初中数学建模案例

合集下载

初中数学建模举例

初中数学建模举例

初中数学建模举例(一)所谓数学建模,就是将某一领域或部门的某一实际问题,通过一定的假设,找出这个问题的数学模型,求出模型的解,并对它进行验证的全过程。

笔者以一次函数的应用为例,探讨几种不同的数学建模过程。

一、直接给出模型例1.已知弹簧的长度y在一定的限度内是所挂物质重量x的一次函数。

现已测得所挂重物重量为4kg时,弹簧的长度是7.2cm;所挂重物重量为5kg时,弹簧的长度为7.5cm。

求所挂重物重量为6kg时弹簧的长度。

既然题干中已经明确给出了y与x之间具备的是一次函数关系,那么实际上本题目中数学建模过程已经被省略掉了。

可以设数学模型为y=kx+b,将已知的两个条件分别代入这个模型关系式中,可得:7.2=4x+b,7.5=5x+b。

求解二元一次方程组,得出k=0.3,b=6。

从而得到模型y=0.3x+6,将x=6代入该模型中,得到y=7.8。

于是得到该问题的最终结果,即当所挂物体重量为6kg时,弹簧长度为7.8cm。

这种直接给出数学模型的方法,在初学一次函数理解其待定系数法时,不失为一种较为合适的数学题目设计。

但是从数学应用的角度来看,不利于锻炼学生从实际问题中抽象出数学问题的能力。

二、猜测建立模型例2.爸爸穿42码的鞋,长度为26cm;妈妈穿39码的鞋,长度为24.5cm。

小明穿41码的鞋子,长度为多少?可以设数学模型为y=kx+b,将已知的两个条件分别代入到这个模型关系式中,可得:26=42k+b,24.5=39k+b。

求解二元一次方程组,得解k=0.5,b=5。

得到模型y=0.5x+5,将x=41代入该模型中,得到y=25.5。

从而得到该问题的最终结果,即小明所穿的41码的鞋子,长度为25.5cm。

本例至此,似乎已经解决了问题。

但实际上,如果只知道两对已知的函数数值,还不能否定尺码和长度之间是否存在着其他函数关系,譬如二次函数关系。

因此,在该题目的题设中应该再给出一个条件,比如可以再给出“妹妹穿36码的鞋,长度为23cm”,以便获得一次函数模型后的验证。

数学建模案例精选

数学建模案例精选

数学建模案例精选数学建模是指利用数学方法和技术解决实际问题的过程,它在工程、经济、管理、自然科学等领域都有着广泛的应用。

在数学建模中,数学模型是解决问题的核心,通过建立合适的数学模型,可以更好地理解问题的本质,并找到解决问题的方法。

下面我们将介绍几个数学建模案例,来看看数学在实际问题中是如何发挥作用的。

案例一,交通拥堵问题。

在城市交通管理中,交通拥堵一直是一个严重的问题。

如何合理规划道路和交通流量,是一个复杂的问题。

数学建模可以通过建立交通流模型,分析不同道路的交通流量,预测交通拥堵的可能发生区域和时间,从而指导交通管理部门制定相应的交通疏导措施。

案例二,股票价格预测。

股票市场的波动一直是投资者关注的焦点,而股票价格的预测是投资决策的重要依据。

数学建模可以通过分析历史股票价格数据,建立股票价格预测模型,利用数学统计方法和时间序列分析方法,预测股票价格的未来走势,帮助投资者做出更明智的投资决策。

案例三,物流配送优化。

在物流配送领域,如何合理规划配送路线和减少配送成本是企业关注的重点。

数学建模可以通过建立物流配送网络模型,分析不同配送方案的成本和效率,优化配送路线,降低物流成本,提高配送效率,从而提升企业的竞争力。

案例四,环境污染监测。

环境污染是一个严重的问题,如何有效监测和治理环境污染成为了各国政府和环保部门的重要任务。

数学建模可以通过建立环境污染监测模型,分析环境污染源的分布和扩散规律,预测污染物的扩散范围和影响,为环境污染治理提供科学依据。

通过以上几个案例的介绍,我们可以看到数学建模在实际问题中的重要作用。

数学建模不仅可以帮助我们更好地理解和解决实际问题,还可以推动科学技术的发展,促进社会经济的进步。

因此,加强数学建模的研究和应用,对于推动科学技术创新和社会发展具有重要意义。

希望通过今后更多的实际案例和研究,能够进一步挖掘数学建模的潜力,为解决更多实际问题提供更加有效的方法和工具。

初中数学建模案例

初中数学建模案例

初中数学建模案例数学建模案例:城市交通拥堵问题的优化摘要:城市交通拥堵是大城市所面临的普遍问题,本案例将通过建立数学模型对城市交通拥堵问题进行优化分析,以求解最佳车辆通行路线,提高交通运行效率。

通过引入实时的交通流数据,通过数学建模和优化算法,对现有的交通流模型进行改进。

1.引言城市交通拥堵严重影响到居民的出行效率和生活质量,同时还造成大量的汽车尾气排放,给环境带来巨大的负面影响。

因此,对城市交通拥堵问题进行优化分析,以提高交通运行效率和减少交通污染,具有重要的现实意义。

2.问题建模2.1基本假设我们对城市交通拥堵问题进行以下基本假设:1)假设城市交通网络是一个有向图,交叉口为节点,道路为边。

2)假设车辆的行驶速度在不同道路上是相同的。

3)假设车辆在交叉口处按照指定的交通规则进行行驶。

4)假设车辆的目的地是已知的。

2.2确定目标我们的目标是通过优化交通流模型,使得车辆在城市交通网络中的行驶时间最短。

2.3建立数学模型我们将采用最短路径算法求解车辆行驶的最佳路径。

首先,我们需要对城市交通网络进行建模。

假设城市交通网络中交叉口数量为N,那么可以用一个N×N的矩阵A来表示交通网络的连通关系,其中A[i][j]表示从节点i到节点j的道路长度。

如果节点i和节点j之间不存在直接的道路连接,则取A[i][j]为无穷大。

然后,我们可以采用Dijkstra算法来求解最短路径。

Dijkstra算法是一种贪心算法,它通过不断更新起点到所有其他节点的最短路径长度,从而找到起点到终点的最短路径。

具体步骤如下:1)初始化起点到所有其他节点的最短路径长度为无穷大。

2)将起点到起点的最短路径长度设为0。

3)将起点标记为已访问。

4)对于起点直接相连的节点,更新起点到这些节点的最短路径长度。

5)选择一个未访问的节点中最短路径长度最小的节点,将其标记为已访问。

6)更新这个节点直接相连的节点的最短路径长度。

7)重复步骤5和步骤6,直到所有节点都被标记为已访问。

数学建模案例分析【精选文档】

数学建模案例分析【精选文档】

案例分析1:自行车外胎的使用寿命问题:目前,自行车在我国是一种可缺少的交通工具。

它小巧、灵活、方便、易学,而且价格适中,给广大居民带来了不小的益处。

但是,自行车也有令人头痛的地方,最常见的问题莫过于扎胎了。

扎胎的原因有很多,但相当一部分是由于外胎磨损,致使一些玻璃碴、小石子很容易侵入、扎破内胎。

为了减少不必要的麻烦,如何估计自行车外胎的寿命,及时更换?分析:分析角度:由于题目里未明确指出我们是应从厂家角度,还是应从用户角度来考虑这个问题,因此需要我们自己做出合理判断.若从厂家角度,我们面对的应当是一大批自行车外胎的平均寿命的估计。

这样的估计要求一定精确度和相对明确的使用环境;而从用户角度来说,面对的仅是个人的一辆车,不需要很高的精确度,这样的寿命估计更简单,易于随时了解,下面仅从用户角度进行分析。

产品的使用者需要了解产品的寿命,是基于安全性及更换的费用来考虑的。

我们将这两个标准作为主要标准来分析,首先值得注意的两个关键性问题是如何定义寿命、何时为寿命的终止。

寿命的定义要做到科学,直观,有可比性,在航空工业中航天飞机的使用寿命是用重复使用的次数来衡量,而工厂机器设备的寿命则以连续工作的时间来定义。

本题外胎的寿命亦可用时间来表征,但由于外胎的寿命直接与其磨损速度相关;而磨损速度又与使用频率及行驶速度相互联系,致使外胎的寿命不一定与使用时间成正比(这种非正比关系使我们不能拿一辆—天跑200公里的自行车与一天只跑1公里的自行车进行寿命比较),降低了可比性。

如换成自行车的路程寿命来比较,就好得多。

产品寿命是在安全性和更换费用相互制约下达到的一个点,在这个点上,外胎的安全系数降到用户不可接受的最低值,更换费用(寿命越长,在一定意义上更换费用越低)也达到了最大限度的节省。

弄清了上面两个问题后,我们继续明确建立模型需要解决哪些问题及建立模型的重点难点。

自行车使用过程中,一来影响因素多,二来这些因素之间彼此相关,十分复杂,要做到比较准确地估计使用寿命,不但要对外胎的性能有相当的了解,而且对使用环境更不能忽视。

数学建模_案例一

数学建模_案例一

案例一
调度:如何安排救火人数,使得火被灭且费用最低。

问题分析
费用产生的途径:森林损失,人员待遇,一次消耗品。

1.森林损失的计算,森林损失为f面积为A, f=KA (K为单位面积的损失费用)
2.单个人救火人员的待遇g与救火时长L成正比. g =a *L (单位时间人员待遇)
3.一次性消耗品,每个人一次性消耗费用为常数C(经验数据)
假设派出X个消防人员,则总费用为:F= f+ gX+CX
F=KA+ a *LX+CX
二、合理假设:关于A假设失火现场的风势不大,火的扩散速度为V,失火面积为A,A=(vt)^2 (均匀扩散) r=vt
t =0时森林失火, t =t1 时,消防人员进入现场救火,t=t2时,火被子扑灭.
设失火面积A对时间的导数dA/dt,其中λ为单位时间火势传播速度的变化率,β为每个消防人员在单位时间里所灭的面积,即每位消防人员的灭火能力,其中βX与时间L成反比。

βX(t2-t1)=α
t2=t1+α/β
dA/dt=λt (0<=t <=t1)
dA/dt=λt1t2/(t2-t1)- λt1t/(t2-t1)
A=0.5t1t2
F=0.5Kλt1t2+a(t2-t1)X+cx
F=0.5kλt1t2+a*α/β+ cx
F=0.5kλt1^2+0.5kλt1*α/(βx)+a*α/β+ cx F=a/x+bx+c。

初中数学建模的若干简要案例

初中数学建模的若干简要案例

初中数学建模的若干简要案例初中数学建模学习案例1 :----- 与自行车有关的问题(小组学习实践)课题:了解自行车中的数学问题,应用学过的数学知识,解决以下问题。

问题1 :用自己或同学的一辆自行车为观察对象,观察并解决下列问题:( 1 )我观察的这辆自行车是什么牌子的?( 2 )它的直径是_______cm ,轮子转动一周,在地面走过的距离是_______cm ,精确到1cm 。

( 3 )自行车中轴的大齿轮盘的齿数是_______齿,后轴的小齿轮(飞轮)的齿数是_______,中轴的大齿轮被踏动一周时,后轴的小齿轮在链条传动下,不计算惯性将转动_______周(保留2 位小数)。

问题2 :如果你有自行车,并骑车上学,你能借助于自行车,测量出从你的家到学校的路程吗?请你设计一个测量方案,并尽可能地通过实际操作测量出从你的家到学校的路程。

问题3 :如果你的(或你的朋友)自行车是可以变速的自行车(如山地车、多飞轮的自行车)、请你观察一下在这辆自行车上有几个(中轴上的)大轮盘,几个飞轮,它们都各有多少齿?记录这些数据。

如果你骑车时每一秒脚蹬一圈,请你根据上面测量的数据计算出这辆自行车运行时最大的速度和最小的速度各是每小时多少公里?:选做问题4 :你认为对问题 3 中的自行车的各个齿轮的齿数安排的合理吗?你能发现或提出什么样的问题?如果有可能请你做设计改进的话,你会做什么?求解工作的表格省略初中数学数学建模案例 2 :----- 线路设计问题(自学、探索、创新实践)课题:为所在小区设计一个最佳的邮政投递路线, 、一个合理的保安巡逻路线。

实施建议:1: 按居住地成立4-6 人的小组,对你们要研究的小区, 进行观察, 收集必要的数据和信息,( 如平面图, 楼的门洞的朝向, 道路情况, 小区的进出口位置等). 发挥各自的特长,分工合作完成测量方案的设计、实测、作图、计算、论证、比较、计算机文稿录入、结果介绍等。

初中数学建模的若干简要案例

初中数学建模的若干简要案例

初中数学建模的若干简要案例1.找出一个公园内最短游览路径的问题假设一个公园有多个景点,每个景点之间有不同的距离,我们希望找到一条最短的路径,使得可以在最短时间内游览完所有的景点。

我们可以将每个景点表示为节点,距离表示为边,然后利用图论中的最短路径算法(如迪杰斯特拉算法)来解决这个问题。

2.优化一家快递公司的邮件投递路径假设一个快递公司需要投递邮件到不同的区域,每个区域的邮件数不同,我们希望找到一条最优的路径,使得快递员可以在最短时间内投递完所有的邮件。

我们可以将每个区域表示为节点,不同区域之间的距离表示为边,然后利用图论中的最短路径算法或者启发式算法(如A*算法)来解决这个问题。

3.设计一个购物车的最佳装载方案假设一个网上购物平台需要将一些商品装载到购物车中,每个商品有不同的体积和重量,而购物车有一定的容量限制。

我们希望找到一个最佳的装载方案,使得购物车可以装载尽可能多的商品。

我们可以将每个商品表示为节点,商品之间的限制条件(如体积和重量限制)表示为约束条件,然后利用线性规划算法(如简单的背包问题)来解决这个问题。

4.优化一条生产线的生产效率假设一个工厂有多个生产环节,每个生产环节有不同的效率和成本,我们希望找到一个最优的生产线配置方案,使得生产效率最高,成本最低。

我们可以将每个生产环节表示为节点,不同生产环节之间的依赖关系和成本表示为边,然后利用图论中的最优路径算法(如最小生成树算法)来解决这个问题。

5.设计一个最优的课程表假设一个学校有多个班级和多个教师,每个班级需要上不同的课程,每个教师可以同时教授多个班级的课程,我们希望找到一个最优的课程表,使得教师的利用率最高,学生的课程安排最优。

我们可以将每个班级和教师表示为节点,教师的教学能力和班级的需求表示为边的权重,然后利用图论中的最大流算法或者启发式算法(如基因算法)来解决这个问题。

这些案例都是初中数学建模的常见问题,通过数学建模的方法,可以帮助我们解决这些实际问题,提高问题的解决效率和准确性。

中学数学建模教育案例(3篇)

中学数学建模教育案例(3篇)

第1篇一、背景随着我国经济的快速发展和社会的进步,数学教育在中学教育中的地位越来越重要。

数学建模作为一种培养学生解决实际问题的能力、提高数学素养的重要手段,越来越受到教育部门的重视。

本文以“疫情数据分析”为背景,探讨中学数学建模教育的实践案例。

二、案例概述本次数学建模教学活动以“疫情数据分析”为主题,旨在让学生通过数学建模的方法,分析疫情数据,预测疫情发展趋势,为疫情防控提供科学依据。

活动分为以下几个阶段:1. 数据收集与整理2. 模型建立与求解3. 模型验证与优化4. 案例分析与应用三、案例实施过程1. 数据收集与整理教师首先向学生介绍疫情数据的相关信息,包括确诊病例、疑似病例、治愈病例、死亡病例等。

然后,引导学生通过互联网、政府官方网站等渠道收集疫情数据,并进行整理和归纳。

2. 模型建立与求解在数据整理完成后,教师引导学生运用数学建模的方法,建立疫情传播模型。

本次案例中,我们选择了SIR模型(易感者-感染者-移除者模型)作为分析工具。

SIR模型将人群分为三个状态:易感者(S)、感染者(I)和移除者(R)。

通过分析疫情数据,确定模型中的参数,如基本再生数、潜伏期、康复率等。

接下来,学生利用计算机软件(如MATLAB、Python等)对模型进行求解,得到疫情发展趋势的预测结果。

3. 模型验证与优化在模型求解完成后,教师引导学生对模型进行验证。

通过对比实际疫情数据与模型预测结果,分析模型的准确性。

若模型预测结果与实际数据存在较大偏差,则需对模型进行优化,调整模型参数或选择更合适的模型。

4. 案例分析与应用在模型验证与优化完成后,教师引导学生对案例进行深入分析,探讨疫情发展趋势的影响因素,如政策、经济、人口等。

同时,引导学生将数学建模方法应用于实际生活,如疫情防控策略的制定、疫情防控物资的调配等。

四、案例总结本次数学建模教学活动取得了良好的效果,主要体现在以下几个方面:1. 培养学生的数学思维:通过数学建模,学生学会了运用数学方法解决实际问题,提高了数学思维能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当我提示他们剩下的两个空瓶仍然能够利用的时候,有些聪明人就给出了正确答案:借来一个装满饮料瓶,喝完后,连同那剩下的两个空瓶一起还给人家。所以共喝了15瓶。
这就是这道题的正确答案。
最近我突然想到了这个问题,它能不能被深入地推广一下呢?于是我就开始了对这个论文题目的思考与研究。
二.建立数学模型
我列出了原有饮料瓶数和实际能喝到的瓶数的一些数据:
2.摘要
摘要是论文中重要的组成部分。摘要应该使用简练的语言叙述论文的核心观点和主要思想。如果你有一些创新的地方,一定要在摘要中说明。进一步,必须把一些数值的结果放在摘要里面,例如:“我们的最终计算得出,对于消费者来说,打折比返券的实惠率提高了23%。”摘要应该最后书写。在论文的其他部分还没有完成之前,你不应该书写摘要。因为摘要是论文的主旨和核心内容的集中体现,只有将论文全部完成且把论文的体系罗列清楚后,才可写摘要。
初中数学建模案例
————————————————————————————————作者:
————————————————————————————————日期:

中学数学建模论文指导
中学阶段常见的数学模型有:方程模型、不等式模型、函数模型、几何模型和统计模型等。我们也把运用数学模型解决实际问题的方法统称为应用建模。可以分五种模型来写。论文最好自己写,如果是参加竞赛的话从网上找的会被搜出来的。
3.完成论文写作
完整的论文在完成以上步骤之后就可以新鲜出炉了,完成论文后,一定要再看一遍自己的论文有没有错别字、计算错误、图形的移位或偏差等。最后,在论文的结尾处应该写上感谢的话,感谢帮助你完成这篇论文的所有人。
喝饮料品数学+
湖南省 株洲市北京师范大学株洲附属学校C0812班晏阳天指导老师:董宏亮
摘要:喝饮料,品数学。在日常生活中我们经常遇到用空瓶换汽水问题,喝完了,凉爽的汽水还能用空瓶换汽水继续喝,从中引发了我对问题的深入思考。如果用3个空瓶换一瓶新的汽水,当原有瓶数X为偶数时,当原有瓶数为X时,总共能喝到多少瓶汽水呢?如果现有X瓶汽水,每Y个空瓶可以换一瓶新的汽水。总共又能喝到多少瓶汽水呢?这个问题的探讨与解决,对于我们在日常生活中如何使开支与效益达到最优化等问题,具有一定的指导意义。
二、建模论文的写作步骤
1.确定题目
选择一个你感兴趣的生活中的问题作为研究对象,并根据研究对象设置论文题目。最好是找一位或几位老师帮助安排研究课题。在确定好课题后,应该写一个写作计划给指导老师看看,并征求他们对该计划的建议。
2.开展科研课题
去图书馆、互联网上查阅与课题相关的资料,观察有关的事件,收集与课题相关的信息。同时如果有条件的话,可以去拜访相关领域的专家和学者。然后将前期所收集到的资料与自己所学的相关知识组织在一起,进行论文的结构论证。完成这些工作后,你应该要制定一个课题时间安排表,这样能保证书写论文的循序渐进。记住在开始写论文后一定要不断地和老师、家长进行沟通,让老师和家长斧正论文中出现的明显错误,并能提出一些更好的研究建议。在论文写作结束以后,一定要得出结论。记住,在论文的结果出来后,有可能得出的结果与假设并不相符,这个并不重要,不要强行改变结果来迎合假设。只要你在论述过程中严格地按照科学方法进行,你的论文还是相当有价值的。最后,需要很好地写一份摘要。摘要的字数应该是论文字数的十分之一左右。
摘要一般分三个部分。用三句话表述整篇论文的中心。
第一句,用什么模型,解决什么问题。
第二句,通过怎样的思路来解决问题。
第三句,最后结果怎么样。
当然,对于低年级的同学,也可以ቤተ መጻሕፍቲ ባይዱ写摘要。
3.正文
正文是论文的核心,也是最重要的组成部分。在论文的写作中,正文应该是从“提出问题—分析问题—选择模型—建立模型—得出结论”的方式来逐渐进行的。其中,提出问题、分析问题应该是清晰简短。而选择模型和建立模型应该是目标明确、数据详实、公式合理、计算精确。在正文写作中,应尽量不要用单纯的文字表述,尽量多地结合图表和数据,尽量多地使用科学语言,这会使得论文的层次上升。
当原有奇数瓶时,则实际喝到原来1.5 倍瓶数取整数的饮料。
但这只是不完全归纳,如何从正面直接推导呢?
三.数学模型的分析与问题的解决
又经过我细致的观察,发现:只要是每有两个空瓶,都可以运用文章开头那种“借瓶子”的方法再喝一瓶饮料。这个发现太重要了。我可以这样处理那些剩余的空瓶:分为两个两个一组,每一组等于一瓶“没有空瓶”的汽水(只可以喝,但不能得到空瓶)。这样就可以正面对待问题了。
关键词:饮料 瓶数空瓶兑换优化
一.问题的发现
日常生活中,我们经常遇到过空瓶换汽水问题。喝完了凉爽的汽水还能用空瓶换汽水继续喝,那简直是炎炎夏日里的一种享受。如果没有经历过,那么这道小学时的奥林匹克数学题你应该见到过:
现有10瓶汽水,每三个空瓶可以换一瓶新的汽水。问总共能喝到多少瓶汽水呢?
我曾经问过不少人这道题,他们给的结果通常都是14瓶(先喝10瓶,用9空瓶换来3整瓶,喝3瓶,还有3+1=4个空瓶。然后用3个空瓶再换一整瓶,喝掉。最后剩下2个空瓶。共10+3+1=14瓶)
原有饮料瓶数X
实际能喝到的瓶数
1

2

3

4
6
5
7

9
7
10
8
12
9
13
10
15
注意观察:看下方整理过的列表
发现什么了吗?
原有饮料瓶数X
实际能喝到的瓶数

3

6
6
9

12
10
15
1
1
3
4

7
7
10
9
13
根据不完全归纳的情况,我得出这样一个重要的规律:
当原有偶数瓶饮料时,实际能喝到原来1.5倍瓶数的饮料。
4.结论
论文的结论集中表现了这篇论文的成果,可以说,只有论文的结论经得起推敲,论文才可以获得比较高的评价。结论的书写应该注意用词准确,与正文所描述或论证的现象或数据保持绝对的统一。并且一定要对结论进行自我点评,最好是能将结论推广到社会实践中去检验。
5.参考资料
在论文中,如果使用了其他人的资料。必须在论文后标明引用文章的作者、应用来源等信息。
一、建模论文的标准组成部分
建模论文作为一种研究性学习有意义的尝试,可以锻炼学生发现问题、解决问题的能力。一般来说,建模论文的标准组成部分由论文的标题、摘要、正文、结论、参考文献等部分组成。现就每个部分做个简要的说明。
1.题目
题目是给评委的第一印象,所以论文的题目一定要避免指代不清,表达不明的现象。建议将论文所涉及的模型或所用的计算方式写入题目。如“用概率方法计算商场打折与返券的实惠效应”。
相关文档
最新文档