初中与高中数学建模小论文要求及范文
浅析初中生数学建模能力的培养策略论文

浅析初中生数学建模能力的培养策略论文关于浅析初中生数学建模能力的培养策略论文数学建模是针对现实世界某一特定研究对象的数量相依关系和主要特点,采用数学语言和数学符号概括地或近似地表述出来的一种数学结构. 当前,初中生数学建模能力偏低,难以运用数学知识建立解决日常生活实际情境的数学模型,尤其对背景复杂,文字较多的数学应用题更是无从下手,这在很大程度上影响了学生综合素质的全面提升. 因此,在初中数学课堂教学中,教师要重视学生数学建模能力的培养,优选有效策略,引导学生有效构建数学模型,发展学生思维创造力,提高学生分析问题、解决问题的能力.一、创设问题情境,诱发学生的建模热情问题是思维的起点,良好的问题情境,往往有助于调动学生的探究欲和好奇心,引发学生的认知冲突,燃起学生对知识追求的热情,使其以饱满的激情快速投入到教学活动中. 因此,在初中生数学建模能力的培养过程中,教师要注意创设良好的问题情境,从学生感兴趣的数学模型或学生的生活经验和已有的知识背景出发,精心设计难易适中、趣味新颖、富有启发价值、探究意义的数学建模问题,引导学生思考探究,触发学生的数学思维欲望,诱发学生的建模热情.二、丰富生活背景,培养学生建模意识数学建模问题不是单纯的数学问题,它是从生活实际原型或背景出发,涉及多方面的生活知识. 在教学过程中,教师要鼓励学生多接触社会实际,积累丰富自己的生活阅历,为正确建立数学模型奠定良好的基础. 同时,在数学建模教学过程中,教师要尽可能地从学生的生活实际出发,结合教学内容,通过设置与学生息息相关的生活背景,捕捉社会热点问题,或根据学生已有知识水平改编例题背景,引导学生运用归纳、分析、推理、概括、验证等一系列的思维方法,建立数学模型,解决数学建模问题,培养学生的建模意识,发展学生的思维能力.例如,在解“一次函数y = 5x + 10”时,教师可以通过设置不同的生活背景,引导自主探究,合作交流,培养学生的数学建模意识,实现知识的构建. 生活背景1: 公园里有一个长为5m,宽为2m 的长方形花坛. 现把花坛加宽xm,以扩大花坛面积,则花坛面积y 与x 的函数关系为y = 5x + 10. 生活背景2: 弹簧原长10cm,每挂1kg 的物体弹簧伸长5cm,则弹簧长度y( cm) 与挂物重xkg 的函数关系为y = 5x + 10. 生活背景3: 某城市出租车起步价为10 元,超过规定的公里数外,每公里再加5 元,则出租车费用y 与超出规定公里数x的函数关系为y = 5x + 10.三、注重多向思维,拓宽学生建模思路受某些固定模式和学习方法的影响,学生在学习过程中往往容易形成单向思维的状态,并形成一定的思维定势,从而影响学生思维的灵活性和全面性. 数学建模问题有着一定的假设条件和所要达到的目标,数学建模需要将假设条件与目标巧妙地联系起来,这种联系并不是固定唯一的',而是综合多向的. 因此,在初中生数学建模能力的培养过程中,教师要注意学生多向思维的培养,克服思维定势的束缚,引导学生多角度、多方位地构建数学模型,拓宽学生的数学建模思路,提高学生思维的灵活性、深刻性以及广阔性.池塘AB例如,在讲“三角形”后,笔者设计以下问题: 如图1,有一个池塘,要测量池塘的两端A、B 间的距离,直接测量有障碍,用什么方法可以测出A、B 的距离.建模1: 构造三角形及其中位线,利用中位线的性质求出AB.建模2: 构造两个三角形,利用全等或相似性质来求出AB.建模3: 构造等腰三角形或等边三角形,求出AB.建模4: 构造直角三角形,运用勾股定理解决问题,求出AB.四、重视模型归类,增强学生建模能力在初中阶段,方程( 组) 和不等式模型、函数模型、几何模型、统计模型等模型类型是较为常见的数学模型. 在教学过程中,教师要重视这些数学模型的归类,引导学生能够根据某种规律建立变量和参数间的一个明确数学关系,并正确运用方程、不等式、函数等数学思想方法来解决实际问题,从而增强学生的数学建模能力. 方程( 组) 建模是通过给出的实际问题,设立合适的未知数,找出相等关系,并注意验证结果是否与实际问题相符合.总之,初中生数学建模能力的培养,符合当前素质和新课程标准改革的需要. 在教学中,教师要重视数学建模,以学生为主体,结合学生实情,精心创设良好的问题情境,诱发学生的建模热情,注意丰富生活背景,培养学生的建模意识,注重多向思维,拓宽学生的建模思路,重视模型归类,增强学生的建模能力,提高学生的数学应用意识,培养学生良好的思维品质.。
优秀的数学建模论文范文(通用8篇)

优秀的数学建模论文范文第1篇摘要:将数学建模思想融入高等数学的教学中来,是目前大学数学教育的重要教学方式。
建模思想的有效应用,不仅显著提高了学生应用数学模式解决实际问题的能力,还在培养大学生发散思维能力和综合素质方面起到重要作用。
本文试从当前高等数学教学现状着手,分析在高等数学中融入建模思想的重要性,并从教学实践中给出相应的教学方法,以期能给同行教师们一些帮助。
关键词:数学建模;高等数学;教学研究一、引言建模思想使高等数学教育的基础与本质。
从目前情况来看,将数学建模思想融入高等教学中的趋势越来越明显。
但是在实际的教学过程中,大部分高校的数学教育仍处在传统的理论知识简单传授阶段。
其教学成果与社会实践还是有脱节的现象存在,难以让学生学以致用,感受到应用数学在现实生活中的魅力,这种教学方式需要亟待改善。
二、高等数学教学现状高等数学是现在大学数学教育中的基础课程,也是一门必修的课程。
他能为其他理工科专业的学生提供很多种解题方式与解题思路,是很多专业,如自动化工程、机械工程、计算机、电气化等必不可少的基础课程。
同时,现实生活中也有很多方面都涉及高数的运算,如,银行理财基金的使用问题、彩票的概率计算问题等,从这些方面都可以看出人们不能仅仅把高数看成是一门学科而已,它还与日常生活各个方面有重要的联系。
但现在很多学校仍以应试教育为主,采取填鸭式教学方式,加上高数的教材并没有与时俱进,将其与生活的关系融入教材内,使学生无法意识到高数的重要性以及高数在日常生活中的魅力,因此产生排斥甚至对抗的心理,只是在临考前突击而已。
因此,对高数进行教学改革是十分有必要的,而且怎么改,怎么让学生发现高数的魅力,并积极主动学习高数也是作为教师所面临的一个重大问题。
三、将数学建模思想融入高等数学的重要性第一,能够激发学生学习高数的兴趣。
建模思想实际上是使用数学语言来对生活中的实际现象进行描述的过程。
把建模思想应用到高等数学的学习中,能够让学生们在日常生活中理解数学的实际应用状况与解决日常生活问题的方便性,让学生们了解到高数并不只是一门课程,而是整个日常生活的基础。
数学建模优秀论文(精选范文10篇) 2021

根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题,这就是数学建模,本篇文章主要是向大家介绍几篇数学建模优秀论文得范文,希望对有这方面参考得学者有所帮助。
数学建模优秀论文精选范文10篇之第一篇:培养低年段学生数学建模意识得微课教学---------------------------------------------------------------------------------------------------------------------感谢使用本套资料,希望本套资料能带给您一些思维上的灵感和帮助,个人建议您可根据实际情况对内容做适当修改和调整,以符合您自己的风格,不太建议完全照抄照搬哦。
---------------------------------------------------------------------------------------------------------------------摘要:本文阐述了录制微课对培养学生建模意识得必要性和可行性,认为在小学数学教学中,鼓励低年段学生录制微课有积极意义,主张提高小学生建模语言表达能力,通过任务驱动和学生自主录制微课,逐步深入学习建模内容,培养并增强学生得建模意识。
关键词:低年段数学; 微课; 建模意识;当今社会,信息技术高速发展使教学资源高度丰富。
广大教师纷纷探讨如何利用信息技术更好地为教学服务,有效地改进教与学得方式,提高学生学习兴趣。
一、录制微课对培养学生建模意识得必要性和可行性“三年级现象”备受关注,很多人认为小学三年级是道坎,有得学生一、二年级数学成绩很好,到了三年级就断崖式下降。
如果真得出现这种现象,那么学生一、二年级数学成绩好只是表象。
一、二年级是学生初步感知数学得重要时期。
低年段数学知识是基础,对于低年段数学教学包括建模教学必须引起广大教育工作者得重视,让学生从小接受正确得教学模式,真正掌握学习数学得思想方法,避免出现短暂成绩好得现象。
初中数学建模优秀论文

初中数学建模优秀论文试论数学建模方法目前数学教学与数学应用脱节的现象很突出,以至于学生认为学习数学没用,对数学学习失去兴趣,如何改变目前这种教学与应用脱节的现象,笔者认为,可以用数学模型法指导数学应用题教学,为学生用数学来解决问题提供经验和范式,从而探索出一条行之有效的教学途径。
一、什么是数学模型要突出应用,就应站在数学模型法的高度来认识并实施应用题教学。
什么是数学模型法?数学模型法就是把实际问题加以抽象概括,建立相应的数学模型,利用这些模型来研究实际问题的一般数学方法。
教师在应用题教学中要渗透这种方法和思想,要注重并强调如何从实际问题中发现并抽象出数学问题,如何用数学模型(包括数学概念、公式、方程、不等式函数等)来表达实际问题,如何用数学模型的解来解释实际问题的解。
以及为科学决策提供可信的依据并预测其发展趋势。
二、建模示范方法例谈在教学中我根据教学内容,选编一些应用问题进行例题教学,引导学生分析联想、抽象建模,培养学生的建模能力,提供经验和范式。
选编数学应用性例题的一般原则是:①必须与教学内容密切联系;②必须与学生的知识水平相适应;③必须符合科学性和趣味性;④取材应尽量涉及目前社会的热点问题,有时代气息,有教育价值。
1.与其他相关学科有关的问题题1:化学中甲烷CH4的键角109°28′是怎样求出来的?题2:在大楼底层有一控制室,有三条导线和楼上某电器相连,设三连导线的电阻分别为x、y、z,现手头有一只电表可在控制室内测量电阻,试没计一种数学方法求这三根导线的电阻。
2.发生在学生身边的数学问题题3:学校教学大楼,从一楼到二楼共13个台阶。
一位同学上楼梯可以一步上一个台阶,也可以一步上两个台阶。
问从一楼走到二楼,有多少种不同走法?一年365天,每天选用一种走法,能否做到天天的走法均不相同?题4:学校足球场地是一个102×68平方米的矩形,球门宽为8米,由边线下底传中是惯用的战术,请你帮助足球队员确定离底线多少距离的地方起脚传中效果最佳?3.从教材的例题和习题中改造而成的问题课本中有一习题,稍加修改就可以形成以下应用问题。
中学数学建模论文精选范文赏析(共5篇)

中学数学建模论文精选范文赏析(共5篇)第1篇:新课程背景下中学数学建模教学的几点思考数学学习的观念正在发生转变,如何让数学回归生活、生产实际,如何让学生体验数学知识的形成过程,正是我们数学教师面临的重要问题。
因此笔者认为:在中学数学教学中落实数学建模教学迫在眉睫。
随着新课程的实施,新的《数学课程标准》中增设了“数学建模专题”,为我们中学数学建模教学搭建了一个很好的平台。
笔者在此借新课程实施的东风,来谈谈自已对数学建模教学的几点思考。
一、对中学数学建模教学的准确定位何为数学建模?一个比较准确的说法:数学建模是指通过对实际问题的抽象、简化,确定变量和参数,并应用某些规律建立起变量、参数间的确定的数学问题,求解该数学问题,从而确定能否用于解决问题的多次循环、不断深化的过程。
但是在中学阶段数学建模教学有它的特殊性,从数学应用角度分析,数学应用大致可分为以下四个层次:(1)直接套用公式计算;(2)利用现成的数学模型对问题进行定量分析;(3)对已经经过加工提炼的、忽略次要因素,保留下来的诸因素关系比较清楚的实际问题建立模型;(4)对原始的实际问题进行加工,提炼出数学模型,再分析数学模型求解。
其中第四个层次属于典型的数学建模问题。
中学数学建模,一般定位在数学应用的第三层次。
在中学阶段,学生建模能力的形成是基础知识基本技能、基本数学方法训练的一种综合效果,建模能力的培养主要是打基础,但是,过分强调基础会导致基础与实际应用的分裂。
因此,在新课程标准中明确提出:在中学阶段至少要让学生进行一次完整的数学建模过程。
从这个意义上讲我们可以适当进入第四层次,而这个分寸的把握是一个很值得探讨的问题,同时也是我们教学的一个难点。
准确地给中学数学建模教学定位,有利于指导数学教学以及更好地开展中学数学建模活动,而不至于陷入盲目及极端地处理数学应用。
二、中学数学建模教学在数学课堂教学中得以渗透由于数学建模问题源于现实的生活情境,历来教师都将它作为相对独立的学习活动或选修课来安排,或者为了应付高考,对数学建模问题不闻不问。
初中生数学建模小论文

初中生数学建模小论文初中生数学建模小论文1数学,源于人们对生产与生活实际问题,抽象出的数量关系与空间结构发展而成的.近年来,信息技术飞速发展,推动了应用数学的发展,使数学日益渗透到社会各个领域.中考实际应用题目更贴近日常生活,具有时代性、灵活性,涉及的模型有方程、函数、不等式、统计、几何等模型.数学课程标准指出,教师在教学中应引导学生从实际背景中理清数学关系、把握变化规律,能从实际问题中建立数学模型.教师要为学生创造用数学的氛围,引导学生参与自主学习、自主探索、自主提问、自主解决,体验做数学的过程,从而提高解决实际问题的能力.一、影响数学建模教学的成因探析一是教师未能实现角色转换.建模教学离不开学生“做”数学的过程,因而教师在教学中要留有让学生思考、想象的空间,让他们自主选择方法.然而部分教师对学生缺乏信任,由“引导者”变为“灌输者”,将解题过程直接教给学生,影响了学生建模能力的提高.二是教师的专业素养有待提高.开展建模教学,需要教师具有一定的专业素养,能驾驭课堂教学,激发学生的兴趣,启发学生进行思考,诱发学生进行探索,但是部分教师专业素养有待提高,或认为建模就是解应用题,或重生活味轻数学味,或使讨论活动流于形式.三是学生的抽象能力较差.在建模教学中,教师须呈现生活中的实际问题,其题目长、信息量大、数据多,需要学生经历阅读提取有用的信息,但是部分学生感悟能力差,不能明析已知与未知之间的关系,影响了学生成功建模.二、数学建模教学的有效原则1.自主探索原则.学生长期处于师讲、生听的教学模式,沦为被动接受知识的“容器”,难有创造的意识.在教学中,教师要为学生创设轻松愉悦的探究氛围,让学生手脑并用,在探索、交流、操作中提高解决问题的能力.2.因材施教原则.教师要着眼于学生原有的认知结构,要贴近学生的最近发展区,引导他们从旧知的角度思考,找出问题的解决方法。
3.可接受性原则.数学建模内容的设计,要符合学生的年龄特点和认知能力,能让学生理解所探究的内容.若设计的问题不切实际,往往会扼杀学生的兴趣,教师要密切联系教学内容、生活实际,让学生有能力解决问题.三、初中数学建模教学的几种模式1.自学讨论式.“先学后教”改变了传统教学中“师讲生听”、“师说生练”的模式,在教师的导学、导疑、导思中激发学生的学习兴趣,引发学生的积极思考,让他们在交流中思想不断碰撞,形成新观点,从而自身认知水平得到提高.教师要通过创设问题情境导学,引发学生的探究.例如,如图,在河岸L的同侧有M、N 两个村庄,现拟在河岸边修一座水泵站P,要求使管道PM、PN所用的水管最短,另修一码头Q,要求码头到M、N两村的距离相等,试画出P、Q的位置.在提出问题的基础上,学生通过选点、测量,开展交流讨论.学生1认为,是不是和异侧相同?学生2认为,如果M、N在直线L的异侧,连接MN即为最短.学生3认为,在同侧的话,可以根据轴对性的性质,将之转移为异侧.学生4认为,这有点像照镜子.这样,学生将实际问题转化为轴对称的知识解决,在交流中彼此分享、相互促进、相互提高.2.引导探究式.教师提出问题,让学生通过观察、探究提出自己的猜想,在推理、论证的基础上获得结论、掌握规律.例如,某景区团体购买公园门票价为1~50人的13元/张,50~100人的11元/张,100人以上9元/张.甲团少于50人,乙团人数不超过100人,两团共计应付票费1392元.若组成一个团体购票,应付1080元.(1)乙团人数是否也少于50人,为什么?(2)求甲乙两团各有多少人?学生猜想乙团人数少于50人,进而推算两团人数会少于100人,团购价应少于1300元,与1392元矛盾,因而乙团人数应不少于50人,不超过100人.3.活动参与模式.教师提出问题,引发学生小组活动探究,进行捜集数据、整理分析,然后解决问题.例如,某件商品的售价从原来的每件400元经两次调价后调至每件教师在讲解高等数学时,对其中能够引入数学模型的章节,要构建相关的数学模型,对其提出相应的问题,进行分析和处理。
数学建模竞赛获奖论文范文

数学建模竞赛获奖论文范文数学的运用越来越广泛了,利用建立数学模型解决实际问题的数学建模活动也应运而生了。
下面是店铺为大家推荐的数学建模论文,供大家参考。
数学建模论文范文篇一:《高中开设数学建模课程的意义与定位》1、高中开设数学建模课程的背景在高中设置的课程中,数学是一门必修课程,也是高考比重最大的一门课程,其最终目标是将数学知识融入现实问题中去,从而解决问题,这也是教育教学的最终目的。
要达到教育教学的最终目的,必须改革高中的数学课程教学,建设高中数学建模课程。
高中数学建模课程可以根据简单的现实问题设置,针对实际生活中的一些简单问题进行适当的假设,建立高中数学知识能解决该问题的数学模型,进而解决该实际问题。
因此,可以说高中数学建模课程是利用所学高中数学知识解决实际问题的课程,是将高中数学知识应用的一门课程,是培养出高技能人才的基础课程。
国家教育部制定的高中数学课程标准,重点强调:"要重视高中学生从自己的生活经验和所学知识中去理解数学、学习数学和应用数学,通过自己的感知和实际操作,掌握基本的高中数学知识和数学逻辑思维能力,让高中生体会到数学的乐趣,对数学产生兴趣,让其感觉到数学就在身边。
"但是现实中高中数学的教学情况堪忧,基本上都是满堂灌的教学,学生不会应用,对数学毫无兴趣可言,主要体现在三个方面。
第一,虽然有很多学生以高分成绩进入高中学习,但是其数学应用的基础非常差,基本上是会生搬硬套,不会解决实际问题,更不会将数学知识联系到生活中来;也有少数学生数学基础差,没有养成好的数学学习习惯,导致产生厌恶数学的情绪,数学基础知识都没学好,更不用说是用数学解决实际问题。
这少数学生就是上课睡觉混日子,根本不去学习,这与高中数学课程的开设目标截然不符。
第二,高中数学课程的教学内容与实际问题严重脱节,高中的数学教材中涉及的数学知识基本上都是计算内容,而不是用来处理和解决生活问题的,更是缺少数学与其他学科(比如化学、物理、生物、地理等)的相互渗透,即便高中数学课程中有一些数学应用的例子,也属于选学内容,教师根本不去讲、不涉及,这样导致高中数学课的教学达不到其教学目的,发挥不出功能。
数学建模论文(精选4篇)

数学建模论文(精选4篇)数学建模论文模板篇一1数学建模竞赛培训过程中存在的问题1.1学生数学、计算机基础薄弱,参赛学生人数少以我校理学院为例,数学专业是本校开设最早的专业,面向全国28个省、市、自治区招生,包括内地较发达地区的学生、贫困地区(包括民族地区)的学生,招收的学生数学基础水平参差不齐.内地较发达地区的学生由于所处地区的经济文化条件较好,教育水平较高,高考数学成绩普遍高于民族地区的学生.民族地区由于所处地区经济文化较落后,中小学师资力量严重不足,使得少数民族学生数学基础薄弱,对数学学习普遍抱有畏难情绪,从每年理学院新生入学申请转系的同学较多可以窥见一斑.虽然学校每年都组织学生参加全国大学生数学建模竞赛,但人数都不算多.从专业来看,参赛学生主要以数学系和计算机系的学生为主,间有化学、生科、医学等理工科学生,文科学生则相对更少.理工科类的学生基本功比较扎实,他们在参赛过程中起到了重要作用.文科学生数学和计算机功底大多薄弱,更多的只是一种参与.从年级来看,参赛学生以大二的学生居多;大一的学生已学的数学和计算机课程有限,基本功还有些欠缺;大三、大四的学生忙着考研和找工作,对数学建模竞赛兴趣不大.从参赛的目的来看,有20%左右的学生是非常希望通过数学建模提高自己的综合能力,他们一般能坚持到最后;还有50%的学生抱着试试看的态度参加培训,想锻炼但又怕学不懂,觉得可以坚持就坚持,不能则中途放弃;剩下的30%的学生则抱着好奇好玩的态度,他们大多早早就出局了.学生的参赛积极性不高,是制约数学建模教学及竞赛有效开展的不利因素.1.2无专职数学建模培训教师,培训教师水平有限,培训方法落后数学建模的培训教师主要由理学院选派数学老师临时组成,没有专职从事数学建模的教师.由于学校扩招,学生人数多,教师人数少,数学教师所承担的专业课和公共课课程多,授课任务重;备课、授课、批改作业占用了教师的大部分工作时间,并且还要完成相应的科研任务.而参加数学建模教学及竞赛培训等工作需要花费很多时间和精力,很多老师都没有时间和精力去认真从事数学建模的教学工作.培训教师队伍整体素质不够强、能力欠缺,指导起学生来也不是那么得心应手,且从事数学建模教学的老师每年都在调整,不利于经验的积累.另外,学校对参与数学建模教学及竞赛培训的教师的鼓励措施还不是十分到位和吸引人,培训教师对数学建模相关的工作热情不够,缺乏奉献精神.在2011年以前,数学建模培训主要采用教师授课的方式进行,但各位老师授课的内容互不联系.比如说上概率论的老师就讲概率论的内容,上常微分方程的老师就讲常微分的内容.学生学习了这些知识,不知道有什么用,怎么用,不能将这些知识联系起来转化为数学建模的能力.这中间缺少了很重要的一个环节,就是没有进行真题实训.结果就是学生既没有运用这些知识构建数学模型的能力,也谈不上数学建模论文写作的技巧.虽然学校年年都组织学生参加全国大学生数学建模竞赛,但结果却不尽如人意,获奖等次不高,获奖数量不多.1.3学校重视程度不够,相关配套措施还有待完善任何一项工作离开了学校的支持,都是不可能开展得好的,数学建模也不例外.在前些年,数学建模并没有引起足够的重视,学校盼望出成绩但是结果并不理想,对老师和学生的信心不足.由于经费紧张,并未专门对数学建模安排实验室,图书资料很少,学生用电脑和查资料不方便,没有学习氛围.每年数学建模竞赛主要由分管教学的副院长兼任组长,没有相应专职的负责人,培训教师去参加数学建模相关交流会议和学习的机会很少.学校和二级学院对参加数学建模教学、培训的老师奖励很少,学生则几乎没有.在课程的开设上也未引起重视,虽然理学院早在1997年就将数学实验和数学建模课列为专业必修课,但非数学专业只是近几年才开始列为公选课开设,且选修率低.2针对存在问题所采取的相应措施2.1扩大宣传,重视数学和计算机公选课开设,举办数学建模学习讨论班最近两年,学院组建了数学建模协会,负责数学建模的宣传和参赛队员的海选,通过各种方式扩大了对数学建模的宣传和影响,安排数学任课教师鼓励数学基础不错的学生参赛.同时邀请重点大学具有丰富培训经验的老师来做数学建模专题讲座,交流经验.学院重视数学专业的基础课程、核心课程的教学,选派经验丰富的老教师、青年骨干教师担任主讲,随时抽查教学质量,教学效果.严抓考风学风,对考试作弊学生绝不姑息;学生上课迟到、早退、旷课一律严肃处理.通过这些举措,学生学习态度明显好转,数学能力慢慢得到提高.学校有意识在大一新生中开设数学实验、数学建模和相关计算机公选课,让对数学有兴趣的学生能多接触这方面的知识,减少距离感.选用的教材内容浅显而有趣味,主要目的是让同学们感受到数学建模并非高不可攀,数学是有用的,增加学生学习数学的热情和参加数学建模竞赛的可能性.为了解决学生学习数学建模过程中的遇到的困难,学院组织老师、学生参加数学建模周末讨论班,老师就学生学习过程中遇到的普遍问题进行讲解,学生分小组相互讨论,尽量不让问题堆积,影响后续学习积极性.通过这些措施,参赛学生的人数比以往有了大的改观,参赛过程中退赛的学生越来越少,参赛过程中的主动性也越来越明显.2.2成立数学建模指导教师组,分批培养培训教师,改进培训方法近年来,学院开始重视对数学建模培训教师的梯队建设,成立了数学建模指导教师组.把培训教师分批送出去进修,参加交流会议,学习其它高校的经验,并安排老教师带新教师,培训教师队伍越来越稳定、壮大.从去年开始,理学院组织学生进行了为期一个月的暑期数学建模真题实训,从8月初到8月底,培训共分为7轮.学生首先进行三天封闭式真题训练———其次答辩———最后交流讨论.效果明显,学生的数学建模能力普遍得到了提高,学习积极性普遍高涨.9月份顺利参加了全国大学生数学建模竞赛.从竞赛结果来看,比以前有了比较大的进步,不管是获奖的等次还是获奖的人数上都取得了历史性突破.有了这些可喜的变化,教师和学生的积极性都得到了提高,对以后的数学建模教学和培训工作将起着极大的促进作用.除了这种集训,今后,数学建模还需要加强平时的教学和培训工作.2.3学校逐渐重视,加大了相关投入,完善了激励措施最近几年,学校加大了对数学建模教学和培训工作的相关投入和鼓励措施.安排了专门的数学建模实验室,配备了学院最先进的电脑、打印机等设备,购买了数学建模相关的书籍.划拨了数学建模教学和培训专项经费.虽然数学建模教学还没有计入教学工作量,但已经考虑计入职称评定的相关工作量中,对参加数学建模教学和培训的老师减少了基本的教学工作量,使他们有更多的时间和精力投入到数学建模的相关工作中去.对参加全国大学生数学建模竞赛获奖的老师和学生的奖励额度也比以前有了很大的提高,老师和学生的积极性得到了极大的提高.3结束语对我们这类院校而言,最重要的数学建模赛事就是一年一度的全国大学生数学建模竞赛了.竞赛结果大体可以衡量老师和学生的付出与收获,但不是绝对的,教育部组织这项赛事的初衷主要是为了促进各个院校数学建模教学的有效开展.如果过分的看重获奖等次和数量,对学校的数学建模教学和组织工作都是一种伤害.参赛的过程对学生而言,肯定是有益的,绝大多数参加过数学建模竞赛的学生都认为这个过程很重要.这个过程可能是四年的大学学习过程中体会最深的,它用枯燥的理论知识解决了活生生的现实中存在的问题,虽然这种解决还有部分的理想化.由于我校地处偏远山区,教育经费相对紧张,投入不可能跟重点院校的水平比,只能按照自身实际来.只要学校、老师、学生三方都重视并积极参与这一赛事,数学建模活动就能开展的更好.数学建模论文模板篇二培养应用型人才是我国高等教育从精英教育向大众教育发展的必然产物,也是知识经济飞速发展和市场对人才多元化需求的必然要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中高中数学建模小论文要求及范文
一、论文形式:科学论文
科学论文是对某一课题进行探讨、研究,表述新的科学研究成果或创见的文章。
注意:它不是感想,也不是调查报告。
二、论文选题:新颖,有意义,力所能及
要求: 1. 有背景.
应用问题要来源于学生生活及其周围世界的真实问题,要有具体的对象和真实的数据。
理论问题要了解问题的研究现状及其理论价值。
要做必要的学术调研和研究特色。
2. 有价值.
有一定的应用价值,或理论价值,或教育价值,学生通过课题的研究可以掌握必须的科学概念,提升科学研究的能力。
3. 有基础
对所研究问题的背景有一定了解,掌握一定量的参考文献,积累了一些
解决问题的方法,所研究问题的数据资料是能够获得的。
4. 有特色
思路创新,有别于传统研究的新思路;
方法创新,针对具体问题的特点,对传统方法的改进和创新;结果创新,要有新的,更深层次的结果。
5. 问题可行
适合学生自己探究并能够完成,要有学生的特色,所用知识应该不超过
初中生(高中生)的能力范围。
三、(数学应用问题)数据资料:来源可靠,引用合理,目标明确
要求:
1.数据真实可靠,不是编的数学题目;
2.数据分析合理,采用分析方法得当。
四、(数学应用问题)数学模型:通过抽象和化简,使用数学语言对实际问题的一个近似描述,以便于人们更深刻地认识所研究的对象。
要求:
1.抽象化简适中,太强,太弱都不好;
2.抽象出的数学问题,参数选择源于实际,变量意义明确; 3.数学推理严格,计算准确无误,得出结论;
4.将所得结论回归到实际中,进行分析和检验,最终解决问题,或者提出
建设性意见;
5.问题和方法的进一步推广和展望。
五、(数学理论问题)问题的研究现状和研究意义:了解透彻
要求:
1.对问题了解足够清楚,其中指导教师的作用不容忽视;
2.问题解答推理严禁,计算无误;
3.突出研究的特色和价值。
六、论文格式:符合规范,内容齐全,排版美观
1. 标题:
是以最恰当、最简明的词语反映论文中主要内容的逻辑组合。
要求:反映内容准确得体,外延内涵恰如其分,用语凝练醒目。
2. 摘要:
全文主要内容的简短陈述。
要求:
1)摘要必须指明研究的主要内容,使用的主要方法,得到的主要结论和成果; 2)摘要用语必须十分简练,内容亦须充分概括。
文字不能太长,6000字以内的文章摘要一般不超过300字;
3)不要举例,不要讲过程,不用图表,不做自我评价。
3. 关键词:文章中心内容所涉及的重要的单词,以便于信息检索。
要求:数量不要多,以3-5各为宜,不要过于生僻。
4. 正文
1)前言:
问题的背景:问题的来源;
提出问题:需要研究的内容及其意义;
文献综述:国内外有关研究现状的回顾和存在的问题;概括介绍论文的内容,问题的结论和所使用的方法。
2)主体:
(数学应用问题)数学模型的组建、分析、检验和应用等。
(数学理论问题)推理论证,得出结论等。
3)讨论
解释研究的结果,揭示研究的价值, 指出应用前景, 提出研究的不足。
要求:
1)背景介绍清楚,问题提出自然;
2)思路清晰,涉及到得数据真是可靠,推理严密,计算无误;
3)突出所研究问题的难点和意义。
5. 参考文献:
是在文章最后所列出的文献目录。
他们是在论文研究过程中所参考引用的主要文献资料,是为了说明文中所引用的的论点、公式、数据的来源以表示对前人成果的尊重和提供进一步检索的线索。
要求:
1)文献目录必须规范标注;
2)文末所引的文献都应是论文中使用过的文献,并且必须在正文中标明。