2
sec 2
x 2
5、设、 y =
1 2π D 1 2π D
e

( x−a)2 2D
,其中 a, D 是常数,求出使导数 y ′( x ) = 0 的 x 值
( x −a ) 2 2D
解: y ′ =
e

( x − a )2 2D
3、证明: (1) 、可导的偶(奇)函数的导数是奇函数(偶) (2) 、可导的周期函数的导数是具有相同周期的函数 证明:设 f ( x ) 是偶函数,且可导 则
f ( x) = f ( − x ) f (− x + ∆x ) − f (− x ) f ( x − ∆x ) − f ( x ) = lim = − f ′( x ) ∆x → 0 ∆x ∆x
[1 − ( x + ∆x ) 2 ] − (1 − x 2 ) − 2 x∆x − (∆x) 2 = lim = −2 x ∆x → 0 ∆x → 0 ∆x ∆x −b ) 2a

3、 设函数 f ( x) = ax 2 + bx + c , 其中 a, b, c 是常数, 求 f ′( x) , f ′(0) , f ′( −1) , f ′( 解
f ′(− x ) = lim
∆x →0
表明 f ′( x) 是奇函数。 设 f ( x) = f ( x + T )
f ′( x + T ) = lim
∆x →0
f ( x + T + ∆x ) − f ( x + T ) f ( x + ∆x ) − f ( x ) = lim = f ′( x) ∆ x → 0 ∆x ∆x

应用组合数学第二章答案

应用组合数学第二章答案

7! 2!(7−2)!
=
7! 2!5!
and C (7, 5) =
7! 5!(7−5)!
=
7! 5!2! ;
8 7(b). C (6, 4) =
6! 4!(6−4)!
Answers to Selected Exercises =
6! 4!2!
and C (6, 2) =
6! 2!(6−2)!
=
6! 2!4! ;
n+1 2
× 3 × 10−9 . × 3 × 10−11 .
8(a). n × 3 × 10−11 . 8(b).
n+1 2
Section 2.5 . 1(a). 3 · 2; 1(b). 5 · 4 · 3; 1(c). 8 · 7 · 6 · 5 · 4; 1(d). 0; 2(a). 63 ; 2(b). 6 · 5 · 4; 2(c). 1 · 6 · 6; 2(d). 1 · 5 · 4; 3(a). 84 ; 3(b). 8 · 7 · 6 · 5; 3(c). 1 · 8 · 8 · 8;
8. 1 7 21 35 35 21 7 1; 9. C (5, 3) =
5! 3!2!
= 10, C (4, 2) =
4! 2!2!
= 6, C (4, 3) =
4! 3!1!
= 4, and 10 = 6 + 4; = 6, and 21 = 15 + 6;
10. C (7, 5) =
7! 5!2!
4
Answers to Selected Exercises
Applied Combinatorics
by Fred S. Roberts and Barry Tesman

经济数学基础 微积分 第二章习题解答

经济数学基础      微积分    第二章习题解答

1 ex x0 15.设有函数f ( x) a x x 0
解: e 0 lim
x 0 1 x x 0
问常数a为何值时, f ( x)存在? lim
x0
lim (a x) a
当a 0时, f ( x)存在. lim
x0
16.求下列极限: tan 2 x 2 arctan 5 x 3x sin 3 x (2) lim (3) lim 5 (1) lim lim 6 x 0 sin 5 x x 0 arcsin x x 0 x 0 x x 5 sin 2 2 1 x2 sin x2 (5) lim 1 lim 4 x 1 x 0 (4) lim x sin lim 2 x x 0 x 2 sin ( ) x ( ) x x 1 2 2 x tan 2 x sin x tan 2 x sin x 2 1 1 (6) lim lim lim x 0 x 0 x 0 x x x
e 4
x x x 1 2 3 lim (17 ) lim ln(1 x x x ) x 0 x 0 x x
2
3
1
1
1 n 2 n 3 n n n n n n (18) lim(1 2 3 4 ) lim 4 [1 ( ) ( ) ( ) ] 4 x x 4 4 4 17.求下列极限:
x 1 x 1
1 或 lim 2 0 n x
y
解:lim f ( x) lim f ( x) 2 f (1)
x 2是第一类可去间断点
0
x
若f (1) 2, 则为连续 .
(2) x 0第二类无穷间断点 (3) x 0第一类跳跃间断点 (4) x 0第一类可去间断点 x 1第二类无穷间断点 (5) x 0第一类跳跃间断点 (6) x 0第一类可去间断点

微积分(大学数学基础教程答案)大学数学基础教程(二)多元函数微积分王宝富 钮海第二章习题解答(下)

微积分(大学数学基础教程答案)大学数学基础教程(二)多元函数微积分王宝富 钮海第二章习题解答(下)

习题2-1 1、解:在任意一个面积微元σd 上的压力微元σρg x d dF =,所以,该平面薄片一侧所受的水压力⎰⎰=Dgxd F σρ2、解:在任意一个面积微元σd 上的电荷微元σμd y x dF ),(=,所以,该平面薄片的电荷总量⎰⎰=Dd y x Q σμ),(3、解:因为10,10≤≤≤≤y x ,所以1122++≤++y x y x ,又u ln 为单调递增函数,所以()()1ln 1ln 22++≤++y x y x ,由二重积分的保序性得()()⎰⎰⎰⎰≤≤≤≤≤≤≤≤++≤++10101010221ln 1ln y x y x d y x d y x σσ4、解:积分区域D 如图2-1-1所示,所以该物体的质量34)384438()()(1032122222=-+-=+=+=⎰⎰⎰⎰⎰-dy y y y dx y x dy d y x M y yDσ 5、解:(1)积分区域如图2-1-2所示,所以⎰⎰⎰⎰=1101),(),(xy dy y x f dx dx y x f dy(2)积分区域如图2-1-3所示,所以⎰⎰⎰⎰=xx y ydy y x f dx dx y x f dy 2/4022),(),(2(3)积分区域如图2-1-4所示,所以⎰⎰⎰⎰+----=1121222122),(),(y yx x xdx y x f dy dy y x f dx(4)积分区域如图2-1-5所示,所以⎰⎰⎰⎰=eexey dx y x f dy dy y x f dx ),(),(10ln 06、解:(1)积分区域如图2-1-6所示,所以()⎰⎰⎰⎰⎰=⎪⎭⎫ ⎝⎛-=-==101054/1134/3105565111432322x x dx x x x dy y x dx d y xxxDσ (2)积分区域如图2-1-7所示,所以1564)4(2122224022222=-==⎰⎰⎰⎰⎰--dy y y dx xy dy d xy y Dσ (3)积分区域如图2-1-8所示,所以11021011211011111101101)()()()(----+-----+-+-++--+-+-=-+-=-+-=+=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰e e dx e e e dx e ee dxe e e dx e e e dy e dx dy e dx d e x x x x x x x x xxy x x xy x Dyx σ(4)积分区域如图2-1-9所示,所以613832419)()(20232/22222=⎪⎭⎫ ⎝⎛-=-+=-+⎰⎰⎰⎰⎰dy y y dx x y x dy d x y x yy Dσ 7、解:(1)积分区域如图2-1-10所示,令θθsin ,cos r y r x ==,所以ar ≤≤≤≤-0,22πθπ,故()⎰⎰⎰⎰⋅=-aDdr r r f r d d y x f 022sin)cos,(,ππθσ(2)积分区域如图2-1-11所示,令θθsin ,cos r y r x ==,所以θπθsin 20,0≤≤≤≤r ,故⎰⎰⎰⎰⋅=θπθθθσsin 20)sin ,cos (),(dr r r f r d d y x f D8、解:(1)积分区域如图2-1-12所示,令θθsin ,cos r y r x ==,所以θθπθ2cos sin 0,40≤≤≤≤r ,故[]12sec tan sec )(4040cos sin 014021221022-===⋅=+⎰⎰⎰⎰⎰--ππθθπθθθθθd dr r r d dy y x dx xx(2)积分区域如图2-1-13所示,令θθsin ,cos r y r x ==,所以θπθsin 20,0≤≤≤≤r ,故8)(432022022a dr r d dx y x dy ay a aπθπ==+⎰⎰⎰⎰-9、解:(1)积分区域如图2-1-14所示,故49)(12131221222=+-==⎰⎰⎰⎰⎰dx x x dy y dx x d yx x x D σ (2)积分区域如图2-1-15所示,令θθsin ,cos r y r x ==,所以10,20≤≤≤≤r πθ,故()28)1(21a r c2121)1(41121211211************21010444210143410421022202222-=⎥⎥⎦⎤⎢⎢⎣⎡-+=⎪⎪⎭⎫⎝⎛--+-=⎪⎪⎭⎫⎝⎛---=--=⋅+-=++--⎰⎰⎰⎰⎰⎰⎰⎰⎰ππππππθσπr rr r d r dr dr r r dr r rrdr rr rdr r r d d y x y x D(3)积分区域如图2-1-16所示, 故433222232214)32()()(a dy a y a ay dx y x dy d y xaayay a aD=+-=+=+⎰⎰⎰⎰⎰-σ(4)积分区域如图2-1-17所示,令θθsin ,cos r y r x ==,所以b r a ≤≤≤≤,20πθ,故()33220212232)(a b dr r d d y xbaD-==+⎰⎰⎰⎰πθσπ10、解:积分区域如图2-1-18所示,由图形的对称性得:⎰⎰==1441D d S S σ,所以24024022sin 0402cos 2sin 24a a d a rdr d S a =-===⎰⎰⎰ππθπθθθθ图2-1-1 图2-1-2 图2-1-3 图2-1-4图2-1-5 图2-1-6 图2-1-7 图2-1-8图2-1-9 图2-1-10 图2-1-11 图2-1-12图2-1-13 图2-1-14 图2-1-15 图2-1-16图2-1-17 图2-1-18习题2-21、解:⎰⎰⎰Ω=dv z y x Q ),,(μ2、化三重积分为直角坐标中的累次积分解:(1)因为积分区域Ω的上曲面为开口向上的旋转抛物面22y x z +=,下曲面为0=z ,积分区域Ω在xoy 坐标面上的投影区域x y x D xy -≤≤≤≤10;10:,所以()()⎰⎰⎰⎰⎰⎰-+Ω=101022,,,,xy x dz z y x f dy dx dv z y x f(2)因为积分区域Ω的上曲面为开口向下的抛物柱面22x z -=与下曲面为开口向上的旋转抛物面222y x z +=围成,二曲面的交线在x o y平面上的投影为圆122=+y x ,即⎪⎩⎪⎨⎧-≤≤+-≤≤--≤≤-Ω22222221111:x z y x x y x x ,所以()()⎰⎰⎰⎰⎰⎰-----+Ω=11112222222,,,,x x x y x dz z y x f dy dx dv z y x f(3)因为积分区域Ω的上曲面为开口向上的旋转抛物面22y x z +=,下曲面为0=z ,积分区域Ω在xoy 坐标面上的投影区域1;11:2≤≤≤≤-y x x D xy ,所以()()⎰⎰⎰⎰⎰⎰-+Ω=111222,,,,xy x dz z y x f dy dx dv z y x f3、解:积分区域Ω如图2-2-1所示0)1(61211161211111022=-===⎰⎰⎰⎰⎰⎰⎰⎰⎰--Ω-dx x x dy y xdx zdz dy xdx xzdxdydz xxy 另解:因为积分区域Ω关于坐标面yoz 对称,又xz z y x f =),,(关于第一坐标是奇函数,所以0=⎰⎰⎰Ωxzdxdydz 。

(数学分析习题答案)第二章

(数学分析习题答案)第二章

第二章 数列极限P.27 习题2.按N -ε定义证明:(1)11lim=+∞→n nn证明 因为 n n n n 11111<+=-+,所以0>∀ε,取ε1=N ,N n >∀,必有ε<<-+n n n 111. 故11lim =+∞→n n n(2)23123lim 22=-+∞→n n n n 证明 因为 n n n n n n n n n n n n n 32525)1(232)12(23223123222222<=<-++<-+=--+ )1(>n ,于是0>∀ε,取}3,1max{ε=N ,N n >∀,有 ε<<--+n n n n 32312322. 所以23123lim 22=-+∞→n n n n(3)0!lim =∞→n n n n证明 因为n n n n n n n n n n n n n n nn 11211)1(!0!≤⋅⋅⋅-=⋅⋅⋅-==- ,于是0>∀ε,取ε1=N ,N n >∀,必有ε<≤-n n n n10!. 所以0!lim =∞→n n n n(4)sinlim =∞→nn π证明 因为n nnπππ≤=-s in0s in,于是0>∀ε,取επ=N ,N n >∀,必有εππ<≤-nn0s in. 所以sinlim =∞→nn π(5))1(0lim>=∞→a a nnn证明 因为1>a ,设)0(1>+=h h a ,于是222)1(2)1(1)1(h n n h h n n nh h a n n n -≥++-++=+= ,从而22)1(22)1(0h n hn n n a n a n n n -=-≤=-,所以0>∀ε,取122+=h N ε,N n >∀,有ε<-≤-2)1(20h n a n n . 故0lim =∞→n n a n3.根据例2,例4和例5的结果求出下列极限,并指出哪些是无穷小数列:(1)n n 1lim∞→;(2)n n 3lim ∞→;(3)31limn n ∞→(4)n n 31lim ∞→;(5)n n 21lim ∞→;(6)n n 10lim ∞→;(7)n n 21lim ∞→ 解 (1)01lim 1lim 21==∞→∞→n nn n (用例2的结果,21=a ),无穷小数列.(2)13lim =∞→n n ,(用例5的结果,3=a )(3)01lim3=∞→n n ,(用例2的结果,3=a ),无穷小数列.(4)031lim 31lim =⎪⎭⎫ ⎝⎛=∞→∞→nn n n ,(用例4的结果,31=q ),无穷小数列.(5)021lim 21lim =⎪⎭⎫ ⎝⎛=∞→∞→nn n n ,(用例4的结果,21=q ),无穷小数列. (6)110lim =∞→n n ,(用例5的结果,10=a ).(7)121lim 21lim==∞→∞→nn nn ,(用例5的结果,21=a ). 4.证明:若a a n n =∞→lim ,则对任一正整数 k ,有a a k n k =+∞→lim证明 因为aa n n =∞→lim ,所以εε<->∀>∃>∀||,,0,0a a N n N n ,于是,当Nk >时,必有N k n >+,从而有ε<-+||a a k n ,因此a a k n k =+∞→lim .5.试用定义1证明:(1)数列⎭⎬⎫⎩⎨⎧n 1不以1为极限;(2)数列}{)1(n n -发散.证明(用定义1证明) 数列}{n a 不以 a 为极限(即a a n n ≠∞→lim )的定义是:00>∃ε,0>∀N ,N n >∃0,0||0ε≥-a a n(1)取210=ε,0>∀N ,取N N n >+=20,有0021)1(212112111ε==++≥++=-+=-N N N N N n ,故数列⎭⎬⎫⎩⎨⎧n 1不以1为极限.另证(用定义1’证明) 取210=ε,则数列⎭⎬⎫⎩⎨⎧n 1中满足2>n 的项(有无穷多个)显然都落在1的邻域)23,21();1(0=εU 之外,故数列⎭⎬⎫⎩⎨⎧n 1不以1为极限.(2)数列}{)1(n n -=},6,51,4,31,2,1{ ,对任何R a ∈,取10=ε,则数列}{)1(n n -中所有满足“n 为偶数,且1+>a n ”的项(有无穷多个),都落在 a 的邻域)1,1();(0+-=a a a U ε之外,故数列}{)1(nn -不以任何数 a 为极限,即数列}{)1(nn -发散.6.证明定理2.1,并应用它证明数列⎭⎬⎫⎩⎨⎧-+n n )1(1的极限是1. 定理2.1 数列}{n a 收敛于 a 充要条件是:}{a a n -为无穷小数列. (即a a n n =∞→lim 的充要条件是0)(lim =-∞→a a n n )证明 (必要性)设aa n n =∞→lim ,由数列极限的定义,,0,0>∃>∀N εN n >∀,有ε<--=-|0)(|||a a a a n n ,所以 0)(lim =-∞→a a n n .(充分性)设0)(lim =-∞→a a n n ,由数列极限的定义,,0,0>∃>∀N εN n >∀,有ε<-=--|||0)(|a a a a n n ,所以a a n n =∞→lim .下面证明:数列⎭⎬⎫⎩⎨⎧-+n n )1(1的极限是1. 因为⎭⎬⎫⎩⎨⎧-=⎭⎬⎫⎩⎨⎧--+n n n n )1(1)1(1是无穷小数列,所以数列⎭⎬⎫⎩⎨⎧-+n n )1(1的极限是1.7.证明:若a a n n =∞→lim ,则||||lim a a n n =∞→. 当且仅当 a 为何值时反之也成立?证明 设aa n n =∞→lim ,由数列极限的定义,,0,0>∃>∀N εN n >∀,ε<-≤-||||||a a a a n n ,所以也有||||lim a a n n =∞→. 但此结论反之不一定成立,例如数列})1{(n -.当且仅当 a = 0 时反之也成立. 设0||lim =∞→n n a ,于是,0,0>∃>∀N εN n >∀,ε<=||||n n a a ,所以aa n n =∞→lim .8.按N -ε定义证明:(1)0)1(lim =-+∞→n n n ; (2)0321lim3=++++∞→n nn(3)1lim =∞→n n a ,其中⎪⎪⎩⎪⎪⎨⎧+-=为奇数为偶数n n n n n nn a n 2,1证明 (1)因为n nn n n 111|1|<++=-+. 于是0>∀ε,取21ε=N ,N n >∀,必有ε<<-+nn n 1|1|,从而0)1(lim =-+∞→n n n .(2)因为n n n n n n n n n n n 12212)1(3212233=+<+=+=++++ ,于是0>∀ε,取ε1=N ,N n >∀,必有ε<<-++++n n n 103213 ,所以0321lim 3=++++∞→n n n(3)因为当 n 为偶数时,n n n a n 111|1|=--=-当 n 为奇数时,nnn n nnn n n nn a n 111|1|222<++=-+=-+=-,故不管n 为偶数还是奇数,都有n a n 1|1|<-. 于是0>∀ε,取ε1=N ,N n >∀,必有ε<<-n a n 1|1|,所以 1lim =∞→n n a .P.33 习题1.求下列极限:⑴ 根据P.24例2 01lim=∞→an n ,0>a ,可得4131241131lim 32413lim 323323=++++=++++∞→∞→n n n n n n n n n n⑵ 0)21(lim 21lim 22=+=+∞→∞→n n n n n n⑶根据P.25例4 0lim =∞→n n q ,1||<q ,可得313)32(31)32(lim 3)2(3)2(lim 111=+-⋅+-=+-+-+∞→++∞→n nn n n nnn⑷ 211111lim lim )(lim 22=++=++=-+∞→∞→∞→n n n n n n n n n n n这是因为由P.29例1若aa n n =∞→lim ,则aa n n =∞→lim . 于是由1)11(lim =+∞→n n ,得1111lim ==+∞→n n .⑸ 10)1021(lim =+++∞→n n n n ,因为1lim =∞→n n a (0>a )⑹ 23113113121121121lim 313131212121lim 22=--⋅--⋅=++++++∞→∞→nn n n n n2.设a a n n =∞→lim ,b b n n =∞→lim ,且b a <. 证明:存在正数N ,使得当N n >时,有n n b a <.证明 由b a <,有b b a a <+<2. 因为2lim ba a a n n +<=∞→,由P.24保号性定理2.4,存在01>N ,使得当1N n >时有2b a a n +<. 又因为2lim b a b b n n +>=∞→,所以,又存在02>N ,使得当2N n >时有2b a b n +>. 于是取},m ax {21N N N =,当N n >时,有nn b b a a <+<2. 3.设}{n a 为无穷小数列,}{n b 为有界数列,证明:}{n n b a 为无穷小数列.证明 因为}{n b 为有界数列,所以存在0>M ,使得 ,2,1,||=≤n M b n. 由}{n a 为无穷小数列,知,0,0>∃>∀N εN n >∀,M a n ε<||. 从而当N n >时,有εε=⋅<⋅=M Mb a b a n n n n ||||||,所以0lim =∞→n n n b a ,即}{n n b a 为无穷小数列.4.求下列极限(1)1111lim 11131212111lim )1(1321211lim =⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+-++-+-=⎪⎪⎭⎫ ⎝⎛+++⋅+⋅∞→∞→∞→n n n n n n n n(2)因为nnn n212112181412128422222222===-+++ ,而)(12221121∞→→=<<n nnn,于是12lim 21=∞→nn ,从而222lim2222lim 21284==∞→∞→nnn n(3)32323lim 23221229272725253lim 2122321lim 13222=⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+-+++-+-+-=⎪⎭⎫ ⎝⎛-+++∞→-∞→∞→n n n n n n n n n n n(4)当2>n 时,11121<-<n ,n n n n 11121<-<,而11lim 21lim ==∞→∞→n n n n ,所以111lim =-∞→n n n .(5)因为)(,0111)2(1)1(11022222∞→→+=+≤++++<n n n n n n n n ,所以 0)2(1)1(11lim 222=⎪⎪⎭⎫⎝⎛++++∞→n n n n(6)因为1112111222222=≤+≤++++++≤+nn n n n n n n nn n ,且1111limlim2=+=+∞→∞→nnn n n n ,所以112111lim 222=⎪⎪⎭⎫ ⎝⎛++++++∞→n n n n n 5.设}{n a 与}{n b 中一个是收敛数列,另一个是发散数列,证明}{n nb a ±是发散数列. 又问}{n n b a 和)0(≠⎭⎬⎫⎩⎨⎧n n n b b a 是否必为发散数列.证明 (用反证法证明)不妨设}{n a 是收敛数列,}{n b 是发散数列. 假设数列}{n nb a +收敛,则n n n n a b a b -+=)(收敛,这与}{n b 是发散数列矛盾,所以,数列}{n n b a +发散.同理可得数列}{n n b a -发散.}{n n b a 和)0(≠⎭⎬⎫⎩⎨⎧n n n b b a 不一定是发散数列. 例如,若}{n a 是无穷小数列,}{n b 是有界的发散数列. 则}{n n b a 和)0(≠⎭⎬⎫⎩⎨⎧n n n b b a 是无穷小数列,当然收敛.但是,有下列结果:如果0lim ≠=∞→a a n n ,}{n b 是发散数列,则}{n n b a 和)0(≠⎭⎬⎫⎩⎨⎧n n n a a b 一定是发散数列.6.证明以下数列发散:(1)⎭⎬⎫⎩⎨⎧+-1)1(n n n证明 设1)1(+-=n n a nn ,则)(,11222∞→→+=n n n a n ,而121212-→--=-n n a n ,由P.33,定理2.8 知⎭⎬⎫⎩⎨⎧+-1)1(n n n 发散. (2){}nn )1(-证明{}nn )1(- 的偶数项组成的数列n a n 22=,发散,所以{}nn)1(-发散.(3)⎭⎬⎫⎩⎨⎧4cos πn 证明 设4cosπn a n =,则子列 )(,118∞→→=n a n ,子列 )(,1148∞→-→-=+n a n ,故⎭⎬⎫⎩⎨⎧4cos πn 发散. 7.判断以下结论是否成立(若成立,说明理由;若不成立,举出反例): (1)若}{12-k a 和}{2k a 都收敛,则}{n a 收敛.解 结论不一定成立. 例如,设nn a )1(-=,则12=ka ,112-=-k a 都收敛,但n n a )1(-=发散.注 若}{12-k a 和}{2k a 都收敛,且极限相等(即kk k k a a 212lim lim ∞→-∞→=),则}{n a 收敛.(2)若}{23-k a ,}{13-k a 和}{3k a 都收敛,且有相同的极限,则}{n a 收敛.证明 设aa a a k k k k k k ===∞→-∞→-∞→31323lim lim lim ,则由数列极限的定义,知0>∀ε,01>∃K ,1K k >∀,ε<--||23a a k ;同样也有02>∃K ,2K k >∀,ε<--||13a a k ;03>∃K ,3K k >∀,ε<-||3a a k . 取}3,3,3m ax {321K K K N =,当N n >时,对任意的自然数 n ,若23-=k n ,则必有1K k >,从而ε<-||a a n;同样若13-=k n ,则必有2K k >,从而也有ε<-||a a n;若k n 3=,则必有3K k >,从而ε<-||a a n . 所以aa n k =∞→lim ,即}{n a 收敛.8.求下列极限:(1)n n k 2124321lim-∞→解 因为n n 2126543210-<121)12)(12(12)12)(32(32755533311+=+-----⋅⋅⋅<n n n n n n n而0121lim =+∞→n k ,所以 02124321lim =-∞→n n k 另解 因为12254322124321+<-n n n n ,设n n S n 2124321-=,1225432+=n n T n ,则n n T S <. 于是121+=⋅<n S T S S n n n n ,所以121+<n S n .(2) 答案见教材P.312提示. (3)10],)1[(lim <<-+∞→αααn n k解 ]1)11[(]1)11[()1(0-+<-+=-+<n n n n n n ααααα)(,011∞→→==-n n n n αα所以,0])1[(lim =-+∞→ααn n k另解 因为01<-α,所以11)1(--<+ααn n ,于是11)1()1(--+=+<+ααααn n n n n ,从而)(,0)1(01∞→→<-+<-n nn n ααα. (4) 答案见教材P.312提示.9.设m a a a ,,21为 m 个正数,证明:},,max {lim 2121m n nn n n n a a a a a a =+++∞→证明 因为 },,max{},,max{212121m n n nn n n m a a a n a a a a a a ≤+++≤而1lim =∞→n n n ,所以},,max {lim 2121m n nn n n n a a a a a a =+++∞→10.设aa n n =∞→lim ,证明:(1)a n na n n =∞→][lim; (2)若0,0>>n a a ,则1lim =∞→n n n a .证明 (1)因为1][][+<≤n n n na na na ,所以nn n a n na n na ≤<-][1. 由于a n a n na n n n n =⎪⎭⎫ ⎝⎛-=-∞→∞→1lim 1lim ,且a a n n =∞→lim ,从而a n na n n =∞→][lim .(2)因为 0lim >=∞→a a n n ,由P.29 定理 2.4,存在0>N ,使得当N n >时,有a a a n 232<<. 于是 n n n na a a 232<<,并且123lim 2lim ==∞→∞→n n n n a a ,所以1lim =∞→n n n a .P.38 习题1.利用e n nn =⎪⎭⎫⎝⎛+∞→11lim 求下列极限:(1)e n n n n n n n nn nn 11111111lim 1lim 11lim 1=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--∞→∞→∞→(2)e n n n nn n n =⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛+∞→+∞→1111lim 11lim 1(3)e n n n n n nn =⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛+++∞→∞→111111lim 111lim 1(4)en n n nn n n nn =⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+∞→⋅∞→∞→2212211lim 211lim 211lim注:此题的求解用到事实(P.29例1):若aa n n =∞→lim ,且,2,1,0=≥n a n ,则aa n n =∞→lim .(5)nn n ⎪⎭⎫ ⎝⎛+∞→211lim 解 因为数列⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛+nn 11单调增加,且有上界 3,于是 )(,1311111222∞→→<⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+<n n n n n n n,所以111lim 2=⎪⎭⎫ ⎝⎛+∞→nn n2.试问下面的解题方法是否正确:求nn 2lim ∞→解 不正确. 因为极限nn 2lim ∞→是否存在还不知道(事实上极限nn 2lim ∞→不存在),所以设an n =∞→2lim 是错误的.3.证明下列数列极限存在并求其值: (1)设,2,1,2,211===+n a a a n n证明 先证数列}{n a 的有界性,用数学归纳法证明:2是}{n a 的一个上界.221<=a ,假设2<n a ,则22221=⋅<=+n n a a ,所以}{n a 有上界2.其次证明}{n a 单调增加.2)2(21>+-=-=-+nn n n n n n n a a a a a a a a ,所以n n a a >+1,即}{n a 单调增加. 从而}{n a 极限存在,设a a n n =∞→lim ,在n n a a 221=+的两端取极限,得a a 22=,解之得 a = 0 (舍去) 和 2,所以2lim =∞→n n a .注:}{n a 的单调增加也可以如下证明:122221=>==+n n n n n a a a a a ,所以n n a a >+1.还可以如下得到:121214121214121122++++++++=<=+n na a n n n(2)设,2,1,),0(11=+=>=+n a c a c c a n n证明 先证数列}{n a 的有界性,用数学归纳法证明:}{n a 的一个上界是 1 + c .c c a +<=11,假设c a n +<1,则c c c c a c a n n +=++<+<+=+1121221,所以}{n a 有上界1 + c .其次证明}{n a 单调增加(用数学归纳法证明). 21a c c c a =+<=,假设n n a a <-1,于是n n a c a c +<+-1,从而n n a c a c +<+-1,即1+<n n a a . 故}{n a 单调增加. 所以}{n a 极限存在,设a a n n =∞→lim ,在n n a c a +=+21的两端取极限,得a c a +=2,解之得 2411ca +±=. 由于a n > 0 ,所以 a > 0 . 故 2lim =∞→n n a . (3),2,1),0(!=>=n c n c a nn 证明 先证}{n a 从某一项以后单调减少. 取自然数 N 使得 N > c ,于是当N n >时,nn n n n n a a N ca n c n c n c n c a <+<+=+=+=++11!1)!1(11,即从第N 项开始}{n a 单调减少.由于}{n a 的各项都大于零,所以}{n a 有下界0. 从而}{n a 极限存在. 设a a n n =∞→lim ,在n n a n c a 11+=+的两端取极限,得a a ⋅=0,故0=a ,即0lim =∞→n n a .4.利用⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛+n n 11为递增数列的结论,证明⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛++nn 111为递增数列. 证明 设nn n n n n a ⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛++=12111,要证: ,3,2,1=≤-n a a n n ,即 因为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛+nn 11为递增数列,所以有111111+⎪⎭⎫ ⎝⎛++<⎪⎭⎫ ⎝⎛+n n n n , 即1121+⎪⎭⎫⎝⎛++<⎪⎭⎫ ⎝⎛+n nn n n n ,于是nnn n n n a n n n n n n n n n n n n n n a =⎪⎭⎫⎝⎛++<+⋅++⋅⎪⎭⎫ ⎝⎛++=+⎪⎭⎫⎝⎛++<⎪⎭⎫ ⎝⎛+=+--12112121121111.其中用到事实:1)1()2(1122≤++=+⋅++⋅n n n n n n n .5.应用柯西收敛准则,证明以下数列}{n a 收敛:(1)n n na 2sin 22sin 21sin 2+++=证明 不妨设m n >,则有n m m m n nm m a a 2sin 2)2sin(2)1sin(||21+++++=-++n m m n m m n m m 2121212sin 2)2sin(2)1sin(2121+++≤+++++≤++++ ⎪⎭⎫ ⎝⎛+++++<⎪⎭⎫ ⎝⎛+++=---+--+ m n m n m m n m 21212112121211211111 m m m 1212211<=⋅=+ 所以,0>∀ε,取ε1=N ,N m n >∀,,有ε<-||m n a a ,由柯西收敛准则,}{n a 收敛. (2)222131211n a n ++++= 证明 不妨设m n >,则有2221)2(1)1(1||n m m a a m n +++++=- n n m m m m )1(1)2)(1(1)1(1-++++++≤ m n m n n m m m m 1111112111111<-=--+++-+++-=所以,0>∀ε,取ε1=N ,N m n >∀,,有ε<-||m n a a ,由柯西收敛准则,}{n a 收敛.6.证明:若单调数列}{n a 含有一个收敛子列,则}{n a 收敛.证明 不妨设}{n a 是单调增加数列,}{k n a 是其收敛子列. 于是}{k n a 有界,即存在0>M ,使得 ,2,1,=≤k M a kn . 对单调增加数列}{n a 中的任一项m a 必有M a a km m ≤≤,即}{n a 单调增加有上界,从而收敛.7.证明:若0>n a ,且1lim1>=+∞→l a a n nn ,则0lim =∞→n n a证明 因为1lim 1>=+∞→l a a n n n ,所以存在 r 使得1lim 1>>=+∞→r l a a n n n . 于是由数列极限的保号性定理(P.29),存在0>N ,当N n >时,ra a n n>+1,1+>n nra a . 从而有n N n N N N a r a r ra a 13221--+++>>>> , 因此,)(,0011∞→→<<--+n r a a N n N n , 故lim =∞→n n a .8.证明:若}{n a 为递增有界数列,则}sup{lim n n n a a =∞→;若}{n a 为递减有界数列,则}inf{lim n n n a a =∞→. 又问逆命题成立否?证明 证明过程参考教材P.35,定理2.9(单调有界定理).逆命题不一定成立. 例如数列⎪⎩⎪⎨⎧-=为偶数为奇数n n n a n 111,1}sup{lim ==∞→nn n a a ,但}{n a 不单调.9.利用不等式 0),()1(11>>-+>-++a b a b a n a bn n n ,证明:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛++111n n 为递减数列,并由此推出⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛+nn 11为有界数列.证明 设111+⎪⎭⎫⎝⎛+=n n n a ,由不等式 )()1(11a b a n a bn n n -+>-++,有1111++++-+->-n n n n n n a b a na b na a b ,于是b a na b na b n n n n +->++11,b na a na b n n n n 1+-+>.在上式中令1111,111-=-+=+=+=n n n b n n n a ,a b >,得 nnn n n n a ⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-+=-11111nn nnn n n n n n n n n n n ⎪⎭⎫ ⎝⎛++⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+>11111nn nna n n n n n n n =⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=+11111即n n a a >-1,故⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛++111n n 为递减数列.而4111111111=⎪⎭⎫ ⎝⎛+≤⎪⎭⎫⎝⎛+<⎪⎭⎫ ⎝⎛++n nn n ,所以⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛+nn 11为有界数列. 10.证明:n n e n 3)11(<+- 证 由上题知⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛++111n n 为递减数列,于是对任何n m >有, 111111++⎪⎭⎫ ⎝⎛+>⎪⎭⎫⎝⎛+m n n n ,令∞→m ,取极限得,en n >⎪⎭⎫ ⎝⎛++111 ①又因为nnnn n n n n n n ⎪⎭⎫⎝⎛++⋅<⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⋅=⎪⎭⎫ ⎝⎛++113111111111②由①、②得nn n n n e ⎪⎭⎫⎝⎛++<⎪⎭⎫ ⎝⎛+<+113111,从而 n n e n e n n 3)11()11(<+-=+-11.给定两正数 a 1 与 b 1 ( a 1 > b 1 ),作出其等差中项2112b a a +=与等比中项112b a b =,一般地令21nn n b a a +=+, ,2,1,1==+n b a b n n n证明:nn a ∞→lim 与nn b ∞→lim 皆存在且相等.证明 因为11b a >,所以有nnn n n n a a a b a a =+<+=+221,即}{n a 单调减少. 同样可得}{n b 单调增加. 于是有11112b b b a b a a a n n n n n n ≥=≥+=≥++,即}{n a 单调减少有下界,}{n b 单调增加有上界,故n n a ∞→lim 与n n b ∞→lim 皆存在.在n n n b a a +=+12的两端取极限,可得n n n n b a ∞→∞→=lim lim12.设}{n a 为有界数列,记},,sup{1 +=n n n a a a ,},,inf{1 +=n n n a a a证明:⑴ 对任何正整数n ,n n a a ≥;⑵}{n a 为递减有界数列,}{n a 为递增有界数列,且对任何正整数n ,m 有m n a a ≥;⑶ 设a 和a 分别是}{n a 和}{n a 的极限,则a a ≥;⑷ }{n a 收敛的充要条件是a a =证 ⑴ 对任何正整数n ,n n n n n n n a a a a a a a =≥≥=++},,inf{},,sup{11⑵ 因为1211},,sup{},,sup{++++=≥=n n n n n na a a a a a , ,2,1=n ,所以}{na 为递减有界数列.由1211},,inf{},,inf{++++=≤=n n n n n n a a a a a a ,知}{n a 为递增有界数列.对任何正整数n ,m ,因为}{n a 为递减有界数列,}{n a 为递增有界数列,所以有m m n m n n a a a a ≥≥≥++.⑶ 因为对任何正整数n ,m 有m n a a ≥,令∞→n 得,mn n a a a ≥=∞→lim ,即m a a ≥,令∞→m 得aa a m m =≥∞→lim ,故a a ≥.⑷ 设}{n a 收敛,a a n n =∞→lim . 则0>∀ε,0>∃N ,N n >∀,ε<-||a a n,εε+<<-a a a n . 于是有εε+≤<-a a a n ,从而a a a n n ==∞→l i m . 同理可得a a a n n ==∞→lim ,所以aa =反之,设a a =. 由a a n n =∞→lim , a a a n n ==∞→lim ,得0>∀ε,0>∃N ,N n >∀, 有εε+<<-a a a n 及εε+<<-a a a n ,从而εε+<≤≤<-a a a a a n n nP.40 总练习题1.求下列数列的极限: (1)n nn n 3lim 3+∞→解 当3>n 时,有nn 33<,于是)(,323323333∞→→⋅=⋅<+<=n n n n n n n n n ,所以33lim 3=+∞→n n n n(2)nn e n 5lim∞→解 设h e +=1,则当6>n 时,62!6)5()1(!2)1(1)1(hn n n h h n n nh h e n n n --≥++-++=+= ,于是)(,0)5)(4)(3)(2)(1(!60655∞→→-----⋅<<n h n n n n n n n e n n ,所以0lim 5=∞→n n e n解法2 用P.39 习题7的结论. 设n n e n a 5=,1)1(lim lim 5151>=+=+∞→+∞→e n e e n a a n n n n n n ,从而0lim lim 5==∞→∞→n n n n a e n .解法3 用P.27 习题2⑸的结果0))((lim lim 5515==∞→∞→n n n n e ne n解法4 用单调有界定理. 令nn e n a 5=,则51)11(1n e a a n n +=+. 因为e n n <=+∞→1)11(lim 5,所以存在0>N ,当N n >时,e n <+5)11(,从而当N n >时,1)11(151<+=+n e a a n n . 于是从N n >起数列}{n a 递减,且有下界0,因此}{n a 收敛. 设a a n n =∞→lim ,在等式nn a n e a ⋅+=+51)11(1的两端取极限,得a e a ⋅=1,所以0=a .(3))122(lim n n n n ++-+∞→解 )]1()12[(lim )122(lim +-++-+=++-+∞→∞→n n n n n n n n n011121lim =⎥⎦⎤⎢⎣⎡++-++++=∞→n n n n n2.证明: (1))1|(|0lim 2<=∞→q q n n n证明 当0=q 时,结论成立.当1||0<<q 时,有1||1>q ,令0,1||1>+=h h q ,于是有nn h q )1(1+=,而由牛顿二项式定理,当3>n 时有3!3)2)(1()1(hn n n h n --≥+,从而)(0!3)2)(1()1(03222∞→→--≤+=<n h n n n n h n q n nn,所以lim 2=∞→n n q n另解 用P.27 习题2⑸的结果)(sgn ))||1((lim lim 22==∞→∞→n nn n n q q n q n(2))1(,0lg lim≥=∞→ααn nn证明 因为0,lg ><x x x ,于是)(,022lg 2lg 021∞→→=<=<-n n n n n n n n αααα,所以0lg lim =∞→αn n n .(3)0!1lim =∞→n n n 证明 先证明不等式:nn n ⎪⎭⎫⎝⎛>3!. 用数学归纳法证明,当1=n 时,显然不等式成立;假设nn n ⎪⎭⎫⎝⎛>3!成立,当 n + 1 时 nn n n n n n n n n n n ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⋅+=⎪⎭⎫ ⎝⎛⋅+>⋅+=+131)1(3)1(!)1()!1(113111331++⎪⎭⎫ ⎝⎛+>⎪⎭⎫⎝⎛+⎪⎭⎫⎝⎛+=n nn n n n故不等式nn n ⎪⎭⎫⎝⎛>3!成立. 由此可得)(,03!10∞→→<<n n n n ,所以0!1lim =∞→n n n另解 用数学归纳法证明不等式:n n n≥!3.设aa n n =∞→lim ,证明:(1)a n a a a nn =+++∞→ 21lim(又问由此等式能否反过来推出a a n n =∞→lim )证明 因为aa n n =∞→lim ,于是有11,0,0N n N >∀>∃>∀ε,2||ε<-a a n . 从而当1N n >时,有n naa a a a n a a a n n -+++=-+++ 212122||||||||||||12121111εε+≤⋅-+≤-++-+-+-++-+-≤++n A n N n n A na a a a a a n a a a a a a n N N N其中||||||121a a a a a a A N -++-+-= 是一个定数. 再由0lim =∞→n A n ,知存在02>N ,使得当2N n >时,2ε<n A . 因此取},m ax {21N N N =,当N n >时,有εεεε=+<+≤-+++22221n A a n a a a n .反过来不一定成立. 例如nn a )1(-=不收敛,但0lim21=+++∞→n a a a nn .练习:设+∞=∞→n n a lim ,证明:+∞=+++∞→n a a a n n 21lim(2) 若),2,1(0 =>n a n ,则a a a a n n n =∞→ 21lim证明 先证算术平均值—几何平均值—调和平均值不等式:na a a a a a a a a nnn n n+++≤≤+++ 212121111算术平均值—几何平均值不等式:n a a a a a a nnn +++≤2121对任何非负实数1a ,2a 有2)(212121a a a a +≤,其中等号当且仅当21a a =时成立. 由此推出,对4个非负实数1a ,2a ,3a ,4a 有2143212121432121414321)22(])()[()(a a a a a a a a a a a a +⋅+≤=422243214321a a a a a a a a +++=+++≤按此方法继续下去,可推出不等式n a a a a a a nn n +++≤ 2121对一切kn 2=(,2,1,0=k )都成立,为证其对一切正整数n 都成立,下面采用所谓的反向归纳法,即证明:若不等式对某个)2(≥n 成立,则它对1-n 也成立.设非负实数121,,,-n a a a ,令)(11121-+++-=n n a a a n a ,则有)1(1)1()(12112111211121-+++++++≤-+++⋅----n a a a a a a n n a a a a a a n n n n nn整理后得)(11)(12111121---+++-≤n n n a a a n a a a ,即不等式对1-n 成立,从而对一切正整数n 都成立.几何平均值—调和平均值不等式n nna a a a a a n2121111≤+++的证明,可令i i x y 1=,再对i y (n i ,,2,1 =)应用平均值不等式.由),2,1(0 =>n a n ,知0lim ≥=∞→a a n n . 若0≠a ,则a a n n 11lim=∞→. 由上一小题的结论,有)(,111212121∞→→+++≤≤+++n a na a a a a a a a a nnn n n而a an a a a a a a n n n n n ==+++=+++∞→∞→111111lim 111lim 2121 ,所以aa a a n n n =∞→ 21lim .若0=a ,即0lim =∞→n n a ,则11,0,0N n N >∀>∃>∀ε,ε<na . 从而当1N n >时,有n N n n N n n N N nn a a a a a a a a a a a 11112112121-+⋅≤⋅=εεεεε⋅=⋅=⋅=--n n N N nN n n N A a a a a a a 11112121其中1121N N a a a A -=ε ,是定数,故21lim <=∞→nn A ,于是存在02>N ,使得当2N n >时,2<n A . 因此取},m ax {21N N N =,当N n >时,有εε221<⋅≤n nn A a a a ,故0lim 21=∞→n n n a a a4.应用上题的结论证明下列各题:(1)0131211lim=++++∞→n n n证明 令n a n 1=,则01lim lim ==∞→∞→n a n n n ,所以0131211lim =++++∞→n n n .(2))0(1lim >=∞→a a n n证明 令a a =1, ,3,2,1==n a n ,则1lim =∞→n n a ,从而1lim lim lim 21===∞→∞→∞→n n n n n n n a a a a a(3)1lim =∞→n n n证明 令11=a , ,3,2,1=-=n n na n ,则1lim =∞→n n a ,于是1lim lim 13423121lim lim 21===-⋅⋅⋅⋅⋅=∞→∞→∞→∞→n n n n n n n n n a a a a n nn .(4)!1lim=∞→nn n证明 令,2,1,1==n n a n ,则0lim =∞→n n a ,所以1lim 1211lim 3211lim !1lim==⋅⋅⋅=⋅⋅⋅⋅=∞→∞→∞→∞→n n n n n n n n n n n(5)e n n n n =∞→!lim 证明 令,3,2,111111=⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-=--n n n n a n n n ,则ea n n =∞→lim ,所以en n n n n n n n n n n n n n nn n n =⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛⋅==-∞→-∞→∞→∞→114321lim 14534232lim !lim !lim另证 令 ,2,1,!==n n n a nn ,则en a a n n n n n =⎪⎭⎫ ⎝⎛-+=-∞→-∞→11111lim lim . 于是e a a a a a a a a a n nn n n n n n n n n n n n ==⋅⋅⋅==-∞→-∞→∞→∞→112312lim lim lim !lim .(6)1321lim 3=++++∞→n nn n证明 因为1lim =∞→n n n ,所以1lim 321lim 3==++++∞→∞→n n nn n n n(7)若)0(lim 1>=+∞→n n n n b a b b,则a b n n n =∞→lim证明n n n n n n n nn n n n n n b b b b bb b b b b b b b b b 112312112312lim lim lim lim ∞→+∞→+∞→∞→⋅⋅⋅⋅=⋅⋅⋅⋅=ab b n n n =⋅=+∞→1lim1(8)若d a a n n n =--∞→)(lim 1,则d n a nn =∞→lim证明 设10=a⎥⎦⎤⎢⎣⎡-++-+-+=-∞→∞→n a a a a a a n an a n n n n n )()()(lim lim11201d a a n a a a a a a n a n n n n n n n =-+=-++-+-+=-∞→-∞→∞→)(lim 0)()()(lim lim11120105.证明:若}{n a 为递增数列,}{n b 为递减数列,且 0)(lim =-∞→n n n b a ,则n n a ∞→lim 与nn b ∞→lim 都存在且相等.证明 因为)(lim =-∞→n n n b a ,所以}{n n b a -有界,于是存在0>M ,使得M b a M n n ≤-≤-. 从而有1b M b M a n n +≤+≤, M a M a b n n -≥-≥1,因此}{n a 为递增有上界数列,}{n b 为递减有下界数列,故n n a ∞→lim 与nn b ∞→lim 都存在. 又因为0)(lim lim lim =-=-∞→∞→∞→n n n n n n n b a b a ,所以 nn n n b a ∞→∞→=lim lim .6.设数列}{n a 满足:存在正数M ,对一切 n 有M a a a a a a A n n n ≤-+-+-=-||||||12312证明:数列}{n a 与}{n A 都收敛.证明 数列}{n A 单调增加有界,故收敛. 由柯西收敛准则,0,0>∃>∀N ε,当N n m >>时,ε<-||n m A A . 于是ε<-=-++-+-≤-+---n m n n m m m m n m A A a a a a a a a a ||||||||1211所以由柯西收敛准则,知数列}{n a 收敛.7.设⎪⎭⎫ ⎝⎛+=>>a a a a σσ21,0,01,⎪⎪⎭⎫ ⎝⎛+=+n n n a a a σ211, ,2,1=n , 证明:数列}{n a 收敛,且其极限为σ证明 因为σσσ=⋅≥⎪⎪⎭⎫ ⎝⎛+=+n n n n n a a a a a 211,故数列}{n a 有下界σ.112112121=⎪⎭⎫⎝⎛+≤⎪⎪⎭⎫ ⎝⎛+=+σσσn n n a a a ,于是n n a a ≤+1,即数列}{n a 单调减少,从而数列}{n a 收敛. 设A a n n =∞→lim ,由⎪⎪⎭⎫ ⎝⎛+=+n n n a a a σ211,得σ+=+212n n n a a a ,两端取极限得,σ+=222A A ,解得σ=A ,所以σ=∞→n n a lim .8.设011>>b a ,记211--+=n n n b a a ,11112----+⋅=n n n n n b a b a b , ,3,2=n . 证明:数列}{n a 与}{n b 的极限都存在且等于11b a .证 因为 111121111212111112)(2--------------+⋅-+=++≤+⋅=n n n n n n n n n n n n n n n b a b a b a b a b a b a b a b n n n n n n n n n b b a b a b a b a -+=+⋅-+=--------111111112,所以nn n n a b a b =+≤--211, ,3,2=n数列}{n a 是递减的:nnn n n n a a a b a a =+≤+=+221, ,2,1=n数列}{n a 有下界:0211≥+=--n n n b a a , ,2,1=n ,所以}{n a 收敛,设a a n n =∞→lim .数列}{n b 是递增的:11111111122---------=+⋅≥+⋅=n n n n n n n n n n b a a ba b a b a b , ,3,2=n数列}{n b 有上界:1a a b n n ≤≤, ,2,1=n ,所以}{n b 收敛,设b b n n =∞→lim .令∞→n 在211--+=n n n b a a 的两端取极限,得b a =.211--+=n n n b a a 与11112----+⋅=n n n n n b a b a b 两端分别相乘,得11--=n n n n b a b a , ,3,2=n 所以有11b a b a n n=, ,3,2=n ,令∞→n 取极限得11b a ab =,从而11b a a =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章
一、判断
1. 正规矩阵的最小多项式无重零点. ( )
2. 酉矩阵的最小多项式无重零点. ( )
3. 若 A În ´n 可对角化, 则其特征多项式必无重零点. ( )
4. 设A 是4阶正规矩阵, A 的特征值是1, 1, 2, 2。

则A 的最小多项式
()(1)(2)ϕλλλ=--. ( )
5. 设A 是3阶正规矩阵, A 的特征值是3, 2, 2。

则A 的第3个不变因子
23)2)(3()(--=λλλd . ( )
6. 设A 是4阶正规矩阵, A 的特征值是1, 1, 2, 2。

则A 的第3个不变因子
3()(1)(2)d λλλ=--. ( )
7. 若 A Î
m ´n ,则 A H A 的特征值必为非负实数. ( ) 8. 设 A În ´n ,若 A H =A ,则对任意的 x În ,x H Ax 均为实数. ( )
9. 若满足02=+E A ,则A 可对角化. ( )
10. 若满足E A A 22=+,则A 可对角化. ( )
11. 正规矩阵n n C A ⨯∈是酉矩阵的充要条件是A 的特征值都是实数. ( )
12. 若A A H =,则R A ∈)(σ. ( )
13. 若A 为正规矩阵,则其对应于不同特征值的特征向量是正交的. ( )
二、填空
1.设 A Î4´4, 且
d 4(l )=(l -1)(l -2), 则 A 3-4A 2+5A -2E = . 2. 设 A =[a ij ]5´5为酉矩阵, B =A -1,记 B =[b ij ]n ´n ,则 b ij 2
=i ,j =15å . 3.设 A Î4´4为正规矩阵,其特征值为1、1、2、4,则 A 的最小多项式为 .
4.设A 为正规矩阵,其特征值为1、3、3. 若B A ~,则B E -λ的最后一个不变因子为 .
5. 设⎪⎪⎪⎭
⎫ ⎝⎛=200120002A ,则A 的最小多项式为 . 三 计算
1.已知方阵55⨯∈C A 的特征矩阵A E -λ的初等因子组为
22)1(,)1(,1+--λλλ.
求(1)A E -λ的Smith 标准型)(λS ;
(2)A 的Jordan 标准型J ;
(3)A 的有理标准型C.
2.已知方阵55⨯∈C A 的特征矩阵A E -λ的初等因子组为)1(),1(,)2(,12++--λλλλ.
求(1)A E -λ的Smith 标准型)(λS ;(2)A 的Jordan 标准型J ;(3)A 的有理标准型C.
3. 设
A =-110-430102éëêêêùûúúú,求 l E -A 的Smith 标准形、 A 的Jordan 标准形和 A 的有理标准形.
四、证明题
1.设矩阵
22212A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,212122B ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,2222222C ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦
(1)证明下列矩阵中的任何两个都不能相似;
(2)求出它们各自的最小多项式.
2.证明下列矩阵
⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=b b b b A ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=b b b b B 11,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=b b b b C 111
中的任何两个都不能相似。

3.设矩阵
1a a A a a a ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,22a a B a a a ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,333a a C a a a ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦
(0a ≠)
(1)证明下列矩阵中的任何两个都不能相似;
(2)求出它们各自的最小多项式.
4. 设矩阵
⎥⎥⎥⎥
⎦⎤⎢⎢⎢⎢⎣⎡=313313A ,⎥⎥
⎥⎥⎦⎤⎢⎢⎢
⎢⎣⎡=331313B ,⎥⎥⎥⎥⎦⎤⎢⎢
⎢⎢

⎡=3131313
C (1)证明上列矩阵中的任何两个都不能相似;
(2)求出它们各自的最小多项式.
5. 设
.200011001 ,011101110⎪⎪⎪


⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛
=B A
证明B A ,不相似.
6. 设⎪⎪⎪⎪



⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=a a a a B a a a a A 000000100
010 ,100010000000,
(1)判断B A ,是否相似;
(2)分别写出B A ,的最小多项式.。

相关文档
最新文档