第5章 绘制液压、气动系统原理图
气动程序控制系统液压与气动技术ppt课件分享

2、气动常用回路
3、利用梭阀的控制
如图12-10所示,回路中的梭阀相当于实现“或”门逻辑功能的阀。在气动控制系统中, 有时需要在不同地点操作单作用缸或实施手动/自动并用操作回路。
示执行元件,小写字母表示信号元件。
A,B,C 等代表执行元件 a1,b1,c1等代表执行元件在伸出位置
时的行程开关 a0,b0,c0等代表执行元件在缩回位置
时的行程开关
3、各种元件的表示方法 在回路图中,阀和气缸尽可能水平放置。回路中的所有元件均以起始位置表示,否则
另加注释。阀的位置定义如下: 1. 正常位置:阀芯未操纵时阀的位置。 2. 起始位置:阀已安装在系统中并已通气供压后,阀芯所处的位置应标明。如图12-5所示
2、气动常用回路
5、单作用气缸的速度控制
如图12-13为利用单向节流阀控制单作用气缸活塞速度的回路。 单作用气缸前进速度的控制只能用入口节流方式,如图12-13(a) 所示。单作用气缸后退速度的控制只能用出口节流方式,如图1213(b)。如果单作用气缸前进及后退速度都需要控制,则可以同 时采用两个节流阀控制,回路如图12-13(c)所示。活塞前进时 由节流阀1V1控制速度,活塞后退时由节流阀1V2控制速度。
的滚轮杠杆阀(信号元件),正常位置为关闭阀位,当在系统中被活塞杆的凸轮板压下 时,其起始位置变成通路,应表示成图12-5(b)所示。
对于单向滚轮杠杆阀,因其只能在单方向发出控制信号,因此在回路图中必须以箭头 表示出对元件发生作用的方向,逆向箭头表示无作用,如图12-6所示。
图解液压与气动技术

液压阀
开启压力和全流压力
开启压力是溢流阀开始打开 时的压力。全流压力是溢流 阀通过全流量时的压力。
全流压力比开启压力略高。 通常以全流压力作为溢流阀 的调定压力。
液压阀
静态调压偏差
随着阀芯逐步打开,弹簧压力增 大。这一状态叫做静态调压偏差,它是 结构简单的直动式溢流阀的一种缺点。
执行元件
执行元件将 液压能转变 为机械能。
液压马达 液压缸
液压缸
单作用油缸 双作用油缸
液压阀的种类
压力控制阀
方向控制阀
流量控制阀
溢流阀
安全阀
溢流阀
直动式溢流阀:简单地打开和关闭。 先导式溢流阀:利用先导油路控制主溢流阀芯。
流量较小,非经常开启
单向阀
换向阀
流量控制阀
液压回路图
液压系统优点
能量损失
No.3 其他因素造成的损失。
孔口液流
能量损失
No.3 其他因素造成的损失。
管道、接头和阀。
能量损失
损失的能量,转变为热量
泵的效率
泵的效率和它的运行一样重要,是检 验泵的性能的要点之一。泵的效率意味着 它工作能力
泵的效率之容积效率
实际输出流量和理论输 出流量之间的比率。
配合间隙
有些间隙是设计中考虑 到润滑零件时用的。
布莱斯·帕斯卡发现的液压杠杆传动原 理。
但另一位名叫约瑟·布拉姆的人制 造的水压机。首次使液压得到了实际使 用。
液压的发展历史
流体动力学: 我们所说的运
动液体科学。 流体静力学:
我们所说的压 力液体科学。
压力和流动
压力:推动或施加力或扭矩。 流动:使事物移动。
2024版液压系统气动原理图及电磁阀详解

由定差减压阀与节流阀串联而成,使通过的流量不受负载变化 的影响,保持恒定。例如,在机床进给系统中,利用调速阀控 制进给油缸的速度,实现工件的精确加工。
18
05
液压系统故障诊断与排除方法
Chapter
2024/1/27
19
常见故障现象及原因分析
油温过高
可能是油液粘度不当、油箱散热不良、系统 压力过高等原因导致的。
系统是否正常工作。
触摸法
通过触摸液压元件的表面温度,判断是否 存在过热现象,以及液压油的温度是否正
常。
2024/1/27
听诊法
通过听液压系统工作时发出的声音,判断 液压泵、阀等元件是否正常工作,有无异 常噪音。
替换法
在怀疑某个液压元件出现故障时,可以用 正常的元件替换,观察系统工作情况是否 有所改善,从而确定故障元件。
液压泵将机械能转换为液体的压力能, 为系统提供动力。
液压缸或液压马达将液体的压力能转 换为机械能,驱动工作机构实现往复 直线运动或旋转运动。
2024/1/27
液压阀控制液压油的流动方向、压力 和流量,以满足执行元件的动作要求。
辅助元件包括油箱、滤油器、冷却器、 加热器、蓄能器等,它们对保证系统 正常工作起到重要作用。
22
06
总结与展望
Chapter
2024/1/27
23
液压系统发展趋势
2024/1/27
01
高效节能
随着环保意识的提高和能源成本的增加,高效节能的液压系统将成为发
展趋势。例如,采用变量泵、负载敏感控制等技术,可以降低系统能耗,
提高运行效率。
02
智能化
随着工业4.0和智能制造的推进,液压系统将更加智能化。例如,通过
液压系统的工作原理-PPT

2、7—单向阀; 3—小活塞; 4—小油缸; 5—杠杆手柄;
6、10—管道; 8—大活塞; 9—大油缸; 11—截止阀; 12—油箱
1.液压传动的工作原理 液压千斤顶工作原理图 结构图 动画示意图
液压传动特点:
(1)液压传动需要用一定压力的液体来传动;
(2)传动中必须经过两次能量转换;
F q2v2 - 1v1
1)流态与雷诺数
1.流动液体的压力损失
液体流态示意 图
雷诺数:
Re ud v
影响液体流动状态的力主要是惯性力和黏性力。雷诺数
大说明惯性力起主导作用,这样的液流易出现紊流状态;雷
诺数小就说明黏性力起主导作用,这时的液流易保持层流状
态。
2)压力损失分类 局部压力损失
管道系统中的总压力损失
涡轮式流量仪剖面结构及实物图
1)理想液体
Hale Waihona Puke 3.液体动力学液体在流动过程中,要受重力、惯性力、黏性力等多种 因素的影响,其内部各处质点的运动各不相同。所以在液压 系统中,主要考虑整个液体在空间某特定点或特定区域的平 均运动情况。为了简化分析和研究的过程,将既无黏性又不 可压缩的液体称为理想液体。
2)流量和流速
管道内任一个截面的液体质量一定是相等的, 既不会增多,也不会减少。
流体流过一定截面时,流量越大,流速越高 流体流过不同截面时,在流量不变的情况下,截面越 大,流速越小。
A1v1 A2v2
4)伯努利方程
能量守恒定律
伯努利方程示意图
h1
p1
g
a1v12 2g
h2
p2
g
a2v22 2g
hw
5)动量方程
绝对压力、相对压力及真空度的关系
液压与气动传动原理直观动图

使液压泵在空载或轻载状态下运行,减少功率损失和 发热。
增压回路
利用增压器或增压缸等元件,提高系统或支路的压力 。
速度调节回路原理动图解析
节流调速回路
通过改变节流阀的开度,调节执行元件的运动 速度。
容积调速回路
通过改变变量泵或变量马达的排量,调节执行 元件的运动速度。
联合调速回路
同时采用节流调速和容积调速两种方式,实现执行元件的宽范围速度调节。
叶片泵
利用旋转的叶片将液体从吸入侧推 向排出侧。
柱塞泵
通过柱塞在缸体内的往复运动,实 现液体的吸入与排出。
液压马达
将液体的压力能转换为机械能,驱 动负载运动。
控制阀类结构动图解析
01
方向控制阀
控制液压系统中油液的流动方 向,包括单向阀、换向阀等。
02
压力控制阀
控制液压系统中的压力,如溢 流阀、减压阀等。
液压与气动传动技术涉及流体力学、 热力学、控制学等多个学科领域,未 来研究将更加注重多场耦合和多学科 协同,例如研究温度、压力、流量等 多物理场对系统性能的影响,以及探 索液压与气动传动技术与机械、电子 、计算机等技术的融合创新。
随着环保和安全要求的提高,液压与 气动传动技术将面临更严格的挑战, 例如研究低噪音、低泄漏、低污染的 液压元件和系统,以及提高系统安全 性和防爆性能等。
气压控制元件功能及类型
气压控制元件功能
对压缩空气的压力、流量和方向进行控 制,以满足气动系统的不同需求。
VS
类型
包括压力控制阀(如减压阀、安全阀)、 流量控制阀(如节流阀、排气节流阀)和 方向控制阀(如单向阀、换向阀)等。
03
液压与气动元件结构直观 动图展示
液压与气动技术300页PPT超全图文详解

液体静力学基础
静压力及其特性
静压力是液体在静止状态下受到的重力、外力和惯性力等作用而 产生的压力,具有方向性、大小与受力面积成正比等特性。
帕斯卡原理
在密闭容器内,施加于静止液体上的压强将以等值同时传到各点, 这就是帕斯卡原理。它是液压传动的基本原理之一。
液体静力学的应用
利用液体静力学原理可以设计液压缸、液压马达等执行元件,以及 液压系统中的压力控制阀等。
• 沿程压力损失:液体在管道内流动时,由于液体的内摩擦力和管道内壁的粗糙 度等因素的影响,使得液体的压力沿管道长度方向逐渐降低的现象称为沿程压 力损失。它是液压系统能量损失的主要部分之一。
• 局部压力损失:当液体流经管道的弯头、接头、突变截面等局部障碍时,由于 液流的惯性和粘性力的作用,使得液体的流动状态发生急剧变化并产生旋涡等 现象,从而造成液体的能量损失称为局部压力损失。它也是液压系缸
直线往复运动执行元件,具有结构简单、动作可靠、易于维 护等特点。
气马达
旋转运动执行元件,具有高转速、大扭矩、低噪音等优点。
气动控制元件功能及分类
01
方向控制阀
控制气流方向,实现执行元件 的换向或停止。
02
压力控制阀
调节和控制系统的压力,保持 压力稳定或限制最高压力。
03
新材料、新工艺在液压气动中应用前景
01
02
03
高性能复合材料
利用高性能复合材料制造 液压与气动元件,提高元 件的强度和耐磨性。
增材制造技术
应用增材制造技术,实现 液压与气动元件的快速定 制和生产。
表面处理技术
采用先进的表面处理技术 ,提高液压与气动元件的 耐腐蚀性和疲劳寿命。
THANKS
航空航天
基于AutoCAD2007的液压气动系统原理图的绘制
第 9卷
或 E tr 。快捷键 :按下 C r 2 ne 键 t+ 组合键。 l
双作用 缸 ” ,用 鼠标拖 动至 绘 图区 ,不 要松 开 鼠标 , 2 向设计中心添加液压与气动元件图形符号库 . 2 如图 3 所示 ,选择适 当的插入点 ,命令行显示如下 : 如图 2 所示 ,在 “ 设计 中心”窗 口中 ,打开 “ 文 输 入 x 比例 因子 ,指 定 对 角 点 ,或 【 点 ( ) 角 c xY ( Y )< > /回车 / 件夹 ”列表 ,显示 出已创建完成 的 “ 液压气动元件 图 / zX Z 】 1 : 形符号库 ”文件夹 ,打开文件夹里面包含 了液压气动 输入 Y比例因子或 <使用 x比例 因子 > / :/回车 元件 图形 符号。 指定旋转角度 < > 0: /回车 /
寤
曩¨ _
i- 0 0
篝
暑
菜单 【 绘图】 I 【 块】 I 【 定义属性】命令 ,打开 【 属性定义 】对话框 ,如图 1 所示 ,创建序 号 “U lm. l .l 《柚i 压程 树、夏 昏 葡露件 捌 哥弩厍、 ^I t 夏 i压 襄 br e”属性 。命 令行 输入 “ bok w lc ”命令 ,创 建外 部 块文件 ,并用它们相应的 中文名字 “ 向定量泵 ”保 单 图 2 设 计 中心 ” 口 .“ 窗 存 到指定 的 “ 压气动 元件 图形 符号 库 ”文件 夹 的 2 向设计 中心添加液压 与气动 元件 图形符 号库 液 “ 和马达 ”文 件夹 下 。同样方法创 建其 他泵 、马达 泵 2 启动A t A 20 设计中心的方法 . 1 u C D 07 o 的 图形 符 号 外 部 块 。 同样 方 法 创 建 “ 向型 阀 ” 单 、 选择下拉菜单 【 工具】 I 【 选项板】 I 【 设计中 “ 辅助元件” “ 和流量 阀” “ 向阀” “ 向阀 、 缸 、 换 、 换 心】命令 。从 “ 标准 ”工具栏 中单击 “ 设计 中心”按 的操 纵方式” “ 、 压力 阀”图形符号 文件夹 ,如 图 2
液压与气动技术第5章基本回路
上一页 下一页 返回
5.1 液压基本回路
4)采用调速阀的节流调速回路 使用节流阀的节流调速回路.速度一负载特性都比较“软”.
变载荷下的运动平稳性都比较差.为了克服这个缺点.回路中 的节流阀可用调速阀来代替.由于调速阀本身能在负载变化的 条件下保证节流阀进、出油口间的压差基本不变.因而使用调 速阀后.节流调速回路的速度—负载特性将得到改善.如图58(b)和图5-10(b)所示.旁路节流调速回路的承载能力亦不 因活塞速度降低而减小.但所有性能上的改进都是以加大整个 流量控制阀的工作压差为代价的.调速阀的工作压差一般最小 需0.5 MPa ,高压调速阀需1. 0 MPa左右。
上一页 下一页 返回
5.1 液压基本回路
①速度负载特性。按照式(5. 3)的推导过程.可得到旁油路 节流调速的速度负载特性方程。与前述不同之处主要是进入 液压缸的流量q1为泵的流量pq与节流阀溢走的流量q之差.由 于在回路中泵的工作压力随负载而变化.泄漏正比于压力也是 变量(前两回路中为常量).对速度产生了附加影响.因而泵的 流中要计入泵的泄漏流量△pq所以有
上一页 下一页 返回
5.1 液压基本回路
式中 qt—泵的理论流量; k1—泵的泄漏系数 其他符号意义同前所以液压缸的速度负载特性为
(5.7) 根据式(5. 7) ,选取不同的AT值可作出一组速度一负载特性
曲线.如图5-10(b)所示。
上一页 下一页 返回
5.1 液压基本回路
②最大承载能力。由图5-10(b)可知.速度一负载特性曲线 在横坐标上并不汇交.其最大承载能力随节流阀通流面积no 的增加而减小.即旁路节流调速回路的低速承载能力很差.调 速范围也小。
液压气动原理图
液压气动原理图
液压气动原理图描述了一个液压和气动系统的工作原理。
系统中包括了一个液压泵、液压缸、气压泵和气动电磁阀等部件。
在液压系统中,液压泵通过驱动电机提供动力,将液体压力增加后送入液压缸中。
液压缸中的活塞受到液体压力的作用,产生推力或拉力,驱动机械装置运动。
液压回路中的压力控制阀可以调节液压系统的工作压力。
在气动系统中,气压泵通过驱动电机提供动力,将气体压力增加后送入气动电磁阀中。
气动电磁阀通常由一个电磁线圈和一个气动阀门组成,通过施加电流来控制阀门的开关状态,从而控制气体流入或流出。
液压气动系统的工作原理是:当液压泵和气压泵工作时,液压回路和气动回路中的液体和气体分别被推送到相应的执行元件(如液压缸和气动电磁阀)中。
执行元件的工作状态由电磁阀的控制信号决定。
通过控制液压回路和气动回路中的液体和气体流动,可以实现对机械装置的控制。
液压气动系统通常具有快速、灵活和可靠的特点,被广泛应用于工业自动化和机械设备的控制系统中。
需要注意的是,液压气动原理图中不要出现标题,且文中也不能有相同的标题文字,以避免混淆和歧义。
绘制液压系统原理图
单位:毫米转换: 1.0000
指定插入点或[基点(B)/比例(S)/X;: -1 //输入-1
指定插入点或[基点(B)/比例(S)/X/Y/Z/旋转(R)]:
price <p>:300 //输入300
number <n>: 1//输入序号1
命令: _-INSERT输入块名或[?] <油箱>: "D:\液压气动元件图形符号\辅助元件\油箱.dwg"
单位:毫米转换: 1.0000
指定插入点或[基点(B)/比例(S)/X/Y/Z/旋转(R)]:
输入X比例因子,指定对角点,或[角点(C)/XYZ(XYZ)] <1>:
指定插入点或[基点(B)/比例(S)/X/Y/Z/旋转(R)]: r //输入r
输入Y比例因子或<使用X比例因子>:
指定旋转角度<0>:
输入属性值
style <s>://回车
price <p>:200 //输入200
number <n>:8 //输入序号8
3.绘制单向阀3图形符号
利用【设计中心】插入单向阀图形符号,打开“单向型阀”模块文件夹,选择【设计中心】右边内容框的“单向阀”,用鼠标拖动至绘图区,源图块如图5-2(a)所示,命令行显示如下:
指定插入点或[基点(B)/比例(S)/X/Y/Z/旋转(R)]: //在绘图区选择合适的插入点位置
输入X比例因子,指定对角点,或[角点(C)/XYZ(XYZ)] <1>: //回车
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5章绘制液压系统原理图本章导读液压系统是根据液压设备的工作要求,选用适当的基本回路构成的能满足某些具体要求的液压装置。
组成液压系统工作原理图的多个相关液压元件的图形符号,均按国标GB/T786.1—1993《液压及气动图形符号》画出。
本章以组合机床动力滑台液压系统为例说明液压系统原理图的绘制、液压元件明细表的自动生成方法及用Excell文档统计AutoCAD 图块属性数据的方法。
5.1 绘制组合机床动力滑台的液压系统原理图5.1.1 启动【液压气动】工作界面1.选取样板图选择下拉菜单【文件】│【新建】命令,打开【创建新图形】对话框。
单击【从草图开始】选项卡,选取【公制】,单击【确定】按钮。
如图2-1所示。
2.选择【液压气动】工作空间选择下拉菜单【工具】│【工作空间】│【液压气动】命令,选择【液压气动】工作空间。
3.启动【工具选项板】选择下拉菜单【工具】│【选项板】│【工具选项板】命令,启动【工具选项板】。
4. 启动【设计中心】选择下拉菜单【工具】│【选项板】│【设计中心】命令,启动【设计中心】。
5.1.2 绘制液压系统原理图组合机床动力滑台液压系统的组成元件如图5-24所示。
1.绘制变量泵2图形符号利用【工具选项板】插入变量泵图形符号,打开“泵和马达”模块选项卡,选择“单向变量泵”,鼠标在绘图区选择合适的插入点位置,打开【编辑属性】对话框,如图5-1所示,在【style】文本框内输入YB,在【price】文本框内输入500,在【number】文本框内输入2。
图5-1 【编辑属性】对话框2.绘制过滤器1和油箱8图形符号利用【设计中心】插入过滤器、油箱图形符号。
打开“辅助元件”模块文件夹,选中【设计中心】右边内容框的“过滤器”,用鼠标拖动至绘图区,如图5-7所示。
命令行显示如下:命令: _-INSERT 输入块名或[?] <单向变量泵>: "D:\液压气动元件图形符号\辅助元件\过滤器.dwg"单位: 毫米转换: 1.0000指定插入点或[基点(B)/比例(S)/X/Y/Z/旋转(R)]: //在绘图区选择合适的插入点位置输入X 比例因子,指定对角点,或[角点(C)/XYZ(XYZ)] <1>: //回车输入Y 比例因子或<使用X 比例因子>: //回车指定旋转角度<0>: //回车输入属性值style <s>: //回车,不输入型号属性price <p>: 300 //输入300number <n>: 1 //输入序号1命令: _-INSERT 输入块名或[?] <油箱>: "D:\液压气动元件图形符号\辅助元件\油箱.dwg"单位: 毫米转换: 1.0000指定插入点或[基点(B)/比例(S)/X/Y/Z/旋转(R)]:输入X 比例因子,指定对角点,或[角点(C)/XYZ(XYZ)] <1>:输入Y 比例因子或<使用X 比例因子>:指定旋转角度<0>:输入属性值style <s>: //回车price <p>:200 //输入200number <n>: 8 //输入序号8 3.绘制单向阀3图形符号利用【设计中心】插入单向阀图形符号,打开“单向型阀”模块文件夹,选择【设计中心】右边内容框的“单向阀”,用鼠标拖动至绘图区,源图块如图5-2(a)所示,命令行显示如下:命令: _-INSERT 输入块名或[?] <单向阀>: "D:\液压气动元件图形符号\单向型阀\单向阀.dwg"单位: 毫米转换: 1.0000指定插入点或[基点(B)/比例(S)/X/Y/Z/旋转(R)]: r指定旋转角度<0>: 90 //旋转90°后如图5-2(b)所示指定插入点或[基点(B)/比例(S)/X/Y/Z/旋转(R)]:输入X 比例因子,指定对角点,或[角点(C)/XYZ(XYZ)] <1>:输入Y 比例因子或<使用X 比例因子>:输入属性值style <s>: I—25B //输入I—25Bprice <p>: 200 //输入200number <n>: 3 //输入序号3修改序号3水平书写。
选择【修改Ⅱ】工具栏【编辑属性】命令,打开【增强属性编辑器】对话框,选择【属性标记】的Number3,再选择【文字选项】选项卡,把旋转值修改成0。
结果如图5-2(c)所示。
4.绘制电液换向阀5图形符号利用【设计中心】插入图块,打开“基本回路”模块文件夹,选择【设计中心】右边内容框的“电液换向阀”,用鼠标拖动至绘图区,输入属性值型号为34EY—25B、价格为800、序号为5,如图5-7所示。
(a) (b) (c)图5-2 插入单向阀图形符号5.绘制液控顺序阀7图形符号利用【设计中心】插入液控顺序阀图形符号,打开“压力阀”模块文件夹,选择【设计中心】右边内容框的“直动式液控顺序阀”,用鼠标拖动至绘图区,源图块如图5-3(a)所示,命令行显示如下:命令: _-INSERT 输入块名或[?] <直动式顺序阀>: "D:\液压气动元件图形符号\压力阀\液控式直动顺序阀.dwg"单位: 毫米转换: 1.0000指定插入点或[基点(B)/比例(S)/X/Y/Z/旋转(R)]: x 指定X 比例因子<1>: -1 //输入-1指定插入点或[基点(B)/比例(S)/X/Y/Z/旋转(R)]:指定旋转角度<0>:输入属性值style <s>: XY—25B //输入XY—25Bprice <p>: 300 //输入300number <n>: //回车修改序号7水平书写。
选择【修改Ⅱ】工具栏【编辑属性】命令,打开【增强属性编辑器】对话框,选择【属性标记】的【Number】文本框把n改写成3,再选择【文字选项】选项卡,选择【反向】复选框,结果如图5-3(b)所示。
(a) (b)图5-3 插入顺序阀图形符号6.绘制背压阀6图形符号利用【设计中心】插入图块,打开“压力阀”模块文件夹,选择【设计中心】右边内容框的“直动式溢流阀”,用鼠标拖动至绘图区,输入属性值型号为Y—25B、价格为500、序号为6,结果如图5-7所示。
7.绘制单向阀9图形符号选择下拉菜单【修改】│【复制】命令,命令行显示如下:命令: _copy //选择画好的单向阀选择对象: 找到1 个选择对象:指定基点或[位移(D)] <位移>: //选择单向阀的上端点指定第二个点或<使用第一个点作为位移>: //拖动至合适的位置指定第二个点或[退出(E)/放弃(U)] <退出>: //回车修改序号9。
选择【修改Ⅱ】工具栏【编辑属性】命令,打开【增强属性编辑器】对话框,选择【属性标记】的【Number】文本框把3改写成9,结果如图5-7所示。
8.绘制调速阀12和13图形符号利用【设计中心】插入图块,打开“缸和流量阀”模块文件夹,选择【设计中心】右边内容框的“调速阀”,用鼠标拖动至绘图区,命令行显示如下:命令: _-INSERT 输入块名或[?] <直动式溢流阀>: "D:\液压气动元件图形符号\缸和流量阀\调速阀.dwg"单位: 毫米转换: 1.0000指定插入点或[基点(B)/比例(S)/X/Y/Z/旋转(R)]: r //输入r指定旋转角度<0>: 90 //输入90指定插入点或[基点(B)/比例(S)/X/Y/Z/旋转(R)]:输入X 比例因子,指定对角点,或[角点(C)/XYZ(XYZ)] <1>:输入Y 比例因子或<使用X 比例因子>:输入属性值style <s>: Q—25B //输入Q—25Bprice <p>: 350 //输入350number <n>:12 //输入12修改序号12水平书写,源图块如图5-4(a)所示。
选择【修改Ⅱ】工具栏【编辑属性】命令,打开【增强属性编辑器】对话框,选择【属性标记】的【Number】12,再选择【文字选项】选项卡,把旋转值修改成0,结果如图5-4(b)所示。
(a) (b)图5-4 调速阀选择下拉菜单【修改】│【复制】命令,命令行显示如下:命令: _copy选择对象: 指定对角点: 找到1 个//选取画好的调速阀12选择对象:指定基点或[位移(D)] <位移>:指定第二个点或<使用第一个点作为位移>:指定第二个点或[退出(E)/放弃(U)] <退出>:修改序号13。
选择【修改Ⅱ】工具栏【编辑属性】命令,打开【增强属性编辑器】对话框,选择【属性标记】的【Number】把12改写成13,结果如图5-7所示。
9.绘制二位二通电磁换向阀14图形符号结果如图5-7所示。
10.绘制单向阀10图形符号结果如图5-7所示。
11.绘制二位二通机动换向阀11图形符号结果如图5-7所示。
12.绘制压力继电器15图形符号结果如图5-7所示。
13.绘制杆固定式单杆双作用液压缸4图形符号画固定符号斜线,选择下拉菜单【修改】│【复制】命令,命令行显示如下:命令: _line 指定第一点:指定下一点或[放弃(U)]: @2<45命令: _copy选择对象: 找到1 个选择对象:指定基点或[位移(D)] <位移>:指定第二个点或<使用第一个点作为位移>: 1.5指定第二个点或[退出(E)/放弃(U)] <退出>:结果如图5-5所示。
图5-5 杆固定式缸14.完成液压系统图(1)画管道连接直线选择【细实线】图层。
(2)画控制油路连接虚线选择【虚线】图层。
(3)画组合阀的双点画线选择下拉菜单【格式】│【图层】命令,打开【图层管理管理器】对话框,如图5-6所示,新建【双点画线】图层。
图5-6 【图层管理管理器】对话框(4)画相交管道的交叉点利用【设计中心】插入图块,打开“辅助元件”模块文件夹,选择【设计中心】右边内容框的“交叉点”,用鼠标拖动至绘图区,命令行显示如下:命令: _-INSERT 输入块名或[?] <顶杆式>: "D:\液压气动元件图形符号\辅助元件\交叉点.dwg"单位: 无单位转换: 1.0000指定插入点或[基点(B)/比例(S)/X/Y/Z/旋转(R)]:输入X 比例因子,指定对角点,或[角点(C)/XYZ(XYZ)] <1>:输入Y 比例因子或<使用X 比例因子>:指定旋转角度<0>:最后,如图5-7所示。