数学建模竞赛优秀大学生论文.doc
全国大学生数学建模国 家奖优秀论文

全国大学生数学建模国家奖优秀论文在当今高度数字化和信息化的时代,数学建模已经成为解决各种实际问题的重要工具。
全国大学生数学建模竞赛作为一项具有高度影响力的赛事,每年都吸引着众多优秀学子参与,而能够获得国家奖的优秀论文更是代表着学生在数学建模领域的卓越成就。
数学建模的本质是将实际问题转化为数学问题,并通过建立数学模型来求解,从而为实际问题提供有效的解决方案。
这些获奖论文通常具有一些显著的特点。
首先,它们能够准确地把握问题的关键。
在面对复杂的实际问题时,参赛学生需要迅速理清问题的核心,明确问题的约束条件和目标。
例如,在研究城市交通拥堵问题时,关键可能在于分析车流量、道路容量、信号灯设置等因素之间的关系,并确定如何优化交通流量以减少拥堵。
其次,优秀论文中的模型建立具有创新性和合理性。
学生们不会拘泥于传统的模型和方法,而是敢于尝试新的思路和技术。
他们可能会结合多种数学方法,如概率论、线性规划、微分方程等,构建一个综合性的模型,以更精确地描述问题。
再者,数据处理和分析能力也是至关重要的。
为了验证模型的有效性,需要收集大量的数据,并进行有效的清洗、整理和分析。
在这个过程中,学生们需要运用统计学知识,判断数据的可靠性和代表性,运用合适的方法对数据进行拟合和预测。
以一篇关于电商平台商品推荐系统的数学建模论文为例。
在这篇论文中,学生们深入研究了用户的购买历史、浏览行为、评价等数据,通过构建协同过滤模型和基于内容的推荐模型,为用户提供个性化的商品推荐。
他们不仅考虑了用户的兴趣偏好,还考虑了商品的热门程度、时效性等因素,使得推荐结果更加准确和实用。
在模型求解方面,他们采用了高效的算法和计算工具,如 Python 中的相关库和机器学习框架,快速得到模型的解。
并且,通过大量的实验和对比分析,验证了模型的性能和优越性。
此外,优秀的论文还注重结果的解释和应用。
模型求解得到的结果不是孤立的数字,而是需要结合实际情况进行合理的解释和分析。
全国大学生数学建模竞赛论文范例

2009高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员 (打印并签名) :1.2.3.指导教师或指导教师组负责人 (打印并签名):日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):2009高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国评阅编号(由全国组委会评阅前进行编号):眼科病床的合理安排摘要病床是医院的重要卫生资源,其使用情况是反映医院工作效率的重要指标,合理分配床位、提高病床使用率对于充分利用医疗资源、提高医院的两个效益有着十分重要的意义。
本题针对某医院眼科病床分配中存在的不合理现象,让我们建立一个合理的病床安排模型,以解决病床的最优分配问题,从而提高对医院资源的有效利用。
针对问题一,本文制定的指标评价体系包括门诊相关指标集(病人平均等待时间、门诊等待平均队长、病人平均满意度)和病床相关指标集(出院者平均住院日数、病床平均工作日、病床平均周转率、实际病床利用率)。
为了能够全面地评价出模型的优劣,本文采用目前普遍使用的密切值法、TOPSIS法和RSR法等综合评价方法,并对应建立了三个评价模型,以得出更为科学合理的结论。
针对问题二,本文建立了以病床需求数为状态转移变量、以各类病人的病床安排数为决策变量的动态规划模型。
数学建模竞赛优秀大学生论文

数学建模竞赛优秀大学生论文随着科学技术的高速发展,数学的应用价值越来越得到众人的重视,因此数学建模也被逐渐的引起重视了。
下面是店铺为大家整理的数学建模优秀论文,供大家参考。
数学建模优秀论文篇一:《数学建模用于生物医学论文》1数学建模的过程1.1模型准备首先要了解实际背景,寻找内在规律,形成一个比较清晰的轮廓,提出问题。
1.2模型假设在明确目的、掌握资料的基础上,抓住问题的本质,舍弃次要因素,对实际问题做出合理的简化假设。
1.3模型建立在所作的假设条件下,用适当的数学方法去刻画变量之间的关系,得出一个数学结构,即数学模型。
原则上,在能够达到预期效果的基础上,选择的数学方法应越简单越好。
1.4模型求解建模后要对模型进行分析、求解,求解会涉及图解、定理证明及解方程等不同数学方法,有时还需用计算机求数值解。
1.5模型分析、检验、应用模型的结果应当能解释已存的现象,处理方法应该是最优的决策和控制方案,所以,对模型的解需要进行分析检验。
把求得的数学结果返回到实际问题中去,检验其合理性。
如果理论结果符合实际情况,那么就可以用它来指导实践,否则需再重新提出假设、建模、求解,直到模型结果与实际相符,才能进行实际应用。
总之,数学建模是一项富有创造性的工作,不可能用一些条条框框的规则规定的十分死板,只要是能够做到全面兼顾、能抓住问题的本质、最终检验结果合理,都是一个好的数学模型。
2数学建模在生物医学中的应用2.1DNA序列分类模型DNA分子是遗传信息存储的基本单位,许多生命科学中的重大问题都依赖于对这种特殊分子的深入了解。
因此,关于DNA分子结构与功能的问题,成为二十一世纪最重大的课题之一。
DNA序列分类问题是研究DNA分子结构的基础,它常用的方法是聚类分析法。
聚类分析是使用数据建模简化数据的一种方法,它将数据分成不同的类或者簇,同一个簇中的数据有很大的同质性,而不同的簇中的数据有很大的相异性。
在对DNA序列进行分类时,需首先引入样品变量,比如说单个碱基的丰度、两碱基丰度之比等;然后计算出每条DNA序列的样品变量值,存入到向量中;最后根据相似度度量原理,计算出所有序列两两之间的Lance与Williams距离,依据距离的远近进行分类。
大学生数学建模竞赛B题优秀论文

关于高等教育学费标准的评价及建议摘要本文通过对近几年来学费变化的研究,综合分析影响学费变化的五个要素,引入了三个变因:学校属性、专业类型、地域差异对学费的影响,对其合理性进行了定量的分析和评价。
首先,我们基于层次分析法建立了模型一。
模型一以五个要素,即教育市场供求关系、全国家庭支付承受力、国家财政及相关社会捐助、个人收益率、教育成本为方案层。
对于教育市场的供求关系我们用灰色预测GM(1,1)模型预测出未来几年的招生人数,用蛛网模型求解稳定的价格点为3225.51 元;对于国家财政及相关社会捐助,我们用回归分析得出其效应关系。
模型一以效率和公平两个标准作为准则层,应用极差归一化思想,构造指标函数,综合建立成对比较矩阵。
我们定义学费合理化指数为目标层,经准则层,得出五个要素对学费合理化指数的组合权重向量。
考虑到成对比较矩阵仍有一定主观因素,我们用熵值取权法修正组合权重向量。
最后,拟合出最佳学费曲线及其波动区间,其中 2007 年的结论值为 3370.75 元。
模型一的突出优点是客观可信,美中不足的是结论为一个平均最优值,没有考虑其他变因的影响,使用的局限性较大。
然后,我们基于学校属性、专业类型、地域差异三个变因对结论的影响建立了模型二。
评价了这三个变因对五个要素的综合影响,修正了五个要素对学费合理化指数的影响,使得结论更趋于合理,应用范围更加广泛。
修正后通过若干数据的检验,得出平均最佳学费约为 3000 元。
基于这两个模型,以及对高校学费现状的了解,我们提出三点主要建议: 1.鼓励高校开拓资金来源渠道,学习国外筹款方式,如发行教育彩票等; 2.建议国家增加助学贷款发放力度,并能够分类别基于不同金额的贷款,并出台一些补贴政策弥补不同地区的差异; 3.大力扶持民办高等院校发展,实现高等教育大众化,这样不仅缓解高等院校招生压力,并且能够促进高校教育健康发展。
本文的特色在于基于翔实丰富的资料,根据五个要素及三个变因的分析,建立了一种合理的高校学费评价体系,其拥有适用性广,稳定性好,灵敏度高等特点,对三个变因,即学校属性、专业类型、地域差异进行了深入定量的分析,并根据模型结论给提出了我们的一些可行性建议。
数学建模优秀优秀论文A题

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则•我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):_________________________________ 我们的参赛报名号为(如果赛区设置报名号的话):_______________________________________ 所属学校(请填写完整的全名):________________________________________________________ 参赛队员(打印并签名):1. _______________________________________________2. ____________________________________________3. ____________________________________________指导教师或指导教师组负责人(打印并签名):____________________________日期:—年—月—日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):基于系统综合评价的城市表层土壤重金属污染分析摘要本文针对城市表层土壤重金属污染问题,首先对各重金属元素进行分析,然后对各种重金属元素的基本数据进行统计分析及无量纲化处理,再对各金属元素进行相关性分析,最后针对各个问题建立模型并求解。
全国大学生数学建模竞赛论文1

目录一 问题重述问题重述......................................................... ......................................................... 1 二 问题分析问题分析......................................................... ......................................................... 2 三 模型假设模型假设......................................................... ......................................................... 2 四 符号说明符号说明......................................................... ......................................................... 2 五 模型的建立与求解模型的建立与求解................................................. ................................................. 3 六结果分析六结果分析......................................................... (12)一 问题重述通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,等数据,通过预先标定的罐容表通过预先标定的罐容表通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)(即罐内油位高度与储油量的对应关系)(即罐内油位高度与储油量的对应关系)进行实进行实时计算,以得到罐内油位高度和储油量的变化情况。
第五届华中杯数模竞赛A题优秀论文

第五届华中地区大学生数学建模邀请赛承诺书我们仔细阅读了《第五届华中地区大学生数学建模邀请赛的选手须知》。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们的竞赛编号为:我们的选择题号为:参赛队员(打印并签名):队员1:队员2:队员3:(以下内容参赛队伍不需要填写)评阅编号:武汉工业与应用数学学会第五届华中地区大学生数学建模邀请赛竞赛组委会题目: 不同类型汽车的能耗和使用成本问题摘要对于问题一,我们选取ECE 工况,采用基于以能量消耗为比较目标的控制方法,建立传统汽车燃油消耗的数学公式,对比建立电动汽车以及混合动力汽车的能量计算消耗模型。
传统汽车和纯电动汽车的能耗方程可直接由相关物理模型分析得出,考虑到混合动力汽车的特殊性,结合了HEV 汽车的最佳能源消耗模型。
然后利用MATLAB 中的SIMULINK 仿真系统对三类汽车能耗情况进行仿真比较,得出节能效果对比仿真图。
通过 SIMULINK 仿真得到传统汽车在ECE 工况下的能耗为810564.6⨯J ,电动汽车能耗为810003.3⨯J ,混合动力汽车能耗为810604.5⨯J ,混合动力汽车在ECE 的工况下相对传统汽车能减少14.63%的能耗,电动汽车在ECE 的工况下相对传统汽车能减少54.25%的能耗。
故得出结论,从能耗角度分析比较,电动汽车节能效果更好。
对于问题二,我们以汽车的行驶里程作为变量,结合实际情况,忽略可操作性不强以及波动变化较大的因素,重点从能耗费用、保养费用两个方面进行使用成本分析,通过简化问题以及对于三种不同类型汽车的对应分析,考虑购车成本和行驶里程对使用成本的关系后,建立了在一个相对合适的行驶里程内三种不同类型汽车的成本模型。
全国大学生数学建模竞赛C题国家奖一等奖优秀论文

脑卒中发病环境因素分析及干预摘要本文主要讨论脑卒中发病环境因素分析及干预问题。
根据题中所给出的数据,利用SPSS20 软件进行相关性统计分析,分别对各气象因素进行单因素分析,进而建立后退法线性回归分析模型,得到脑卒中与气压、气温、相对湿度之间的关系。
同时在广泛收集各种资料并综合考虑环境因素,对脑卒中高危人群提出预警和干预的建议方案。
首先,利用SPSS20软件,从患病人群的性别、年龄、职业进行统计分析,得到2007-2010年男性患病人数高于女性,且男性所占比例有逐年下降趋势,女性则有上升趋势,因此,性别比例呈减小趋势。
分析不同年龄段患病人数,得到患病高峰期为75-77岁之间,且青少年比例逐年呈增长趋势,可见患病比例趋于年轻化。
同时在不同的职业中,农民发病人数最多,教师,渔民,医务人员,职工,离退人员的发病人数较少。
其次,由题中所给数据先进行单因素分析,剔除对脑卒中影响不显著的因素,得出气温、气压、相对湿度对脑卒中的影响程度大小,进而采用后退法线性回归分析建立模型,利用SPSS20对数据进行分析,求得脑卒中发病率与气温、气压、相对湿度之间的关系。
即发病率与平均温度成正相关,与最高温度成负相关,发病率与平均气压成正相关,与最低气压成负相关,与平均相对湿度成负相关,与最小相对湿度成正相关。
最后,通过查找资料发现,影响脑卒中的因素有两类,一类是不可干预因素,如年龄、性别、家族史,另一类是可干预因素,如高血压、高血脂、糖尿病、肥胖、抽烟、酗酒等因素。
分析这些因素,建立双变量因素分析模型,并结合问题1和问题2,对高危人群提出预警和干预的建议方案。
关键词脑卒中单因素分析后退法线性回归分析双变量因素分析一问题的重述脑卒中(俗称脑中风)是目前威胁人类生命的严重疾病之一,它的发生是一个漫长的过程,一旦得病就很难逆转。
这种疾病的诱发已经被证实与环境因素,包括气温、湿度之间存在密切的关系。
对脑卒中的发病环境因素进行分析,其目的是为了进行疾病的风险评估,对脑卒中高危人群能够及时采取干预措施,也让尚未得病的健康人,或者亚健康人了解自己得脑卒中风险程度,进行自我保护。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模竞赛优秀大学生论文医学论文》1数学建模的过程1.1模型准备首先要了解实际背景,寻找内在规律,形成一个比较清晰的轮廓,提出问题。
1.2模型假设在明确目的、掌握资料的基础上,抓住问题的本质,舍弃次要因素,对实际问题做出合理的简化假设。
1.3模型建立在所作的假设条件下,用适当的数学方法去刻画变量之间的关系,得出一个数学结构,即数学模型。
原则上,在能够达到预期效果的基础上,选择的数学方法应越简单越好。
1.4模型求解建模后要对模型进行分析、求解,求解会涉及图解、定理证明及解方程等不同数学方法,有时还需用计算机求数值解。
1.5模型分析、检验、应用模型的结果应当能解释已存的现象,处理方法应该是最优的决策和控制方案,所以,对模型的解需要进行分析检验。
把求得的数学结果返回到实际问题中去,检验其合理性。
如果理论结果符合实际情况,那么就可以用它来指导实践,否则需再重新提出假设、建模、求解,直到模型结果与实际相符,才能进行实际应用。
总之,数学建模是一项富有创造性的工作,不可能用一些条条框框的规则规定的十分死板,只要是能够做到全面兼顾、能抓住问题的本质、最终检验结果合理,都是一个好的数学模型。
2数学建模在生物医学中的应用2.1DNA序列分类模型DNA分子是遗传信息存储的基本单位,许多生命科学中的重大问题都依赖于对这种特殊分子的深入了解。
因此,关于DNA分子结构与功能的问题,成为二十一世纪最重大的课题之一。
DNA序列分类问题是研究DNA分子结构的基础,它常用的方法是聚类分析法。
聚类分析是使用数据建模简化数据的一种方法,它将数据分成不同的类或者簇,同一个簇中的数据有很大的同质性,而不同的簇中的数据有很大的相异性。
在对DNA序列进行分类时,需首先引入样品变量,比如说单个碱基的丰度、两碱基丰度之比等;然后计算出每条DNA序列的样品变量值,存入到向量中;最后根据相似度度量原理,计算出所有序列两两之间的Lance与Williams距离,依据距离的远近进行分类。
对于模型的好坏,可选取已知分类的DNA序列进行检验,若按照该模型做出的分类与已知分类相符,则模型可取,反之则需调试样本变量,直到取得满意的结果为止。
2.2传染病模型为了能定量的研究传染病的传播规律,人们建立了各种类型的模型来预测、控制疾病的发生发展,比如说,SI模型(适用于患病后难以治愈)、SIS模型(适用于患病者治愈后不具有免疫力)、SIR模型(适用于患病者治愈后具有终身免疫力)、SIRS模型(适用于患病者治愈后具有暂时免疫力)等。
这里以SIR模型为例来做具体地说明。
假设不考虑人口的出生、死亡、流动等因素,设总人口始终保持一个常数N,记t时刻的易感染者、已感染者和已恢复者的人数分别为S(t)、i(t)和r(t),则可建立下面的三房室模型:2.3疗效评价模型对于同一种疾病,医生根据其经验的不同往往会制定出不同的治疗方案,而每种方案的经济成本不同并且会产生不同程度的副作用,因此合理评价其疗效就有着重要的意义。
目前常用的疗效评价模型有多元非线性回归模型、模糊评价模型、灰色关联度模型以及BP神经网络模型等。
不论哪种模型都需要先确定评价参数,所谓评价参数指的是以什么来衡量疗效,如在艾滋病疗效评价中,可采用CD4的浓度、HIV的浓度或是CD4与HIV浓度的比值来衡量疗效的好坏。
而选取模型时,只要它能把样品的综合疗效客观真实的体现出来,都是有效的。
3结束语数学建模在生物医学领域的研究中起着重要的作用,特别是较高层次的医学科研往往有赖于合理的数学模型的建立,因此要培养高水平的医学科研人员就必须要加强数学建模在高等医学院校教学中的地位。
而就目前来说,高等医学院校对数学教学的重视程度还远远不够,不管是数学教学的内容方面还是课程体系的设置方面都亟待改革。
数学建模优秀论文篇二:《数学教学中的数学建模能力的培养》一、在高等数学教学中运用数学建模思想的重要性(1)将教材中的数学知识运用现实生活中的对象进行还原,让学生树立数学知识来源于现实生活的思想观念。
(2)数学建模思想要求学生能够通过运用相应的数学工具和数学语言,对现实生活中的特定对象的信息、数据或者现象进行简化,对抽象的数学对象进行翻译和归纳,将所求解的数学问题中的数量关系运用数学关系式、数学图形或者数学表格等形式进行表达,这种方式有利于培养、锻炼学生的数学表达能力。
(3)在运用数学建模思想获得实际的答案后,需要运用现实生活对象的相关信息对其进行检验,对计算结果的准确性进行检验和确定。
该流程能够培养学生运用合理的数学方法对数学问题进行主动性、客观性以及辩证性的分析,最后得到最有效的解决问题的方法。
二、高等数学教学中数学建模能力的培养策略1.教师要具备数学建模思想意识在对高等数学进行教学的过程中,培养学生运用数学建模思想,首先教师要具备足够的数学建模意识。
教师在进行高等数学教学之前,首先,要对所讲数学内容的相关实例进行查找,有意识的实现高等数学内容和各个不同领域之间的联系;其次,教师要实现高等数学教学内容与教学要求的转变,及时的更新自身的教学观念和教学思想。
例如,教师细心发现现实生活中的小事,然后运用这些小事建造相应的数学模型,这样不仅有利于营造活跃的课堂环境,而且还有利于激发学生的学习兴趣。
2.实现数学建模思想和高等数学教材的互相结合教师在讲解高等数学时,对其中能够引入数学模型的章节,要构建相关的数学模型,对其提出相应的问题,进行分析和处理。
在该基础上,提出假设,实现数学模型的完善。
教师在高等数学的教学中融入建模意识,让学生潜移默化的感受到建模思想在高等数学教学中应用的效果。
这样有利于提高学生数学知识的运用能力和学习兴趣。
例如,在进行教学时,针对学生所学专业的特点,选择科学、合理的数学案例,运用数学建模思想对其进行相应的加工后,作为高等数学讲授的应用例题。
这样不仅能够让学生发现数学发挥的巨大作用,而且还能够有效的提高学生的数学解题水平。
另外,数学课结束后,转变以往的作业模式,给学生布置一些具有专业性、数学性的习题,让学生充分利用网络资源,自主建立数学模型,有效的解决问题。
3.理清高等数学名词的概念高等数学中的数学概念是根据实际需要出现的,所以在数学的教学中,教师要引起从实际问题中提取数学概念的整个过程,对学生应用数学的兴趣进行培养。
例如在高等数学教材中,导数和定积分是其中的比较重要的概念,因此,教师在进行教学时,要引导学生理清这两个的概念。
比如导数概念是由几何曲线中的切线斜率引导出来的,定积分的概念是由局部取近似值引出的,将常量转变为变量。
4.加强数学应用问题的培养高等数学中,主要有以下几种应用问题:(1)最值问题在高等数学教材中,最值问题是导数应用中最重要的问题。
教师在教学过程中通过对最值问题的解题步骤进行归纳,能够有效地将数学建模的基本思想进行反映。
因此,在对这部分内容进行教学时,要增加例题,加大学生的练习,开拓学生的思维,让学生熟练掌握最值问题的解决办法。
(2)微分方程在微分方程的教学中运用数学建模思想,能够有效地解决实际问题。
微分方程所构建的数学模型不具有通用的规则。
首先,要确定方程中的变量,对变量和变化率、微元之间的关系进行分析,然后运用相关的物理理论、化学理论或者工程学理论对其进行实验,运用所得出的定理、规律来构建微分方程;其次,对其进行求解和验证结果。
微分方程的概念主要从实际引入,坚持由浅入深的原则,来对现实问题进行解决。
例如,在对学生讲解外有引力定律时,让学生对万有引力的提出、猜想进行探究,了解到在其发展的整个过程中,数学发挥着十分重要的作用。
(3)定积分微元法思想用途比较广泛,其主要以定积分概念为基础,在数学中渗入定积分概念,让学生对定积分概念的意义进行分析和了解,这样有利于在对实际问题进行解决时,树立欲积先分意识,意识到运用定积分是解决微元实际问题的重要方法。
教师在布置作业题时,要增加该问题的实例。
三、结语总之,在高等数学中对学生的数学建模能力进行培养,让学生在解题的过程中运用数学建模思想和数学建模方法,能够有效地激发学生的学习兴趣,提高学生的分析、解决问题的能力以及提高学生数学知识的运用能力。
数学建模优秀论文篇三:《高中数学建模》摘要:从减轻学生的学习负担,提升学生的数学能力,提高高中数学教学效率等角度来看,数学建模也担负着相当重要的作用. 本文从三个方面探讨了在高中数学教学中如何实施数学建模.关键词:高中数学;建模;思考数学建模被认为是数学区别于其他学科的重要特征之一,对数学及其教学有点研究的人基本都知道数学建模这个概念. 在课程改革之前,数学建模就受到高中数学教学界的普遍重视,包括数学建模在内的学科建模丛书成为当时教师的热门选择. 进入课程改革之后,尽管课程标准中仍然保留着数学建模的教学要求,但由于人们更热衷于讨论教学方式的转变、教学理念的更新等,数学建模相对显得有些被冷落了. 但事实上,作为数学教学的核心内容,数学建模是数学教学中的重要基础,也是学生提升数学学习能力和数学素养的重要方式. 一言以蔽之,凡是有数学的地方就有数学建模.在高中数学教学中,由于数学内容的循序渐进性,很多数学概念、定理、法则的形成都具有一些共同点,也就是说不同的数学概念的得出有时仿佛是走的同一条道路,因此历史总是惊人地相似这句话有时竟也非常适用于数学概念、定理或法则的形成;又由于不同数学知识之间的相互联系性,很多数学问题又都具有类似的解题思路,也就是说看起来不是同一领域的数学问题,但在分析解决的思路上却又是相同的,看似殊途,实则同归.事实上,正是因为这些共同点的存在,才形成了高中数学教学中进行数学建模的内容基础和方法基础.同时从减轻学生的学习负担,提升学生的数学能力,提高高中数学教学效率等角度来看,数学建模也担负着相当重要的作用. 因为一个数学模型的建立,用到大量的数学知识和数学思想,它具有极强的综合性. 在教学实际中,笔者根据自身的观点,认为要想成功地建立、理解、运用数学模型,可以从以下几个方面来进行.[一] 什么是数学建模从字面上来看,建模就是建立模型.只是数学建模与一般意义上的建立模型不同,因为其一般不是建立实际的模型,如长方形、立方体等,而是指基于数学特质,建立一套适合于数学思考的思维模型,这种模型既然是思维的结果,自然也就以一种抽象的形态存在于数学研究者的思维当中,至于具体的实物模型一般是没有的,就算是有,也是数学研究者思维结果的物质体现.具体地说,就是数学研究者通过思维活动,将生活中的事物进行抽象――去掉其中非关键的要素,保留其中关键的要素,最终建立起一套利用数学语言描述现实中的数量关系与空间形式的过程. 这个过程中,由于抽象思维的参与,因此与数学无关的因素都被忽略,而与数学有关的因素都被保留了下来. 而这样的抽象结果在得到了验证之后,就可以得到一个稳定的数学结构. 又因为这个数学结构在一定范围内具有较强的代表性,所以其将成为其他数学问题解决的重要载体. 我们有时候说数学具有简洁的特点,就是因为众多数学现象背后有着共同的数学模型.数学建模作为思维的结果,其一般存在于学生的思维当中,存在形式就是思维表象,或者说是某种数学图景. 那么,这个数学图景的形成需要经历怎样的抽象过程呢?研究相关理论我们可以发现,作为一种数学学习方法,高中数学建模的过程应当包括这样几个方面:一是学生根据学习内容和建模需要,分析其中的主要数学因素与非数学因素并进行取舍,在头脑中初步构建模型,这是模型构思阶段;二是根据初步构建的数学模型,选择适当的数学工具在选择出来的数学因素之间建立起数学关系,并通过关系的梳理建构数学结构,这是模型的建立阶段;三是将模型初步应用于新的情境当中,看建立的模型能否接受新的数学问题的检验,如果有问题则需要经历前面一个循环过程,如果没有问题则说明模型建立得相对成功.这是模型的验证阶段;四是将模型正式迁移到其他数学问题当中,用于对新问题进行解释,这是模型的应用阶段.值得注意的是,不同领域的数学知识需要建立不同的数学模型,建立模型的方法也不尽相同,但大体思路一致. 且严格来说,任何一个数学模型都有异于其他数学模型的地方,因此在数学建模当中要具有现象学的观点,因材而异. 有人说,数学模型的独立性与一致性是一个问题的两个方面,相当于一个硬币具有的正面与反面.[二] 高中数学建模对学生数学能力发展的思考数学建模的意义是不言而喻的,在高中数学教学中建立模型自然也是必要的. 笔者这两年对数学建模有所思考并不断地将自己的想法通过教学实施来验证,应该说带给我们的思考还是非常多的,具体说来有这样几个方面.首先,数学建模能够有效地培养学生的应用意识. 应用意识是高中数学的一个重要目标指向,也是数学学以致用的价值体现. 具有应用意识与能力的学生,往往能够在实际问题与数学知识之间迅速地建立一种联系,有助于学生巩固所学数学知识,有助于提高学生的数学问题解决能力. 在这种意识形成过程中,数学建模能够起到非常明显的作用. 例如,大家所熟知的最短路径问题,包括两个位置之间最短距离的问题(具体的实际问题情境一般高中数学同行都是烂熟于心的,这里就不赘述了,下同;可以建立成两点之间直线最短的模型),三个位置之间的最短距离问题(可以建立成三点之间距离之和最短的模型),两个位置到一条道路或河流的距离之和最短的问题(可以建立成两点到一线的距离模型),蚂蚁爬圆柱问题(可以建立成寻找圆柱上下底面两点间的最短距离问题),淋雨多少与速度是否有关问题(可以建立成矢量三角形模型)通过将这些实际问题或类实际问题进行抽象加工,使之成为数学模型. 通过这一个过程深化与丰富,可以有效地培养学生数学建模的能力,而在这个能力形成的过程中,当然也就培养了学生的数学应用意识和问题解决能力.其次,数学建模能够培养学生的数学语言运用能力. 数学本身是一个符号世界,其抽象性也就体现在这个方面. 而数学建模的过程一般都是一个比较复杂的思维过程,在建模过程中往往靠个体的力量不容易成功,这个时候就需要学生之间进行合作学习,而合作学习的基础就是学生间的有效交流. 在数学建模过程中,为了将自己的思考表述出来,就需要通过语言组织将自己的数学思考与他人分享,在这个过程中学生会经历一个即时、迅速、复杂的数学思维语言化的过程. 根据我们的教学经验,学生在这个过程中往往会表现出非常复杂的思维过程,这里所说的复杂主要是指学生的表达总是从生疏走向熟练、从不准确走向准确,而这个过程又是小组内学生共同促进的结果. 同时,对于数学模型的解释、解读,以及运用过程中必然也会涉及表述等问题,因此数学语言将是围绕数学模型展开的一个重要内容,因此笔者总体感觉到这样的过程能够促进学生对数学语言掌握的熟练化.再次,数学建模能够培养学生良好的直觉思维能力. 思维能力是数学教学的核心,我们的数学教学如果说超越知识层面来培养学生的话,那就是培养学生的思维能力. 而根据对心理学的相关知识的学习,我们可以说人的思维可以分为形象思维(小学、初中阶段的主要思维方式)、抽象思维(高中阶段的主要思维方式)和直觉思维三种阶段与形式. 其中直觉思维被认为是最高形式的思维方式,其具体表现是学生能够在即时状态下对新事物迅速做出反应――反应速度越快,说明这位学生的直觉思维能力越强. 在高中数学教学中,培养学生良好的直觉思维是必需的任务,而我们认为数学建模是能够发挥这样的作用的. 翻开数学史,我们可以看到很多经典的数学发现,如笛卡儿坐标系等,都是直觉思维的产物. 而在教学实践中,我们也发现现在的高中学生能够依托抽象思维建立出比较理想的数学模型,而经过坚持不懈的训练之后,就有可能形成良好的数学直觉.[三] 高中数学建模的实施细节注意点数学建模作为一项数学思维高度参与的活动,在具体的教学中要想真正做得很好是一件不容易的事情. 除了对于数学建模的四个阶段要比较熟悉之外,在具体的实施中还有一些细节需要注意.一是要充分运用好问题驱动. 根据皮亚杰发生认识论的有关观点,只有在学生的认知平衡被打破时学生才会产生强烈的学习内驱力,而数学建模由于思维量大,因此必须以问题驱动才能保证整个过程的顺利实施. 值得注意的是,这个问题必须是符合学生需要的问题,不一定是学生自己提出来的,但一定要保证提出之后学生是感兴趣的.二是要充分增强学生的体验感. 数学建模本质上是对实际事物或实际问题的抽象,而这就需要学生有充分的经验作为基础,经验来源于生活和体验,对于高中数学学习而言,更多的经验可以通过体验来生成. 而这就需要我们在课堂上多创设能够让学生体验的情境,以生成相应的经验供数学建模中使用.三是要注意数学建模的实施时机. 作为一项规模较大(思维量大)的工程,数学建模在日常教学中频繁实施是不现实的,因此就需要我们寻找良好的教学契机,恰到好处地落实数学建模的思想. 在应试压力仍然存在的现阶段,这是对高中数学教师的一个考验.。